1932

Abstract

Elucidating spatiotemporal changes in gene expression has been an essential goal in studies of health, development, and disease. In the emerging field of spatially resolved transcriptomics, gene expression profiles are acquired with the tissue architecture maintained, sometimes at cellular resolution. This has allowed for the development of spatial cell atlases, studies of cell–cell interactions, and in situ cell typing. In this review, we focus on padlock probe–based in situ sequencing, which is a targeted spatially resolved transcriptomic method. We summarize recent methodological and computational tool developments and discuss key applications. We also discuss compatibility with other methods and integration with multiomic platforms for future applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-102722-092013
2023-08-25
2024-04-17
Loading full text...

Full text loading...

/deliver/fulltext/genom/24/1/annurev-genom-102722-092013.html?itemId=/content/journals/10.1146/annurev-genom-102722-092013&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abdelaal T, Mourragui S, Mahfouz A, Reinders MJT. 2020. SpaGE: Spatial Gene Enhancement using scRNA-seq. Nucleic Acids Res 48:e107
    [Google Scholar]
  2. 2.
    Alon S, Goodwin DR, Sinha A, Wassie AT, Chen F et al. 2021. Expansion sequencing: spatially precise in situ transcriptomics in intact biological systems. Science 371:eaax2656
    [Google Scholar]
  3. 3.
    Andersson A, Diego F, Hamprecht FA, Wählby C. 2021. ISTDECO: In Situ Transcriptomics Decoding by Deconvolution. bioRxiv 2021.03.01.433040. https://doi.org/10.1101/2021.03.01.433040
    [Crossref]
  4. 4.
    Asp M, Bergenstråhle J, Lundeberg J. 2020. Spatially resolved transcriptomes—next generation tools for tissue exploration. BioEssays 42:1900221
    [Google Scholar]
  5. 5.
    Asp M, Giacomello S, Larsson L, Wu C, Fürth D et al. 2019. A spatiotemporal organ-wide gene expression and cell atlas of the developing human heart. Cell 179:1647–60.e19
    [Google Scholar]
  6. 6.
    Axelrod S, Cai M, Carr AJ, Freeman J, Ganguli D et al. 2021. starfish: scalable pipelines for image-based transcriptomics. J. Open Source Softw. 6:2440
    [Google Scholar]
  7. 7.
    Azevedo FAC, Carvalho LRB, Grinberg LT, Farfel JM, Ferretti REL et al. 2009. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J. Comp. Neurol. 513:532–41
    [Google Scholar]
  8. 8.
    Bailey C, Black JRM, Reading JL, Litchfield K, Turajlic S et al. 2021. Tracking cancer evolution through the disease course. Cancer Discov 11:916–32
    [Google Scholar]
  9. 9.
    Bankhead P, Loughrey MB, Fernández JA, Dombrowski Y, McArt DG et al. 2017. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7:16878
    [Google Scholar]
  10. 10.
    Berg S, Kutra D, Kroeger T, Straehle CN, Kausler BX et al. 2019. Ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16:1226–32
    [Google Scholar]
  11. 11.
    Biancalani T, Scalia G, Buffoni L, Avasthi R, Lu Z et al. 2021. Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram. Nat. Methods 18:1352–62
    [Google Scholar]
  12. 12.
    Borm LE, Mossi Albiach A, Mannens CCA, Janusauskas J, Özgün C et al. 2023. Scalable in situ single-cell profiling by electrophoretic capture of mRNA using EEL FISH. Nat. Biotechnol. 41:22–31
    [Google Scholar]
  13. 13.
    Cairns J. 1975. Mutation selection and the natural history of cancer. Nature 255:197–200
    [Google Scholar]
  14. 14.
    Callaway EM, Dong H-W, Ecker JR, Hawrylycz MJ, Huang ZJ et al. 2021. A multimodal cell census and atlas of the mammalian primary motor cortex. Nature 598:86–102
    [Google Scholar]
  15. 15.
