1932

Abstract

Genetic data contain a record of our evolutionary history. The availability of large-scale datasets of human populations from various geographic areas and timescales, coupled with advances in the computational methods to analyze these data, has transformed our ability to use genetic data to learn about our evolutionary past. Here, we review some of the widely used statistical methods to explore and characterize population relationships and history using genomic data. We describe the intuition behind commonly used approaches, their interpretation, and important limitations. For illustration, we apply some of these techniques to genome-wide autosomal data from 929 individuals representing 53 worldwide populations that are part of the Human Genome Diversity Project. Finally, we discuss the new frontiers in genomic methods to learn about population history. In sum, this review highlights the power (and limitations) of DNA to infer features of human evolutionary history, complementing the knowledge gleaned from other disciplines, such as archaeology, anthropology, and linguistics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-111422-025117
2023-08-25
2024-04-12
Loading full text...

Full text loading...

/deliver/fulltext/genom/24/1/annurev-genom-111422-025117.html?itemId=/content/journals/10.1146/annurev-genom-111422-025117&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Alexander DH, Lange K. 2011. Enhancements to the admixture algorithm for individual ancestry estimation. BMC Bioinform. 12:246
    [Google Scholar]
  2. 2.
    Alexander DH, Novembre J, Lange K. 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19:1655–64
    [Google Scholar]
  3. 3.
    Atkinson EG, Maihofer AX, Kanai M, Martin AR, Karczewski KJ et al. 2021. Tractor uses local ancestry to enable the inclusion of admixed individuals in GWAS and to boost power. Nat. Genet. 53:195–204
    [Google Scholar]
  4. 4.
    Ayub Q, Mezzavilla M, Pagani L, Haber M, Mohyuddin A et al. 2015. The Kalash genetic isolate: ancient divergence, drift, and selection. Am. J. Hum. Genet. 96:775–83
    [Google Scholar]
  5. 5.
    Beerli P, Felsenstein J. 2001. Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. PNAS 98:4563–68
    [Google Scholar]
  6. 6.
    Bergström A, McCarthy SA, Hui R, Almarri MA, Ayub Q et al. 2020. Insights into human genetic variation and population history from 929 diverse genomes. Science 367:eaay5012
    [Google Scholar]
  7. 7.
    Bhatia G, Patterson N, Sankararaman S, Price AL. 2013. Estimating and interpreting FST: the impact of rare variants. Genome Res. 23:1514–21
    [Google Scholar]
  8. 8.
    Bittles AH, Black ML. 2010. Consanguinity, human evolution, and complex diseases. PNAS 107:Suppl. 11779–86
    [Google Scholar]
  9. 9.
    Boitard S, Rodríguez W, Jay F, Mona S, Austerlitz F. 2016. Inferring population size history from large samples of genome-wide molecular data—an approximate Bayesian computation approach. PLOS Genet. 12:e1005877
    [Google Scholar]
  10. 10.
    Brandt DYC, Wei X, Deng Y, Vaughn AH, Nielsen R. 2022. Evaluation of methods for estimating coalescence times using ancestral recombination graphs. Genetics 221:iyac044
    [Google Scholar]
  11. 11.
    Browning BL, Zhou Y, Browning SR. 2018. A one-penny imputed genome from next generation reference panels. Am. J. Hum. Genet. 103:338–48
    [Google Scholar]
  12. 12.
    Browning SR, Browning BL. 2012. Identity by descent between distant relatives: detection and applications. Annu. Rev. Genet. 46:617–33
    [Google Scholar]
  13. 13.
    Browning SR, Browning BL. 2015. Accurate non-parametric estimation of recent effective population size from segments of identity by descent. Am. J. Hum. Genet. 97:404–18
    [Google Scholar]
  14. 14.
    Bryc K, Auton A, Nelson MR, Oksenberg JR, Hauser SL et al. 2010. Genome-wide patterns of population structure and admixture in West Africans and African Americans. PNAS 107:786–91
    [Google Scholar]
  15. 15.
