1932

Abstract

DNA sequencing has revolutionized medicine over recent decades. However, analysis of large structural variation and repetitive DNA, a hallmark of human genomes, has been limited by short-read technology, with read lengths of 100–300 bp. Long-read sequencing (LRS) permits routine sequencing of human DNA fragments tens to hundreds of kilobase pairs in size, using both real-time sequencing by synthesis and nanopore-based direct electronic sequencing. LRS permits analysis of large structural variation and haplotypic phasing in human genomes and has enabled the discovery and characterization of rare pathogenic structural variants and repeat expansions. It has also recently enabled the assembly of a complete, gapless human genome that includes previously intractable regions, such as highly repetitive centromeres and homologous acrocentric short arms. With the addition of protocols for targeted enrichment, direct epigenetic DNA modification detection, and long-range chromatin profiling, LRS promises to launch a new era of understanding of genetic diversity and pathogenic mutations in human populations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-101722-103045
2023-08-25
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/genom/24/1/annurev-genom-101722-103045.html?itemId=/content/journals/10.1146/annurev-genom-101722-103045&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    1000 Genomes Proj. Consort 2010. A map of human genome variation from population-scale sequencing. Nature 467:1061–73. Corrigendum 2011. Nature 473:544
    [Google Scholar]
  2. 2.
    1000 Genomes Proj. Consort 2015. A global reference for human genetic variation. Nature 526:68–74
    [Google Scholar]
  3. 3.
    Abdulhay NJ, McNally CP, Hsieh LJ, Kasinathan S, Keith A et al. 2020. Massively multiplex single-molecule oligonucleosome footprinting. eLife 9:e59404
    [Google Scholar]
  4. 4.
    Aganezov S, Yan SM, Soto DC, Kirsche M, Zarate S et al. 2022. A complete reference genome improves analysis of human genetic variation. Science 376:eabl3533
    [Google Scholar]
  5. 5.
    Altemose N, Logsdon GA, Bzikadze AV, Sidhwani P, Langley SA et al. 2022. Complete genomic and epigenetic maps of human centromeres. Science 376:eabl4178
    [Google Scholar]
  6. 6.
    Amarasinghe SL, Su S, Dong X, Zappia L, Ritchie ME, Gouil Q. 2020. Opportunities and challenges in long-read sequencing data analysis. Genome Biol. 21:30
    [Google Scholar]
  7. 7.
    Audano PA, Sulovari A, Graves-Lindsay TA, Cantsilieris S, Sorensen M et al. 2019. Characterizing the major structural variant alleles of the human genome. Cell 176:663–75.e19
    [Google Scholar]
  8. 8.
    Bailey JA, Gu Z, Clark RA, Reinert K, Samonte RV et al. 2002. Recent segmental duplications in the human genome. Science 297:1003–7
    [Google Scholar]
  9. 9.
    Bankevich A, Bzikadze AV, Kolmogorov M, Antipov D, Pevzner PA. 2022. Multiplex de Bruijn graphs enable genome assembly from long, high-fidelity reads. Nat. Biotechnol. 40:1075–81
    [Google Scholar]
  10. 10.
    Battaglia S, Dong K, Wu J, Chen Z, Najm FJ et al. 2022. Long-range phasing of dynamic, tissue-specific and allele-specific regulatory elements. Nat. Genet. 54:1504–13
    [Google Scholar]
  11. 11.
    Beaulaurier J, Zhang XS, Zhu S, Sebra R, Rosenbluh C et al. 2015. Single molecule-level detection and long read-based phasing of epigenetic variations in bacterial methylomes. Nat. Commun. 6:7438
    [Google Scholar]
  12. 12.
    Benson G. 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27:573–80
    [Google Scholar]
  13. 13.
    Bruels CC, Littel HR, Daugherty AL, Stafki S, Estrella EA et al. 2022. Diagnostic capabilities of nanopore long-read sequencing in muscular dystrophy. Ann. Clin. Transl. Neurol. 9:1302–9
    [Google Scholar]
  14. 14.
    Byrska-Bishop M, Evani US, Zhao X, Basile AO, Abel HJ et al. 2022. High-coverage whole-genome sequencing of the expanded 1000 Genomes Project cohort including 602 trios. Cell 185:3426–40.e19
    [Google Scholar]
  15. 15.