    Carow B, Hauling T, Qian X, Kramnik I, Nilsson M, Rottenberg ME. 2019. Spatial and temporal localization of immune transcripts defines hallmarks and diversity in the tuberculosis granuloma. Nat. Commun. 10:1823
    [Google Scholar]
  16. 16.
    Chen A, Liao S, Cheng M, Ma K, Wu L et al. 2022. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185:1777–92.e21
    [Google Scholar]
  17. 17.
    Chen J, Suo S, Tam PP, Han J-DJ, Peng G, Jing N. 2017. Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq. Nat. Protoc. 12:566–80
    [Google Scholar]
  18. 18.
    Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X 2015. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348:aaa6090
    [Google Scholar]
  19. 19.
    Chen S, Loper J, Chen X, Vaughan A, Zador AM, Paninski L. 2021. BARcode DEmixing through Non-negative Spatial Regression (BarDensr). PLOS Comput. Biol. 17:e1008256
    [Google Scholar]
  20. 20.
    Chen W-T, Lu A, Craessaerts K, Pavie B, Sala Frigerio C et al. 2020. Spatial transcriptomics and in situ sequencing to study Alzheimer's disease. Cell 182:976–91.e19
    [Google Scholar]
  21. 21.
    Chen X, Sun Y-C, Zhan H, Kebschull JM, Fischer S et al. 2019. High-throughput mapping of long-range neuronal projection using in situ sequencing. Cell 179:772–86.e19
    [Google Scholar]
  22. 22.
    Codeluppi S, Borm LE, Zeisel A, La Manno G, van Lunteren JA et al. 2018. Spatial organization of the somatosensory cortex revealed by osmFISH. Nat. Methods 15:932–35
    [Google Scholar]
  23. 23.
    Crosetto N, Bienko M, van Oudenaarden A. 2015. Spatially resolved transcriptomics and beyond. Nat. Rev. Genet. 16:57–66
    [Google Scholar]
  24. 24.
    Dentro SC, Leshchiner I, Haase K, Tarabichi M, Wintersinger J et al. 2021. Characterizing genetic intra-tumor heterogeneity across 2,658 human cancer genomes. Cell 184:2239–54.e39
    [Google Scholar]
  25. 25.
    Dries R, Chen J, del Rossi N, Khan MM, Sistig A, Yuan G-C. 2021. Advances in spatial transcriptomic data analysis. Genome Res. 31:1706–18
    [Google Scholar]
  26. 25a.
    Dries R, Zhu Q, Dong R, Eng C-HL, Li H et al. 2021. Giotto: a toolbox for integrative analysis and visualization of spatial expression data. Genome Biol. 22:78
    [Google Scholar]
  27. 26.
    Ecker S, Chen L, Pancaldi V, Bagger FO, Fernández JM et al. 2017. Genome-wide analysis of differential transcriptional and epigenetic variability across human immune cell types. Genome Biol. 18:18
    [Google Scholar]
  28. 27.
    Eng C-HL, Lawson M, Zhu Q, Dries R, Koulena N et al. 2019. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+. Nature 568:235–39
    [Google Scholar]
  29. 28.
    Fawkner-Corbett D, Antanaviciute A, Parikh K, Jagielowicz M, Gerós AS et al. 2021. Spatiotemporal analysis of human intestinal development at single-cell resolution. Cell 184:810–26.e23
    [Google Scholar]
  30. 29.
    Floriddia EM, Lourenço T, Zhang S, van Bruggen D, Hilscher MM et al. 2020. Distinct oligodendrocyte populations have spatial preference and different responses to spinal cord injury. Nat. Commun. 11:5860
    [Google Scholar]
  31. 30.
    Gaspar I 2018. RNA Detection: Methods and Protocols New York: Springer
  32. 31.
    Gataric M, Park JS, Li T, Vaskivskyi V, Svedlund J et al. 2021. PoSTcode: probabilistic image-based spatial transcriptomics decoder. bioRxiv 2021.10.12.464086. https://doi.org/10.1101/2021.10.12.464086
    [Crossref]
  33. 32.