    Bryc K, Durand EY, Macpherson JM, Reich D, Mountain JL. 2015. The genetic ancestry of African Americans, Latinos, and European Americans across the United States. Am. J. Hum. Genet. 96:37–53
    [Google Scholar]
  16. 16.
    Bycroft C, Freeman C, Petkova D, Band G, Elliott LT et al. 2017. Genome-wide genetic data on ∼500,000 UK Biobank participants. bioRxiv 166298. https://doi.org/10.1101/166298
  17. 17.
    Carlson J, Henn BM, Al-Hindi DR, Ramachandran S. 2022. Counter the weaponization of genetics research by extremists. Nature 610:444–47
    [Google Scholar]
  18. 18.
    Cavalli-Sforza LL, Edwards AWF. 1967. Phylogenetic analysis: models and estimation procedures. Am. J. Hum. Genet. 19:233–57
    [Google Scholar]
  19. 19.
    Ceballos FC, Joshi PK, Clark DW, Ramsay M, Wilson JF. 2018. Runs of homozygosity: windows into population history and trait architecture. Nat. Rev. Genet. 19:220–34
    [Google Scholar]
  20. 20.
    Chacon-Duque J, Adhikari K, Fuentes-Guajardo M, Mendoza-Revilla J, Acuna-Alonzo V et al. 2018. Latin Americans show wide-spread Converso ancestry and the imprint of local Native ancestry on physical appearance. Nat. Commun. 9:5388
    [Google Scholar]
  21. 21.
    Chakraborty R, Weiss KM. 1988. Admixture as a tool for finding linked genes and detecting that difference from allelic association between loci. PNAS 85:9119–23
    [Google Scholar]
  22. 22.
    Chen Z, Chen J, Collins R, Guo Y, Peto R et al. 2011. China Kadoorie Biobank of 0.5 million people: survey methods, baseline characteristics and long-term follow-up. Int. J. Epidemiol. 40:1652–66
    [Google Scholar]
  23. 23.
    Chiang CW, Ralph P, Novembre J 2016. Conflation of short identity-by-descent segments bias their inferred length distribution. G3 6:1287–96
    [Google Scholar]
  24. 24.
    Chintalapati M, Patterson N, Moorjani P 2022. The spatiotemporal patterns of major human admixture events during the European Holocene. eLife 11:e77625
    [Google Scholar]
  25. 25.
    Coop G. 2022. Genetic similarity and genetic ancestry groups. arXiv:2207.11595 [q-bio.PE]
  26. 26.
    Dagilis AJ, Peede D, Coughlan JM, Jofre GI, D'Agostino ER et al. 2021. 15 years of introgression studies: quantifying gene flow across eukaryotes. bioRxiv 2021.06.15.448399. https://doi.org/10.1101/2021.06.15.448399
  27. 27.
    Drummond AJ, Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7:214
    [Google Scholar]
  28. 28.
    Eaton DAR, Ree RH. 2013. Inferring phylogeny and introgression using RADseq data: an example from flowering plants (Pedicularis: Orobanchaceae). Syst. Biol. 62:689–706
    [Google Scholar]
  29. 29.
    EMBL-EBI (Eur. Mol. Biol. Lab.–Eur. Bioinform. Inst.) 2020. Human Genome Diversity Project. IGSR: The International Genome Sampling Resource https://www.internationalgenome.org/data-portal/data-collection/hgdp
    [Google Scholar]
  30. 30.
    Excoffier L, Dupanloup I, Huerta-Sánchez E, Sousa VC, Foll M. 2013. Robust demographic inference from genomic and SNP data. PLOS Genet. 9:e1003905
    [Google Scholar]
  31. 31.
    Falush D, Stephens M, Pritchard J. 2003. Inference of population structure from multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–87
    [Google Scholar]
  32. 32.
    Fatumo S, Chikowore T, Choudhury A, Ayub M, Martin AR, Kuchenbaecker K. 2022. A roadmap to increase diversity in genomic studies. Nat. Med. 28:243–50
    [Google Scholar]
  33. 33.