    Chaisson MJP, Huddleston J, Dennis MY, Sudmant PH, Malig M et al. 2015. Resolving the complexity of the human genome using single-molecule sequencing. Nature 517:608–11
    [Google Scholar]
  16. 16.
    Chaisson MJP, Sanders AD, Zhao X, Malhotra A, Porubsky D et al. 2019. Multi-platform discovery of haplotype-resolved structural variation in human genomes. Nat. Commun. 10:1784
    [Google Scholar]
  17. 17.
    Cheng H, Concepcion GT, Feng X, Zhang H, Li H. 2021. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18:170–75
    [Google Scholar]
  18. 18.
    Chintalaphani SR, Pineda SS, Deveson IW, Kumar KR. 2021. An update on the neurological short tandem repeat expansion disorders and the emergence of long-read sequencing diagnostics. Acta Neuropathol. Commun. 9:98
    [Google Scholar]
  19. 19.
    Coe BP, Witherspoon K, Rosenfeld JA, van Bon BW, Vulto-van Silfhout AT et al. 2014. Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nat. Genet. 46:1063–71
    [Google Scholar]
  20. 20.
    Cohen ASA, Farrow EG, Abdelmoity AT, Alaimo JT, Amudhavalli SM et al. 2022. Genomic answers for children: dynamic analyses of >1000 pediatric rare disease genomes. Genet. Med. 24:1336–48
    [Google Scholar]
  21. 21.
    Dennis MY, Harshman L, Nelson BJ, Penn O, Cantsilieris S et al. 2017. The evolution and population diversity of human-specific segmental duplications. Nat. Ecol. Evol. 1:69
    [Google Scholar]
  22. 22.
    Dixon JR, Xu J, Dileep V, Zhan Y, Song F et al. 2018. Integrative detection and analysis of structural variation in cancer genomes. Nat. Genet. 50:1388–98
    [Google Scholar]
  23. 23.
    Dubocanin D, Sedeno Cortes AE, Ranchalis J, Real T, Mallory B, Stergachis AB 2022. Single-molecule architecture and heterogeneity of human telomeric DNA and chromatin. bioRxiv 2022.05.09.491186. https://doi.org/10.1101/2022.05.09.491186
    [Crossref]
  24. 24.
    Dutta UR, Rao SN, Pidugu VK, VS V, Bhattacherjee A et al. 2019. Breakpoint mapping of a novel de novo translocation t(X;20)(q11.1;p13) by positional cloning and long read sequencing. Genomics 111:1108–14
    [Google Scholar]
  25. 25.
    Ebbert MTW, Farrugia SL, Sens JP, Jansen-West K, Gendron TF et al. 2018. Long-read sequencing across the C9orf72 ‘GGGGCC’ repeat expansion: implications for clinical use and genetic discovery efforts in human disease. Mol. Neurodegener. 13:46
    [Google Scholar]
  26. 26.
    Ebert P, Audano PA, Zhu Q, Rodriguez-Martin B, Porubsky D et al. 2021. Haplotype-resolved diverse human genomes and integrated analysis of structural variation. Science 372:eabf7117
    [Google Scholar]
  27. 27.
    Eichler EE, Clark RA, She X. 2004. An assessment of the sequence gaps: unfinished business in a finished human genome. Nat. Rev. Genet. 5:345–54
    [Google Scholar]
  28. 28.
    Fang G, Munera D, Friedman DI, Mandlik A, Chao MC et al. 2012. Genome-wide mapping of methylated adenine residues in pathogenic Escherichia coli using single-molecule real-time sequencing. Nat. Biotechnol. 30:1232–39
    [Google Scholar]
  29. 29.
    Farhangdoust F, Cheng F, Liang W, Liu Y, Wanunu M. 2022. Rapid identification of DNA fragments through direct sequencing with electro-optical zero-mode waveguides. Adv. Mater. 34:e2108479
    [Google Scholar]
  30. 30.
    Flusberg BA, Webster DR, Lee JH, Travers KJ, Olivares EC et al. 2010. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat. Methods 7:461–65
    [Google Scholar]
  31. 31.
    Fuller CW, Kumar S, Porel M, Chien M, Bibillo A et al. 2016. Real-time single-molecule electronic DNA sequencing by synthesis using polymer-tagged nucleotides on a nanopore array. PNAS 113:5233–38
    [Google Scholar]
  32. 32.