    Gyllborg D, Langseth CM, Qian X, Choi E, Salas SM et al. 2020. Hybridization-based in situ sequencing (HybISS) for spatially resolved transcriptomics in human and mouse brain tissue. Nucleic Acids Res 48:e112
    [Google Scholar]
  34. 32a.
    Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S et al. 2021. Integrated analysis of multimodal single-cell data. Cell 184:3573–87.e29
    [Google Scholar]
  35. 33.
    Hagemann-Jensen M, Ziegenhain C, Chen P, Ramsköld D, Hendriks G-J et al. 2020. Single-cell RNA counting at allele and isoform resolution using Smart-seq3. Nat. Biotechnol. 38:708–14
    [Google Scholar]
  36. 34.
    Hernández I, Qian X, Laláková J, Verheyen T, Hilscher M, Kühnemund M 2019. Mapping brain cell types with CARTANA in situ sequencing on the Nikon Ti2-E microscope. Nat. Methods. https://www.nature.com/articles/d42473-019-00264-8
    [Google Scholar]
  37. 35.
    Hilscher MM, Gyllborg D, Yokota C, Nilsson M. 2020. In situ sequencing: a high-throughput, multi-targeted gene expression profiling technique for cell typing in tissue sections. Methods Mol. Biol. 2148:313–29
    [Google Scholar]
  38. 36.
    Hilscher MM, Langseth CM, Kukanja P, Yokota C, Nilsson M, Castelo-Branco G. 2022. Spatial and temporal heterogeneity in the lineage progression of fine oligodendrocyte subtypes. BMC Biol 20:122
    [Google Scholar]
  39. 37.
    Jamal-Hanjani M, Wilson GA, McGranahan N, Birkbak NJ, Watkins TBK et al. 2017. Tracking the evolution of non–small-cell lung cancer. N. Engl. J. Med. 376:2109–21
    [Google Scholar]
  40. 38.
    Janesick A, Shelansky R, Gottscho A, Wagner F, Rouault M et al. 2022. High resolution mapping of the breast cancer tumor microenvironment using integrated single cell, spatial and in situ analysis of FFPE tissue. bioRxiv 2022.10.06.510405. https://doi.org/10.1101/2022.10.06.510405
    [Crossref]
  41. 39.
    Janosevic D, Myslinski J, McCarthy TW, Zollman A, Syed F et al. 2021. The orchestrated cellular and molecular responses of the kidney to endotoxin define a precise sepsis timeline. eLife 10:e62270
    [Google Scholar]
  42. 40.
    Karran E, Mercken M, De Strooper B. 2011. The amyloid cascade hypothesis for Alzheimer's disease: an appraisal for the development of therapeutics. Nat. Rev. Drug Discov. 10:698–712
    [Google Scholar]
  43. 41.
    Ke R, Mignardi M, Pacureanu A, Svedlund J, Botling J et al. 2013. In situ sequencing for RNA analysis in preserved tissue and cells. Nat. Methods 10:857–60
    [Google Scholar]
  44. 42.
    Krzywkowski T, Kühnemund M, Nilsson M. 2019. Chimeric padlock and iLock probes for increased efficiency of targeted RNA detection. RNA 25:82–89
    [Google Scholar]
  45. 43.
    La Manno G, Siletti K, Furlan A, Gyllborg D, Vinsland E et al. 2021. Molecular architecture of the developing mouse brain. Nature 596:92–96
    [Google Scholar]
  46. 44.
    Landegren U, Kaiser R, Sanders J, Hood L. 1988. A ligase-mediated gene detection technique. Science 241:1077–80
    [Google Scholar]
  47. 45.
    Langseth CM, Gyllborg D, Miller JA, Close JL, Long B et al. 2021. Comprehensive in situ mapping of human cortical transcriptomic cell types. Commun. Biol. 4:998
    [Google Scholar]
  48. 46.