    Fenner JN. 2005. Cross-cultural estimation of the human generation interval for use in genetics-based population divergence studies. Am. J. Phys. Anthropol. 128:415–23
    [Google Scholar]
  34. 34.
    François O, Jay F. 2020. Factor analysis of ancient population genomic samples. Nat. Commun. 11:4661
    [Google Scholar]
  35. 35.
    Fu Q, Li H, Moorjani P, Jay F, Slepchenko SM et al. 2014. Genome sequence of a 45,000-year-old modern human from western Siberia. Nature 514:445–49
    [Google Scholar]
  36. 36.
    Fu W, Akey JM. 2013. Selection and adaptation in the human genome. Annu. Rev. Genom. Hum. Genet. 14:467–89
    [Google Scholar]
  37. 37.
    Gao Z, Zhang Y, Cramer N, Przeworski M, Moorjani P 2023. Limited role of generation time changes in driving the evolution of the mutation spectrum in humans. eLife 12:e81188
    [Google Scholar]
  38. 38.
    Garrod A. 1902. The incidence of alkaptonuria: a study in chemical individuality. Lancet 160:1616–20
    [Google Scholar]
  39. 39.
    GenomeAsia100K Consort 2019. The GenomeAsia 100K Project enables genetic discoveries across Asia. Nature 576:106–11
    [Google Scholar]
  40. 40.
    Gravel G. 2012. Population genetics models of local ancestry. Genetics 191:607–19
    [Google Scholar]
  41. 41.
    Green RE, Krause J, Briggs AW, Maricic T, Stenzel U et al. 2010. A draft sequence of the Neandertal genome. Science 328:710–22
    [Google Scholar]
  42. 42.
    Guan Y. 2014. Detecting structure of haplotypes and local ancestry. Genetics 196:625–42
    [Google Scholar]
  43. 43.
    Gutenkunst R, Hernandez R, Williamson S, Bustamante C. 2009. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLOS Genet. 5:e1000695
    [Google Scholar]
  44. 44.
    Hamid I, Korunes K, Beleza S, Goldberg A 2021. Rapid adaptation to malaria facilitated by admixture in the human population of Cabo Verde. eLife 10:e63177
    [Google Scholar]
  45. 45.
    Hammer MF, Mendez FL, Cox MP, Woerner AE, Wall JD. 2008. Sex-biased evolutionary forces shape genomic patterns of human diversity. PLOS Genet. 4:e1000202
    [Google Scholar]
  46. 46.
    Harris K, Pritchard JK 2017. Rapid evolution of the human mutation spectrum. eLife 6:e24284
    [Google Scholar]
  47. 47.
    Hellenthal G, Busby G, Band G, Wilson J, Capelli C et al. 2014. A genetic atlas of human admixture history. Science 343:747–51
    [Google Scholar]
  48. 48.
    Hinch AG, Tandon A, Patterson N, Song Y, Rohland N et al. 2011. The landscape of recombination in African Americans. Nature 476:170–75
    [Google Scholar]
  49. 49.
    Hudson R 1990. Gene genealogies and the coalescent process. Oxford Surveys on Evolutionary Biology, Vol. 7 D Futuyma, J Antonovics 1–44. New York: Oxford Univ. Press
    [Google Scholar]
  50. 50.
    Huelsenbeck JP, Andolfatto P, Huelsenbeck ET. 2011. Structurama: Bayesian inference of population structure. Evol. Bioinform. Online 7:55–59
    [Google Scholar]
  51. 51.
    Jobling M, Hurles M, Tyler-Smith C. 2004. Human Evolutionary Genetics: Origins, Peoples and Disease New York: Garland Sci.
  52. 52.
    Jónsson H, Sulem P, Kehr B, Kristmundsdottir S, Zink F et al. 2017. Parental influence on human germline de novo mutations in 1,548 trios from Iceland. Nature 549:519–22
    [Google Scholar]
  53. 53.