    Gabrieli T, Sharim H, Fridman D, Arbib N, Michaeli Y, Ebenstein Y. 2018. Selective nanopore sequencing of human BRCA1 by Cas9-assisted targeting of chromosome segments (CATCH). Nucleic Acids Res. 46:e87
    [Google Scholar]
  33. 33.
    Gall-Duncan T, Sato N, Yuen RKC, Pearson CE. 2022. Advancing genomic technologies and clinical awareness accelerates discovery of disease-associated tandem repeat sequences. Genome Res. 32:1–27
    [Google Scholar]
  34. 34.
    Garrison E, Siren J, Novak AM, Hickey G, Eizenga JM et al. 2018. Variation graph toolkit improves read mapping by representing genetic variation in the reference. Nat. Biotechnol. 36:875–79
    [Google Scholar]
  35. 35.
    Gershman A, Sauria MEG, Guitart X, Vollger MR, Hook PW et al. 2022. Epigenetic patterns in a complete human genome. Science 376:eabj5089
    [Google Scholar]
  36. 36.
    Giesselmann P, Brandl B, Raimondeau E, Bowen R, Rohrandt C et al. 2019. Analysis of short tandem repeat expansions and their methylation state with nanopore sequencing. Nat. Biotechnol. 37:1478–81
    [Google Scholar]
  37. 37.
    Gilpatrick T, Lee I, Graham JE, Raimondeau E, Bowen R et al. 2020. Targeted nanopore sequencing with Cas9-guided adapter ligation. Nat. Biotechnol. 38:433–38
    [Google Scholar]
  38. 38.
    Gouil Q, Keniry A. 2019. Latest techniques to study DNA methylation. Essays Biochem. 63:639–48
    [Google Scholar]
  39. 39.
    Hanlon VCT, Lansdorp PM, Guryev V. 2022. A survey of current methods to detect and genotype inversions. Hum. Mutat. 43:1576–89
    [Google Scholar]
  40. 40.
    Hasson D, Alonso A, Cheung F, Tepperberg JH, Papenhausen PR et al. 2011. Formation of novel CENP-A domains on tandem repetitive DNA and across chromosome breakpoints on human chromosome 8q21 neocentromeres. Chromosoma 120:621–32
    [Google Scholar]
  41. 41.
    Hoyt SJ, Storer JM, Hartley GA, Grady PGS, Gershman A et al. 2022. From telomere to telomere: the transcriptional and epigenetic state of human repeat elements. Science 376:eabk3112
    [Google Scholar]
  42. 42.
    Huddleston J, Chaisson MJP, Steinberg KM, Warren W, Hoekzema K et al. 2017. Discovery and genotyping of structural variation from long-read haploid genome sequence data. Genome Res. 27:677–85
    [Google Scholar]
  43. 43.
    Hung KL, Luebeck J, Dehkordi SR, Colon CI, Li R et al. 2022. Targeted profiling of human extrachromosomal DNA by CRISPR-CATCH. Nat. Genet. 54:1746–54
    [Google Scholar]
  44. 44.
    Ishiura H, Shibata S, Yoshimura J, Suzuki Y, Qu W et al. 2019. Noncoding CGG repeat expansions in neuronal intranuclear inclusion disease, oculopharyngodistal myopathy and an overlapping disease. Nat. Genet. 51:1222–32
    [Google Scholar]
  45. 45.
    Jacobs PA, Wilson CM, Sprenkle JA, Rosenshein NB, Migeon BR. 1980. Mechanism of origin of complete hydatidiform moles. Nature 286:714–16
    [Google Scholar]
  46. 46.
    Jain M, Koren S, Miga KH, Quick J, Rand AC et al. 2018. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat. Biotechnol. 36:338–45
    [Google Scholar]
  47. 47.
    Jain M, Olsen HE, Turner DJ, Stoddart D, Bulazel KV et al. 2018. Linear assembly of a human centromere on the Y chromosome. Nat. Biotechnol. 36:321–23
    [Google Scholar]
  48. 48.
    Jarvis ED, Formenti G, Rhie A, Guarracino A, Yang C et al. 2022. Semi-automated assembly of high-quality diploid human reference genomes. Nature 611:519–31
    [Google Scholar]
  49. 49.
    Karpen GH, Allshire RC. 1997. The case for epigenetic effects on centromere identity and function. Trends Genet. 13:489–96
    [Google Scholar]
  50. 50.