    Laureyns R, Joossens J, Herwegh D, Pevernagie J, Pavie B et al. 2022. An in situ sequencing approach maps PLASTOCHRON1 at the boundary between indeterminate and determinate cells. Plant Physiol 188:782–94
    [Google Scholar]
  49. 47.
    Lee H, Salas SM, Gyllborg D, Nilsson M. 2022. Direct RNA targeted in situ sequencing for transcriptomic profiling in tissue. Sci. Rep. 12:7976
    [Google Scholar]
  50. 48.
    Lee JH, Daugharthy ER, Scheiman J, Kalhor R, Ferrante TC et al. 2015. Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues. Nat. Protoc. 10:442–58
    [Google Scholar]
  51. 49.
    Lee JH, Daugharthy ER, Scheiman J, Kalhor R, Yang JL et al. 2014. Highly multiplexed subcellular RNA sequencing in situ. Science 343:1360–63
    [Google Scholar]
  52. 50.
    Lein E, Borm LE, Linnarsson S. 2017. The promise of spatial transcriptomics for neuroscience in the era of molecular cell typing. Science 358:64–69
    [Google Scholar]
  53. 51.
    Li X, Wang C-Y. 2021. From bulk, single-cell to spatial RNA sequencing. Int. J. Oral Sci. 13:36
    [Google Scholar]
  54. 52.
    Lindeboom RGH, Regev A, Teichmann SA. 2021. Towards a Human Cell Atlas: taking notes from the past. Trends Genet. 37:625–30
    [Google Scholar]
  55. 53.
    Liu I, Jiang L, Samuelsson ER, Salas SM, Beck A et al. 2022. The landscape of tumor cell states and spatial organization in H3-K27M mutant diffuse midline glioma across age and location. Nat. Genet. 54:1881–94
    [Google Scholar]
  56. 54.
    Liu S, Punthambaker S, Iyer EPR, Ferrante T, Goodwin D et al. 2021. Barcoded oligonucleotides ligated on RNA amplified for multiplexed and parallel in situ analyses. Nucleic Acids Res 49:e58
    [Google Scholar]
  57. 55.
    Liu Y, Yang M, Deng Y, Su G, Enninful A et al. 2020. High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue. Cell 183:1665–81.e18
    [Google Scholar]
  58. 56.
    Lomakin A, Svedlund J, Strell C, Gataric M, Shmatko A et al. 2022. Spatial genomics maps the structure, nature and evolution of cancer clones. Nature 611:594–602
    [Google Scholar]
  59. 57.
    Lubeck E, Cai L. 2012. Single-cell systems biology by super-resolution imaging and combinatorial labeling. Nat. Methods 9:743–48
    [Google Scholar]
  60. 58.
    Luo J, Bergstrom DE, Barany F. 1996. Improving the fidelity of Thermus thermophilus DNA ligase. Nucleic Acids Res 24:3071–78
    [Google Scholar]
  61. 59.
    Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K et al. 2015. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161:1202–14
    [Google Scholar]
  62. 60.
    Magoulopoulou A, Qian X, Pediatama Setiabudiawan T, Salas SM, Yokota C et al. 2022. Spatial resolution of Mycobacterium tuberculosis bacteria and their surrounding immune environments based on selected key transcripts in mouse lungs. Front. Immunol. 13:876321
    [Google Scholar]
  63. 60a.
    Mah CK, Ahmed N, Lam D, Monell A, Kern C et al. 2022. Bento: a toolkit for subcellular analysis of spatial transcriptomics data. bioRxiv 2022.06.10.495510. https://doi.org/10.1101/2022.06.10.495510
    [Crossref] [Google Scholar]
  64. 61.
    Maley CC, Galipeau PC, Finley JC, Wongsurawat VJ, Li X et al. 2006. Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nat. Genet. 38:468–73
    [Google Scholar]
  65. 62.
    Marshall JL, Noel T, Wang QS, Chen H, Murray E et al. 2022. High-resolution Slide-seqV2 spatial transcriptomics enables discovery of disease-specific cell neighborhoods and pathways. iScience 25:104097
    [Google Scholar]
  66. 63.