    Kamm JA, Terhorst J, Durbin R, Song YS. 2020. Efficiently inferring the demographic history of many populations with allele count data. J. Am. Stat. Assoc. 115:1472–87
    [Google Scholar]
  54. 54.
    Kamm JA, Terhorst J, Song YS. 2017. Efficient computation of the joint sample frequency spectra for multiple populations. J. Comput. Graph. Stat. 26:182–94
    [Google Scholar]
  55. 55.
    Kelleher J, Wong Y, Wohns AW, Fadil C, Albers PK, McVean G. 2019. Inferring whole-genome histories in large population datasets. Nat. Genet. 51:1330–38
    [Google Scholar]
  56. 56.
    Kingman JF. 1982. On the genealogy of large populations. J. Appl. Probab. 19:27–43
    [Google Scholar]
  57. 57.
    Kuhner MK. 2006. LAMARC 2.0: maximum likelihood and Bayesian estimation of population parameters. Bioinformatics 22:768–70
    [Google Scholar]
  58. 58.
    Kurki MI, Karjalainen J, Palta P, Sipilä TP, Kristiansson K et al. 2022. FinnGen: unique genetic insights from combining isolated population and national health register data. medRxiv 2022.03.03.22271360. https://doi.org/10.1101/2022.03.03.22271360
  59. 59.
    Lachance J, Tishkoff SA. 2013. SNP ascertainment bias in population genetic analyses: why it is important, and how to correct it. BioEssays 35:780–86
    [Google Scholar]
  60. 60.
    Lao O, Lu TT, Nothnagel M, Junge O, Freitag-Wolf S et al. 2008. Correlation between genetic and geographic structure in Europe. Curr. Biol. 18:1241–48
    [Google Scholar]
  61. 61.
    Lathrop G. 1982. Evolutionary trees and admixture: phylogenetic inference when some populations are hybridized. Ann. Hum. Genet. 46:245–55
    [Google Scholar]
  62. 62.
    Lawson D, Hellenthal G, Myers S, Falush D. 2012. Inference of population structure using dense haplotype data. PLOS Genet. 8:e1002453
    [Google Scholar]
  63. 63.
    Lawson D, van Dorp L, Falush D. 2018. A tutorial on how not to over-interpret STRUCTURE and ADMIXTURE bar plots. Nat. Commun. 9:3258
    [Google Scholar]
  64. 64.
    Lazaridis I, Patterson N, Mittnik A, Renaud G, Mallick S et al. 2014. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513:409–13
    [Google Scholar]
  65. 65.
    Leslie S, Winney B, Hellenthal G, Davison D, Boumertit A et al. 2015. The fine scale genetic structure of the British population. Nature 519:309–14
    [Google Scholar]
  66. 66.
    Li H, Durbin R. 2011. Inference of human population history from individual whole-genome sequences. Nature 475:493–96
    [Google Scholar]
  67. 67.
    Li J, Absher D, Tang H, Southwick A, Casto A et al. 2008. Worldwide human relationships inferred from genome-wide patterns of variation. Science 319:1100–4
    [Google Scholar]
  68. 68.
    Li N, Stephens M. 2003. Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide polymorphism data. Genetics 165:2213–33
    [Google Scholar]
  69. 69.
    Li Y, Willer C, Sanna S, Abecasis G. 2009. Genotype imputation. Annu. Rev. Genom. Hum. Genet. 10:387–406
    [Google Scholar]
  70. 70.
    Liang M, Nielsen R. 2014. The lengths of admixture tracts. Genetics 197:953–67
    [Google Scholar]
  71. 71.
    Lipson M, Loh PR, Levin A, Reich D, Patterson N, Berger B. 2013. Efficient moment-based inference of admixture parameters and sources of gene flow. Mol. Biol. Evol. 30:1788–802
    [Google Scholar]
  72. 72.
    Loh P, Lipson M, Patterson N, Moorjani P, Pickrell J et al. 2013. Inferring admixture histories of human populations using linkage disequilibrium. Genetics 193:1233–54
    [Google Scholar]
  73. 73.