    Kidd JM, Cooper GM, Donahue WF, Hayden HS, Sampas N et al. 2008. Mapping and sequencing of structural variation from eight human genomes. Nature 453:56–64
    [Google Scholar]
  51. 51.
    Korbel JO, Urban AE, Affourtit JP, Godwin B, Grubert F et al. 2007. Paired-end mapping reveals extensive structural variation in the human genome. Science 318:420–26
    [Google Scholar]
  52. 52.
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC et al. 2001. Initial sequencing and analysis of the human genome. Nature 409:860–921
    [Google Scholar]
  53. 53.
    Larkin J, Henley RY, Jadhav V, Korlach J, Wanunu M. 2017. Length-independent DNA packing into nanopore zero-mode waveguides for low-input DNA sequencing. Nat. Nanotechnol. 12:1169–75
    [Google Scholar]
  54. 54.
    Lee I, Razaghi R, Gilpatrick T, Molnar M, Gershman A et al. 2020. Simultaneous profiling of chromatin accessibility and methylation on human cell lines with nanopore sequencing. Nat. Methods 17:1191–99
    [Google Scholar]
  55. 55.
    Levy-Sakin M, Pastor S, Mostovoy Y, Li L, Leung AKY et al. 2019. Genome maps across 26 human populations reveal population-specific patterns of structural variation. Nat. Commun. 10:1025
    [Google Scholar]
  56. 56.
    Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T et al. 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–93
    [Google Scholar]
  57. 57.
    Liu Y, Cheng J, Siejka-Zielinska P, Weldon C, Roberts H et al. 2020. Accurate targeted long-read DNA methylation and hydroxymethylation sequencing with TAPS. Genome Biol. 21:54
    [Google Scholar]
  58. 58.
    Logsdon GA, Vollger MR, Eichler EE. 2020. Long-read human genome sequencing and its applications. Nat. Rev. Genet. 21:597–614
    [Google Scholar]
  59. 59.
    Logsdon GA, Vollger MR, Hsieh P, Mao Y, Liskovykh MA et al. 2021. The structure, function and evolution of a complete human chromosome 8. Nature 593:101–7
    [Google Scholar]
  60. 60.
    MacDonald JR, Ziman R, Yuen RK, Feuk L, Scherer SW. 2014. The Database of Genomic Variants: a curated collection of structural variation in the human genome. Nucleic Acids Res. 42:D986–92
    [Google Scholar]
  61. 61.
    Mangin A, de Pontual L, Tsai YC, Monteil L, Nizon M et al. 2021. Robust detection of somatic mosaicism and repeat interruptions by long-read targeted sequencing in myotonic dystrophy type 1. Int. J. Mol. Sci. 22:2616
    [Google Scholar]
  62. 62.
    Marwaha S, Knowles JW, Ashley EA. 2022. A guide for the diagnosis of rare and undiagnosed disease: beyond the exome. Genome Med. 14:23
    [Google Scholar]
  63. 63.
    Mayor NP, Robinson J, McWhinnie AJ, Ranade S, Eng K et al. 2015. HLA typing for the next generation. PLOS ONE 10:e0127153
    [Google Scholar]
  64. 64.
    Melas M, Kautto EA, Franklin SJ, Mori M, McBride KL et al. 2022. Long-read whole genome sequencing reveals HOXD13 alterations in synpolydactyly. Hum. Mutat. 43:189–99
    [Google Scholar]
  65. 65.
    Merker JD, Wenger AM, Sneddon T, Grove M, Zappala Z et al. 2018. Long-read genome sequencing identifies causal structural variation in a Mendelian disease. Genet. Med. 20:159–63
    [Google Scholar]
  66. 66.
    Miao H, Zhou J, Yang Q, Liang F, Wang D et al. 2018. Long-read sequencing identified a causal structural variant in an exome-negative case and enabled preimplantation genetic diagnosis. Hereditas 155:32
    [Google Scholar]
  67. 67.
    Miga KH, Koren S, Rhie A, Vollger MR, Gershman A et al. 2020. Telomere-to-telomere assembly of a complete human X chromosome. Nature 585:79–84
    [Google Scholar]
  68. 68.
    Miga KH, Newton Y, Jain M, Altemose N, Willard HF, Kent WJ. 2014. Centromere reference models for human chromosomes X and Y satellite arrays. Genome Res. 24:697–707
    [Google Scholar]
  69. 69.