    Marx V. 2021. Method of the Year: spatially resolved transcriptomics. Nat. Methods 18:9–14. Correction. 2021. Nat. Methods 18:219
    [Google Scholar]
  67. 64.
    McGranahan N, Swanton C. 2017. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168:613–28
    [Google Scholar]
  68. 65.
    Moffitt JR, Hao J, Wang G, Chen KH, Babcock HP, Zhuang X. 2016. High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization. PNAS 113:11046–51
    [Google Scholar]
  69. 66.
    Muhlich JL, Chen Y-A, Yapp C, Russell D, Santagata S, Sorger PK. 2022. Stitching and registering highly multiplexed whole-slide images of tissues and tumors using ASHLAR. Bioinformatics 38:4613–21
    [Google Scholar]
  70. 67.
    Nature 2021. Brain Initiative Cell Census Network. Nature https://www.nature.com/collections/cicghheddj
    [Google Scholar]
  71. 68.
    Ngai J. 2022. BRAIN 2.0: transforming neuroscience. Cell 185:4–8
    [Google Scholar]
  72. 69.
    Nilsson M, Malmgren H, Samiotaki M, Kwiatkowski M, Chowdhary BP, Landegren U. 1994. Padlock probes: circularizing oligonucleotides for localized DNA detection. Science 265:2085–88
    [Google Scholar]
  73. 70.
    Nowell PC. 1976. The clonal evolution of tumor cell populations. Science 194:23–28
    [Google Scholar]
  74. 71.
    Ortiz C, Navarro JF, Jurek A, Märtin A, Lundeberg J, Meletis K. 2020. Molecular atlas of the adult mouse brain. Sci. Adv. 6:eabb3446
    [Google Scholar]
  75. 71a.
    Palla G, Spitzer H, Klein M, Fischer D, Schaar AC et al. 2022. Squidpy: a scalable framework for spatial omics analysis. Nat. Methods 19:171–78
    [Google Scholar]
  76. 72.
    Park J, Choi W, Tiesmeyer S, Long B, Borm LE et al. 2021. Cell segmentation-free inference of cell types from in situ transcriptomics data. Nat. Commun. 12:3545 Correction. 2021. Nat. Commun. 12:4103
    [Google Scholar]
  77. 73.
    Partel G, Hilscher MM, Milli G, Solorzano L, Klemm AH et al. 2020. Automated identification of the mouse brain's spatial compartments from in situ sequencing data. BMC Biol 18:144
    [Google Scholar]
  78. 74.
    Partel G, Wählby C. 2021. Graph-based image decoding for multiplexed in situ RNA detection. 2020 25th International Conference on Pattern Recognition3783–90. Piscataway, NJ: IEEE
  79. 75.
    Partel G, Wählby C. 2021. Spage2vec: unsupervised representation of localized spatial gene expression signatures. FEBS J 288:1859–70
    [Google Scholar]
  80. 76.
    Pelvig DP, Pakkenberg H, Stark AK, Pakkenberg B. 2008. Neocortical glial cell numbers in human brains. Neurobiol. Aging 29:1754–62
    [Google Scholar]
  81. 77.
    Petukhov V, Xu RJ, Soldatov RA, Cadinu P, Khodosevich K et al. 2022. Cell segmentation in imaging-based spatial transcriptomics. Nat. Biotechnol. 40:345–54
    [Google Scholar]
  82. 78.
    Picelli S, Faridani OR, Björklund ÅK, Winberg G, Sagasser S, Sandberg R. 2014. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9:171–81
    [Google Scholar]
  83. 79.
    Qian X, Harris KD, Hauling T, Nicoloutsopoulos D, Muñoz-Manchado AB et al. 2020. Probabilistic cell typing enables fine mapping of closely related cell types in situ. Nat. Methods 17:101–6
    [Google Scholar]
  84. 80.
    Regev A, Teichmann SA, Lander ES, Amit I, Benoist C et al. 2017. The Human Cell Atlas. eLife 6:e27041
    [Google Scholar]
  85. 81.