    Maples BK, Gravel S, Kenny EE, Bustamante CD. 2013. RFMix: a discriminative modeling approach for rapid and robust local-ancestry inference. Am. J. Hum. Genet. 93:278–88
    [Google Scholar]
  74. 74.
    Marciniak S, Perry GH. 2017. Harnessing ancient genomes to study the history of human adaptation. Nat. Rev. Genet. 18:659–74
    [Google Scholar]
  75. 75.
    Mathieson I, Scally A. 2020. What is ancestry?. PLOS Genet. 16:e1008624
    [Google Scholar]
  76. 76.
    McVean G. 2009. A genealogical interpretation of principal components. PLOS Genet. 5:e1000686
    [Google Scholar]
  77. 77.
    Menozzi P, Piazza A, Cavalli-Sforza L. 1978. Synthetic maps of human gene frequencies in Europeans: These maps indicate that early farmers of the Near East spread to all of Europe in the Neolithic. Science 201:786–92
    [Google Scholar]
  78. 78.
    Moorjani P, Gao Z, Przeworski M. 2016. Human germline mutation and the erratic evolutionary clock. PLOS Biol. 14:e2000744
    [Google Scholar]
  79. 79.
    Moorjani P, Patterson N, Hirschhorn J, Keinan A, Hao L et al. 2011. The history of African gene flow into southern Europeans, Levantines, and Jews. PLOS Genet. 7:e1001373
    [Google Scholar]
  80. 80.
    Moorjani P, Patterson N, Loh PR, Lipson M, Kisfali P et al. 2013. Reconstructing Roma history from genome-wide data. PLOS ONE 8:e58633
    [Google Scholar]
  81. 81.
    Moorjani P, Sankararaman S, Fu Q, Przeworski M, Patterson N, Reich D. 2016. A genetic method for dating ancient genomes provides a direct estimate of human generation interval in the last 45,000 years. PNAS 113:5652–57
    [Google Scholar]
  82. 82.
    Mulder N, Abimiku A, Adebamowo S, de Vries J, Matimba A et al. 2018. H3Africa: current perspectives. Pharmacogenom. Pers. Med. 10:59–66
    [Google Scholar]
  83. 83.
    Myers S, Fefferman C, Patterson N. 2008. Can one learn history from the allelic spectrum?. Theor. Popul. Biol. 73:342–48
    [Google Scholar]
  84. 84.
    Narasimhan VM, Patterson N, Moorjani P, Rohland N, Bernardos R et al. 2019. The formation of human populations in South and Central Asia. Science 365:eaat7487
    [Google Scholar]
  85. 85.
    Nordborg M 2019. Coalescent theory. Handbook of Statistical Genomics DJ Balding, I Moltke, J Marioni 145–76. Hoboken, NJ: Wiley. , 4th ed..
    [Google Scholar]
  86. 86.
    Novembre J, Johnson T, Bryc K, Kutalik Z, Boyko A et al. 2008. Genes mirror geography within Europe. Nature 456:98–101
    [Google Scholar]
  87. 87.
    Novembre J, Ramachandran S. 2011. Perspectives on human population structure at the cusp of the sequencing era. Annu. Rev. Genom. Hum. Genet. 12:245–74
    [Google Scholar]
  88. 88.
    Orlando L, Allaby R, Skoglund P, Der Sarkissian C, Stockhammer PW et al. 2021. Ancient DNA analysis. Nat. Rev. Methods Primers 1:14
    [Google Scholar]
  89. 89.
    Pagani L, Colonna V, Tyler-Smith C, Ayub Q. 2017. An ethnolinguistic and genetic perspective on the origins of the Dravidian-speaking Brahui in Pakistan. Man India 97:267–78
    [Google Scholar]
  90. 90.
    Palamara PF, Lencz T, Darvasi A, Pe'er I 2012. Length distributions of identity by descent reveal fine-scale demographic history. Am. J. Hum. Genet. 91:809–22
    [Google Scholar]
  91. 91.