    Miga KH, Wang T. 2021. The need for a human pangenome reference sequence. Annu. Rev. Genom. Hum. Genet. 22:81–102
    [Google Scholar]
  70. 70.
    Miller DE, Hanna P, Galey M, Reyes M, Linglart A et al. 2022. Targeted long-read sequencing identifies a retrotransposon insertion as a cause of altered GNAS exon A/B methylation in a family with autosomal dominant pseudohypoparathyroidism type 1b (PHP1B). J. Bone Miner. Res. 37:1711–19
    [Google Scholar]
  71. 71.
    Miller DE, Lee L, Galey M, Kandhaya-Pillai R, Tischkowitz M et al. 2022. Targeted long-read sequencing identifies missing pathogenic variants in unsolved Werner syndrome cases. J. Med. Genet. 59:1087–94
    [Google Scholar]
  72. 72.
    Miller DE, Sulovari A, Wang T, Loucks H, Hoekzema K et al. 2021. Targeted long-read sequencing identifies missing disease-causing variation. Am. J. Hum. Genet. 108:1436–49
    [Google Scholar]
  73. 73.
    Mills RE, Walter K, Stewart C, Handsaker RE, Chen K et al. 2011. Mapping copy number variation by population-scale genome sequencing. Nature 470:59–65
    [Google Scholar]
  74. 74.
    Mitsuhashi S, Frith MC, Mizuguchi T, Miyatake S, Toyota T et al. 2019. Tandem-genotypes: robust detection of tandem repeat expansions from long DNA reads. Genome Biol. 20:58
    [Google Scholar]
  75. 75.
    Mizuguchi T, Okamoto N, Yanagihara K, Miyatake S, Uchiyama Y et al. 2021. Pathogenic 12-kb copy-neutral inversion in syndromic intellectual disability identified by high-fidelity long-read sequencing. Genomics 113:1044–53
    [Google Scholar]
  76. 76.
    Mizuguchi T, Suzuki T, Abe C, Umemura A, Tokunaga K et al. 2019. A 12-kb structural variation in progressive myoclonic epilepsy was newly identified by long-read whole-genome sequencing. J. Hum. Genet. 64:359–68
    [Google Scholar]
  77. 77.
    Mizuguchi T, Toyota T, Adachi H, Miyake N, Matsumoto N, Miyatake S. 2019. Detecting a long insertion variant in SAMD12 by SMRT sequencing: implications of long-read whole-genome sequencing for repeat expansion diseases. J. Hum. Genet. 64:191–97
    [Google Scholar]
  78. 78.
    Morales J, Pujar S, Loveland JE, Astashyn A, Bennett R et al. 2022. A joint NCBI and EMBL-EBI transcript set for clinical genomics and research. Nature 604:310–15
    [Google Scholar]
  79. 79.
    Morato Torres CA, Zafar F, Tsai YC, Vazquez JP, Gallagher MD et al. 2022. ATTCT and ATTCC repeat expansions in the ATXN10 gene affect disease penetrance of spinocerebellar ataxia type 10. HGG Adv. 3:100137
    [Google Scholar]
  80. 80.
    Ni P, Zhong Z, Xu J, Huang N, Zhang J et al. 2023. DNA 5-methylcytosine detection and methylation phasing using PacBio circular consensus sequencing. bioRxiv 2022.02.26.482074. https://doi.org/10.1101/2022.02.26.482074
    [Crossref]
  81. 81.
    Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV et al. 2022. The complete sequence of a human genome. Science 376:44–53
    [Google Scholar]
  82. 82.
    Nurk S, Walenz BP, Rhie A, Vollger MR, Logsdon GA et al. 2020. HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads. Genome Res. 30:1291–305
    [Google Scholar]
  83. 83.
    Olivares-Chauvet P, Mukamel Z, Lifshitz A, Schwartzman O, Elkayam NO et al. 2016. Capturing pairwise and multi-way chromosomal conformations using chromosomal walks. Nature 540:296–300
    [Google Scholar]
  84. 84.
    Oxford Nanopore Technol 2022. The power of Q20+ chemistry. Oxford Nanopore Technologies https://nanoporetech.com/q20plus-chemistry
    [Google Scholar]
  85. 85.
    [Google Scholar]
  86. 86.
    PacBio 2022. Revio system. PacBio https://www.pacb.com/revio
    [Google Scholar]
  87. 87.