    Rodriques SG, Stickels RR, Goeva A, Martin CA, Murray E et al. 2019. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363:1463–67
    [Google Scholar]
  86. 82.
    Roth R, Kim S, Kim J, Rhee S. 2020. Single-cell and spatial transcriptomics approaches of cardiovascular development and disease. BMB Rep 53:393–99
    [Google Scholar]
  87. 83.
    Ruiz-Moreno C, Salas SM, Samuelsson E, Brandner S, Kranendonk MEG et al. 2022. Harmonized single-cell landscape, intercellular crosstalk and tumor architecture of glioblastoma. bioRxiv 2022.08.27.505439. https://doi.org/10.1101/2022.08.27.505439
    [Crossref]
  88. 83a.
    Salas SM, Gyllborg D, Mattsson Langseth C, Nilsson M 2021. Matisse: a MATLAB-based analysis toolbox for in situ sequencing expression maps. BMC Bioinform. 22:391
    [Google Scholar]
  89. 84.
    Sallinger K, Gruber M, Müller C-T, Bonstingl L, Pritz E et al. 2022. Spatial tumour gene signature discriminates neoplastic from non-neoplastic compartments in colon cancer: unravelling predictive biomarkers for relapse. bioRxiv 2022.09.27.509641. https://doi.org/10.1101/2022.09.27.509641
    [Crossref]
  90. 84a.
    Satija R, Farrell JA, Gennert D, Schier AF, Regev A 2015. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33:495–502
    [Google Scholar]
  91. 85.
    Schmidt U, Weigert M, Broaddus C, Myers G 2018. Cell detection with star-convex polygons. Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 A Frangi, J Schnabel, C Davatzikos, C Alberola-López, G Fichtinger 265–73. Cham, Switz: Springer
    [Google Scholar]
  92. 86.
    Shah S, Lubeck E, Schwarzkopf M, He T-F, Greenbaum A et al. 2016. Single-molecule RNA detection at depth by hybridization chain reaction and tissue hydrogel embedding and clearing. Development 143:2862–67
    [Google Scholar]
  93. 86a.
    Singhal V, Chou N, Lee J, Liu J, Chock WK et al. 2022. BANKSY: a spatial omics algorithm that unifies cell type clustering and tissue domain segmentation. bioRxiv 2022.04.14.488259. https://doi.org/10.1101/2022.04.14.488259
    [Crossref] [Google Scholar]
  94. 87.
    Soldatov R, Kaucka M, Kastriti ME, Petersen J, Chontorotzea T et al. 2019. Spatiotemporal structure of cell fate decisions in murine neural crest. Science 364:eaas9536
    [Google Scholar]
  95. 88.
    Sountoulidis A, Liontos A, Nguyen HP, Firsova AB, Fysikopoulos A et al. 2020. SCRINSHOT enables spatial mapping of cell states in tissue sections with single-cell resolution. PLOS Biol 18:e3000675
    [Google Scholar]
  96. 89.
    Sountoulidis A, Salas SM, Braun E, Avenel C, Bergenstråhle J et al. 2023. A topographic atlas defines developmental origins of cell heterogeneity in the human embryonic lung. Nat. Cell Biol. 25351–65
  97. 90.
    Spelat R, Ferro F, Contessotto P, Aljaabary A, Martin-Saldaña S et al. 2022. Metabolic reprogramming and membrane glycan remodeling as potential drivers of zebrafish heart regeneration. Commun. Biol. 5:1365
    [Google Scholar]
  98. 91.
    Ståhl PL, Salmén F, Vickovic S, Lundmark A, Navarro JF et al. 2016. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353:78–82
    [Google Scholar]
  99. 92.
    Strell C, Hilscher MM, Laxman N, Svedlund J, Wu C et al. 2019. Placing RNA in context and space – methods for spatially resolved transcriptomics. FEBS J 286:1468–81
    [Google Scholar]
  100. 93.