    Patterson N, Hattangadi N, Lane B, Lohmueller K, Hafler D et al. 2004. Methods for high-density admixture mapping of disease genes. Am. J. Hum. Genet. 74:979–1000
    [Google Scholar]
  92. 92.
    Patterson N, Moorjani P, Luo Y, Mallick S, Rohland N et al. 2012. Ancient admixture in human history. Genetics 192:1065–93
    [Google Scholar]
  93. 93.
    Patterson N, Price A, Reich D. 2006. Population structure and eigenanalysis. PLOS Genet. 2:e190
    [Google Scholar]
  94. 94.
    Pease JB, Hahn MW. 2015. Detection and polarization of introgression in a five-taxon phylogeny. Syst. Biol. 64:651–62
    [Google Scholar]
  95. 95.
    Petkova D, Novembre J, Stephens M. 2016. Visualizing spatial population structure with estimated effective migration surfaces. Nat. Genet. 48:94–100
    [Google Scholar]
  96. 96.
    Pickrell JK, Patterson N, Loh P, Lipson M, Berger B et al. 2014. Ancient west Eurasian ancestry in southern and eastern Africa. PNAS 111:2632–7
    [Google Scholar]
  97. 97.
    Pickrell JK, Pritchard JK. 2012. Inference of population splits and mixtures from genome-wide allele frequency data. Nat. Preced. https://doi.org/10.1038/npre.2012.6956.1
    [Crossref] [Google Scholar]
  98. 98.
    Pickrell JK, Reich D. 2014. Toward a new history and geography of human genes informed by ancient DNA. Trends Genet. 30:377–89
    [Google Scholar]
  99. 99.
    Pool JE, Nielsen R. 2009. Inference of historical changes in migration rate from the lengths of migrant tracts. Genetics 181:711–19
    [Google Scholar]
  100. 100.
    Price A, Tandon A, Patterson N, Barnes K, Rafaels N et al. 2009. Sensitive detection of chromosomal segments of distinct ancestry in admixed populations. PLOS Genet. 5:e1000519
    [Google Scholar]
  101. 101.
    Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotypes data. Genetics 155:945–59
    [Google Scholar]
  102. 102.
    Pugach I, Matveyev R, Wollstein A, Kayser M, Stoneking M. 2011. Dating the age of admixture via wavelet transform analysis of genome-wide data. Genome Biol. 12:R19
    [Google Scholar]
  103. 103.
    Raghavan M, Skoglund P, Graf KE, Metspalu M, Albrechtsen A et al. 2014. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature 505:87–91
    [Google Scholar]
  104. 104.
    Raj A, Stephens M, Pritchard JK. 2014. fastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics 197:573–89
    [Google Scholar]
  105. 105.
    Rasmussen MD, Hubisz MJ, Gronau I, Siepel A. 2014. Genome-wide inference of ancestral recombination graphs. PLOS Genet. 10:e1004342
    [Google Scholar]
  106. 106.
    Regalado A. 2019. More than 26 million people have taken an at-home ancestry test. MIT Technol. Rev. Feb. 11. https://www.technologyreview.com/2019/02/11/103446/more-than-26-million-people-have-taken-an-at-home-ancestry-test
    [Google Scholar]
  107. 107.
    Reich D, Patterson N, Campbell D, Tandon A, Mazieres S et al. 2012. Reconstructing Native American population history. Nature 488:370–74
    [Google Scholar]
  108. 108.
    Reich D, Schaffner SF, Daly MJ, McVean G, Mullikin JC et al. 2002. Human genome sequence variation and the influence of gene history, mutation and recombination. Nat. Genet. 32:135–42
    [Google Scholar]
  109. 109.
    Reich D, Thangaraj K, Patterson N, Price A, Singh L. 2009. Reconstructing Indian population history. Nature 461:489–94
    [Google Scholar]
  110. 110.