    Pendleton M, Sebra R, Pang AW, Ummat A, Franzen O et al. 2015. Assembly and diploid architecture of an individual human genome via single-molecule technologies. Nat. Methods 12:780–86
    [Google Scholar]
  88. 88.
    Peters BA, Kermani BG, Sparks AB, Alferov O, Hong P et al. 2012. Accurate whole-genome sequencing and haplotyping from 10 to 20 human cells. Nature 487:190–95
    [Google Scholar]
  89. 89.
    Qiao W, Yang Y, Sebra R, Mendiratta G, Gaedigk A et al. 2016. Long-read single molecule real-time full gene sequencing of cytochrome P450-2D6. Hum. Mutat. 37:315–23
    [Google Scholar]
  90. 90.
    Rand AC, Jain M, Eizenga JM, Musselman-Brown A, Olsen HE et al. 2017. Mapping DNA methylation with high-throughput nanopore sequencing. Nat. Methods 14:411–13
    [Google Scholar]
  91. 91.
    Rang FJ, Kloosterman WP, de Ridder J. 2018. From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy. Genome Biol. 19:90
    [Google Scholar]
  92. 92.
    Rautiainen M, Marschall T. 2020. GraphAligner: rapid and versatile sequence-to-graph alignment. Genome Biol. 21:253
    [Google Scholar]
  93. 93.
    Reiner J, Pisani L, Qiao W, Singh R, Yang Y et al. 2018. Cytogenomic identification and long-read single molecule real-time (SMRT) sequencing of a Bardet-Biedl Syndrome 9 (BBS9) deletion. npj Genom. Med. 3:3
    [Google Scholar]
  94. 94.
    Robinson J, Barker DJ, Georgiou X, Cooper MA, Flicek P, Marsh SGE. 2020. IPD-IMGT/HLA Database. Nucleic Acids Res. 48:D948–55
    [Google Scholar]
  95. 95.
    Rubben K, Tilleman L, Deserranno K, Tytgat O, Deforce D, Van Nieuwerburgh F. 2022. Cas9 targeted nanopore sequencing with enhanced variant calling improves CYP2D6-CYP2D7 hybrid allele genotyping. PLOS Genet. 18:e1010176
    [Google Scholar]
  96. 96.
    Sanders AD, Falconer E, Hills M, Spierings DCJ, Lansdorp PM. 2017. Single-cell template strand sequencing by Strand-seq enables the characterization of individual homologs. Nat. Protoc. 12:1151–76
    [Google Scholar]
  97. 97.
    Sano Y, Koyanagi Y, Wong JH, Murakami Y, Fujiwara K et al. 2022. Likely pathogenic structural variants in genetically unsolved patients with retinitis pigmentosa revealed by long-read sequencing. J. Med. Genet. 59:1133–38
    [Google Scholar]
  98. 98.
    Sato N, Amino T, Kobayashi K, Asakawa S, Ishiguro T et al. 2009. Spinocerebellar ataxia type 31 is associated with “inserted” penta-nucleotide repeats containing (TGGAA)n. Am. J. Hum. Genet. 85:544–57
    [Google Scholar]
  99. 99.
    Schneider VA, Graves-Lindsay T, Howe K, Bouk N, Chen HC et al. 2017. Evaluation of GRCh38 and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly. Genome Res. 27:849–64
    [Google Scholar]
  100. 100.
    Scott ER, Yang Y, Botton MR, Seki Y, Hoshitsuki K et al. 2022. Long-read HiFi sequencing of NUDT15: phased full-gene haplotyping and pharmacogenomic allele discovery. Hum. Mutat. 43:1557–66
    [Google Scholar]
  101. 101.
    Simpson JT, Workman RE, Zuzarte PC, David M, Dursi LJ, Timp W. 2017. Detecting DNA cytosine methylation using nanopore sequencing. Nat. Methods 14:407–10
    [Google Scholar]
  102. 102.
    Sirugo G, Williams SM, Tishkoff SA. 2019. The missing diversity in human genetic studies. Cell 177:26–31
    [Google Scholar]
  103. 103.
    Skene PJ, Henikoff S. 2017. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. eLife 6:e21856
    [Google Scholar]
  104. 104.
    Smit AF. 1999. Interspersed repeats and other mementos of transposable elements in mammalian genomes. Curr. Opin. Genet. Dev. 9:657–63
    [Google Scholar]
  105. 105.