    Stringer C, Wang T, Michaelos M, Pachitariu M. 2021. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18:100–106
    [Google Scholar]
  101. 94.
    Sun Y-C, Chen X, Fischer S, Lu S, Zhan H et al. 2021. Integrating barcoded neuroanatomy with spatial transcriptional profiling enables identification of gene correlates of projections. Nat. Neurosci. 24:873–85
    [Google Scholar]
  102. 95.
    Svedlund J, Strell C, Qian X, Zilkens KJC, Tobin NP et al. 2019. Generation of in situ sequencing based OncoMaps to spatially resolve gene expression profiles of diagnostic and prognostic markers in breast cancer. EBioMedicine 48:212–23
    [Google Scholar]
  103. 96.
    Tasic B, Yao Z, Graybuck LT, Smith KA, Nguyen TN et al. 2018. Shared and distinct transcriptomic cell types across neocortical areas. Nature 563:72–78
    [Google Scholar]
  104. 97.
    Tiklová K, Björklund ÅK, Lahti L, Fiorenzano A, Nolbrant S et al. 2019. Single-cell RNA sequencing reveals midbrain dopamine neuron diversity emerging during mouse brain development. Nat. Commun. 10:581
    [Google Scholar]
  105. 98.
    Tong J, Cao W, Barany F. 1999. Biochemical properties of a high fidelity DNA ligase from Thermus species AK16D. Nucleic Acids Res 27:788–94
    [Google Scholar]
  106. 99.
    van Bruggen D, Pohl F, Langseth CM, Kukanja P, Lee H et al. 2022. Developmental landscape of human forebrain at a single-cell level identifies early waves of oligodendrogenesis. Dev. Cell 57:1421–36.e5
    [Google Scholar]
  107. 100.
    Vickovic S, Eraslan G, Salmén F, Klughammer J, Stenbeck L et al. 2019. High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 16:987–90
    [Google Scholar]
  108. 101.
    Vickovic S, Schapiro D, Carlberg K, Lötstedt B, Larsson L et al. 2022. Three-dimensional spatial transcriptomics uncovers cell type localizations in the human rheumatoid arthritis synovium. Commun. Biol. 5:129
    [Google Scholar]
  109. 102.
    Wang X, Allen WE, Wright MA, Sylwestrak EL, Samusik N et al. 2018. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361:eaat5691
    [Google Scholar]
  110. 103.
    Xia K, Sun H-X, Li J, Li J, Zhao Y et al. 2022. The single-cell Stereo-seq reveals region-specific cell subtypes and transcriptome profiling in Arabidopsis leaves. Dev. Cell 57:1299–310.e4
    [Google Scholar]
  111. 104.
    Yates LR, Gerstung M, Knappskog S, Desmedt C, Gundem G et al. 2015. Subclonal diversification of primary breast cancer revealed by multiregion sequencing. Nat. Med. 21:751–59
    [Google Scholar]
  112. 105.
    Yates LR, Knappskog S, Wedge D, Farmery JHR, Gonzalez S et al. 2017. Genomic evolution of breast cancer metastasis and relapse. Cancer Cell 32:169–84.e7
    [Google Scholar]
  113. 106.
    Yuste R, Hawrylycz M, Aalling N, Aguilar-Valles A, Arendt D et al. 2020. A community-based transcriptomics classification and nomenclature of neocortical cell types. Nat. Neurosci. 23:1456–68
    [Google Scholar]
  114. 107.
    Zeisel A, Hochgerner H, Lönnerberg P, Johnsson A, Memic F et al. 2018. Molecular architecture of the mouse nervous system. Cell 174:999–1014.e22
    [Google Scholar]
  115. 108.
    Zheng Y, Zhong Y, Hu J, Shang X. 2021. SCC: an accurate imputation method for scRNA-seq dropouts based on a mixture model. BMC Bioinform 22:5
    [Google Scholar]
/content/journals/10.1146/annurev-genom-102722-092013
Loading
/content/journals/10.1146/annurev-genom-102722-092013
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error