    Ringbauer H, Novembre J, Steinrücken M. 2021. Parental relatedness through time revealed by runs of homozygosity in ancient DNA. Nat. Commun. 12:5425
    [Google Scholar]
  111. 111.
    Salter-Townshend M, Myers S. 2019. Fine-scale inference of ancestry segments without prior knowledge of admixing groups. Genetics 212:869–89
    [Google Scholar]
  112. 112.
    Sankararaman S, Patterson N, Li H, Pääbo S, Reich D. 2012. The date of interbreeding between Neandertals and modern humans. PLOS Genet. 8:e1002947
    [Google Scholar]
  113. 113.
    Schiffels S, Durbin R. 2014. Inferring human population size and separation history from multiple genome sequences. Nat. Genet. 46:919–25
    [Google Scholar]
  114. 114.
    Scott EM, Halees A, Itan Y, Spencer EG, He Y et al. 2016. Characterization of greater Middle Eastern genetic variation for enhanced disease gene discovery. Nat. Genet. 48:1071–76
    [Google Scholar]
  115. 115.
    Skoglund P, Malmström H, Raghavan M, Storå J, Hall P et al. 2012. Origins and genetic legacy of neolithic farmers and hunter-gatherers in Europe. Science 336:466–69
    [Google Scholar]
  116. 116.
    Speidel L, Cassidy L, Davies RW, Hellenthal G, Skoglund P, Myers SR. 2021. Inferring population histories for ancient genomes using genome-wide genealogies. Mol. Biol. Evol. 38:3497–511
    [Google Scholar]
  117. 117.
    Speidel L, Forest M, Shi S, Myers S. 2019. A method for genome-wide genealogy estimation for thousands of samples. Nat. Genet. 51:1321–29
    [Google Scholar]
  118. 118.
    Stern AJ, Wilton PR, Nielsen R. 2019. An approximate full-likelihood method for inferring selection and allele frequency trajectories from DNA sequence data. PLOS Genet. 15:e1008384
    [Google Scholar]
  119. 119.
    Sun N, Zhao H. 2020. Statistical methods in genome-wide association studies. Annu. Rev. Biomed. Data Sci. 3:265–88
    [Google Scholar]
  120. 120.
    Terhorst J, Kamm JA, Song YS. 2017. Robust and scalable inference of population history from hundreds of unphased whole genomes. Nat. Genet. 49:303–9
    [Google Scholar]
  121. 121.
    Thompson EA. 1975. Human Evolutionary Trees Cambridge, UK: Cambridge Univ. Press
  122. 122.
    Tournebize R, Chu G, Moorjani P. 2022. Reconstructing the history of founder events using genome-wide patterns of allele sharing across individuals. PLOS Genet. 18:e1010243
    [Google Scholar]
  123. 123.
    van Dorp L, Balding D, Myers S, Pagani L, Tyler-Smith C et al. 2015. Evidence for a common origin of blacksmiths and cultivators in the Ethiopian Ari within the last 4500 years: lessons for clustering-based inference. PLOS Genet. 11:e1005397
    [Google Scholar]
  124. 124.
    Waddell P. 1996. Evolutionary trees of apes and humans from DNA sequences. Handbook of Human Symbolic Evolution A Lock, CR Peters 53–73. Oxford, UK: Blackwell
    [Google Scholar]
  125. 125.
    Wakeley J. 2009. Coalescent Theory: An Introduction New York: Macmillan Learn.
  126. 126.
    Wangkumhang P, Greenfield M, Hellenthal G. 2022. An efficient method to identify, date, and describe admixture events using haplotype information. Genome Res. 32:1553–64
    [Google Scholar]
  127. 127.
    Zhou Y, Browning S, Browning B. 2020. A fast and simple method for detecting identity-by-descent segments in large-scale data. Am. J. Hum. Genet. 106:426–37
    [Google Scholar]
/content/journals/10.1146/annurev-genom-111422-025117
Loading
/content/journals/10.1146/annurev-genom-111422-025117
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error