    Smith ZD, Meissner A. 2013. DNA methylation: roles in mammalian development. Nat. Rev. Genet. 14:204–20
    [Google Scholar]
  106. 106.
    Sone J, Mitsuhashi S, Fujita A, Mizuguchi T, Hamanaka K et al. 2019. Long-read sequencing identifies GGC repeat expansions in NOTCH2NLC associated with neuronal intranuclear inclusion disease. Nat. Genet. 51:1215–21
    [Google Scholar]
  107. 107.
    Song XH, Hsu HK, Su MT, Chang TS, Su PY et al. 2017. Euchromatic variants of 8q21.2 in twins. Taiwan J. Obstet. Gynecol. 56:227–29
    [Google Scholar]
  108. 108.
    Steiert TA, Fuss J, Juzenas S, Wittig M, Hoeppner MP et al. 2022. High-throughput method for the hybridisation-based targeted enrichment of long genomic fragments for PacBio third-generation sequencing. NAR Genom. Bioinform. 4:lqac051
    [Google Scholar]
  109. 109.
    Stergachis AB, Debo BM, Haugen E, Churchman LS, Stamatoyannopoulos JA. 2020. Single-molecule regulatory architectures captured by chromatin fiber sequencing. Science 368:1449–54
    [Google Scholar]
  110. 110.
    Stranges PB, Palla M, Kalachikov S, Nivala J, Dorwart M et al. 2016. Design and characterization of a nanopore-coupled polymerase for single-molecule DNA sequencing by synthesis on an electrode array. PNAS 113:E6749–56
    [Google Scholar]
  111. 111.
    Sullivan BA, Karpen GH. 2004. Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat. Struct. Mol. Biol. 11:1076–83
    [Google Scholar]
  112. 112.
    Sun Z, Vaisvila R, Hussong LM, Yan B, Baum C et al. 2021. Nondestructive enzymatic deamination enables single-molecule long-read amplicon sequencing for the determination of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Genome Res. 31:291–300
    [Google Scholar]
  113. 113.
    Tsai YC, de Pontual L, Heiner C, Stojkovic T, Furling D et al. 2022. Identification of a CCG-enriched expanded allele in DM1 patients using amplification-free long-read sequencing. J. Mol. Diagn. 24:1143–54
    [Google Scholar]
  114. 114.
    Tse OYO, Jiang P, Cheng SH, Peng W, Shang H et al. 2021. Genome-wide detection of cytosine methylation by single molecule real-time sequencing. PNAS 118:e2019768118
    [Google Scholar]
  115. 115.
    Tyson C, Sharp AJ, Hrynchak M, Yong SL, Hollox EJ et al. 2014. Expansion of a 12-kb VNTR containing the REXO1L1 gene cluster underlies the microscopically visible euchromatic variant of 8q21.2. Eur. J. Hum. Genet. 22:458–63
    [Google Scholar]
  116. 116.
    van Buuren N, Ramirez R, Soulette C, Suri V, Han D et al. 2022. Targeted long-read sequencing reveals clonally expanded HBV-associated chromosomal translocations in patients with chronic hepatitis B. JHEP Rep. 4:100449
    [Google Scholar]
  117. 117.
    van der Ende EL, Jackson JL, White A, Seelaar H, van Blitterswijk M, Van Swieten JC. 2021. Unravelling the clinical spectrum and the role of repeat length in C9ORF72 repeat expansions. J. Neurol. Neurosurg. Psychiatry 92:502–9
    [Google Scholar]
  118. 118.
    Vasan N, Razavi P, Johnson JL, Shao H, Shah H et al. 2019. Double PIK3CA mutations in cis increase oncogenicity and sensitivity to PI3Kα inhibitors. Science 366:714–23
    [Google Scholar]
  119. 119.
    Vollger MR, Guitart X, Dishuck PC, Mercuri L, Harvey WT et al. 2022. Segmental duplications and their variation in a complete human genome. Science 376:eabj6965
    [Google Scholar]
  120. 120.
    Vollger MR, Logsdon GA, Audano PA, Sulovari A, Porubsky D et al. 2020. Improved assembly and variant detection of a haploid human genome using single-molecule, high-fidelity long reads. Ann. Hum. Genet. 84:125–40
    [Google Scholar]
  121. 121.
    Wang S, Lee S, Chu C, Jain D, Kerpedjiev P et al. 2020. HiNT: a computational method for detecting copy number variations and translocations from Hi-C data. Genome Biol. 21:73
    [Google Scholar]
  122. 122.
    Wang T, Antonacci-Fulton L, Howe K, Lawson HA, Lucas JK et al. 2022. The Human Pangenome Project: a global resource to map genomic diversity. Nature 604:437–46
    [Google Scholar]
  123. 123.
    Wang X, Luan Y, Yue F. 2022. EagleC: a deep-learning framework for detecting a full range of structural variations from bulk and single-cell contact maps. Sci. Adv. 8:eabn9215
    [Google Scholar]
  124. 124.
    Wang Y, Zhao Y, Bollas A, Wang Y, Au KF. 2021. Nanopore sequencing technology, bioinformatics and applications. Nat. Biotechnol. 39:1348–65
    [Google Scholar]
  125. 125.
    Wang YC, Olson ND, Deikus G, Shah H, Wenger AM et al. 2019. High-coverage, long-read sequencing of Han Chinese trio reference samples. Sci. Data 6:91
    [Google Scholar]
  126. 126.
    Warburton PE. 2001. Epigenetic analysis of kinetochore assembly on variant human centromeres. Trends Genet. 17:243–47
    [Google Scholar]
  127. 127.
    Warburton PE, Giordano J, Cheung F, Gelfand Y, Benson G. 2004. Inverted repeat structure of the human genome: the X-chromosome contains a preponderance of large, highly homologous inverted repeats that contain testes genes. Genome Res. 14:1861–69
    [Google Scholar]
  128. 128.
    Warburton PE, Hasson D, Guillem F, Lescale C, Jin X, Abrusan G. 2008. Analysis of the largest tandemly repeated DNA families in the human genome. BMC Genom. 9:533
    [Google Scholar]
  129. 129.
    Wenger AM, Peluso P, Rowell WJ, Chang PC, Hall RJ et al. 2019. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat. Biotechnol. 37:1155–62
    [Google Scholar]
  130. 130.
    Wenzel A, Altmueller J, Ekici AB, Popp B, Stueber K et al. 2018. Single molecule real time sequencing in ADTKD-MUC1 allows complete assembly of the VNTR and exact positioning of causative mutations. Sci. Rep. 8:4170
    [Google Scholar]
  131. 131.
    Yang H, Garcia-Manero G, Sasaki K, Montalban-Bravo G, Tang Z et al. 2022. High-resolution structural variant profiling of myelodysplastic syndromes by optical genome mapping uncovers cryptic aberrations of prognostic and therapeutic significance. Leukemia 36:2306–16
    [Google Scholar]
  132. 132.
    Yang Y, Sebra R, Pullman BS, Qiao W, Peter I et al. 2015. Quantitative and multiplexed DNA methylation analysis using long-read single-molecule real-time bisulfite sequencing (SMRT-BS). BMC Genom. 16:350
    [Google Scholar]
  133. 133.
    Zeng S, Zhang MY, Wang XJ, Hu ZM, Li JC et al. 2019. Long-read sequencing identified intronic repeat expansions in SAMD12 from Chinese pedigrees affected with familial cortical myoclonic tremor with epilepsy. J. Med. Genet. 56:265–70
    [Google Scholar]
  134. 134.
    Zhang S, Pei Z, Lei C, Zhu S, Deng K et al. 2023. Detection of cryptic balanced chromosomal rearrangements using high-resolution optical genome mapping. J. Med. Genet. 60:274–84
    [Google Scholar]
  135. 135.
    Zhao X, Collins RL, Lee WP, Weber AM, Jun Y et al. 2021. Expectations and blind spots for structural variation detection from long-read assemblies and short-read genome sequencing technologies. Am. J. Hum. Genet. 108:919–28
    [Google Scholar]
  136. 136.
    Zook JM, Catoe D, McDaniel J, Vang L, Spies N et al. 2016. Extensive sequencing of seven human genomes to characterize benchmark reference materials. Sci. Data 3:160025
    [Google Scholar]
  137. 137.
    Zook JM, Hansen NF, Olson ND, Chapman L, Mullikin JC et al. 2020. A robust benchmark for detection of germline large deletions and insertions. Nat. Biotechnol. 38:1347–55
    [Google Scholar]
/content/journals/10.1146/annurev-genom-101722-103045
Loading
/content/journals/10.1146/annurev-genom-101722-103045
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error