1932

Abstract

RNA proximity ligation is a set of molecular biology techniques used to analyze the conformations and spatial proximity of RNA molecules within cells. A typical experiment starts with cross-linking of a biological sample using UV light or psoralen, followed by partial fragmentation of RNA, RNA–RNA ligation, library preparation, and high-throughput sequencing. In the past decade, proximity ligation has been used to study structures of individual RNAs, networks of interactions between small RNAs and their targets, and whole RNA–RNA interactomes, in models ranging from bacteria to animal tissues and whole animals. Here, we provide an overview of the field, highlight the main findings, review the recent experimental and computational developments, and provide troubleshooting advice for new users. In the final section, we draw parallels between DNA and RNA proximity ligation and speculate on possible future research directions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-120219-073756
2020-08-31
2024-04-21
Loading full text...

Full text loading...

/deliver/fulltext/genom/21/1/annurev-genom-120219-073756.html?itemId=/content/journals/10.1146/annurev-genom-120219-073756&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Agarwal V, Bell GW, Nam JW, Bartel DP 2015. Predicting effective microRNA target sites in mammalian mRNAs. eLife 4:e05005
    [Google Scholar]
  2. 2. 
    Aw JG, Shen Y, Wilm A, Sun M, Lim XN et al. 2016. In vivo mapping of eukaryotic RNA interactomes reveals principles of higher-order organization and regulation. Mol. Cell 62:603–17
    [Google Scholar]
  3. 3. 
    Becker WR, Ober-Reynolds B, Jouravleva K, Jolly SM, Zamore PD, Greenleaf WJ 2019. High-throughput analysis reveals rules for target RNA binding and cleavage by AGO2. Mol. Cell 75:741–55.e11
    [Google Scholar]
  4. 4. 
    Bharathavikru R, Dudnakova T, Aitken S, Slight J, Artibani M et al. 2017. Transcription factor Wilms’ tumor 1 regulates developmental RNAs through 3′ UTR interaction. Genes Dev 31:347–52
    [Google Scholar]
  5. 5. 
    Bohnsack MT, Martin R, Granneman S, Ruprecht M, Schleiff E, Tollervey D 2009. Prp43 bound at different sites on the pre-rRNA performs distinct functions in ribosome synthesis. Mol. Cell 36:583–92
    [Google Scholar]
  6. 6. 
    Broughton JP, Lovci MT, Huang JL, Yeo GW, Pasquinelli AE 2016. Pairing beyond the seed supports microRNA targeting specificity. Mol. Cell 64:320–33
    [Google Scholar]
  7. 7. 
    Broughton JP, Pasquinelli AE. 2018. Detection of microRNA-target interactions by chimera PCR (ChimP). Methods Mol. Biol. 1823:153–65
    [Google Scholar]
  8. 8. 
    Bullard WL, Kara M, Gay LA, Sethuraman S, Wang Y et al. 2019. Identification of murine gammaherpesvirus 68 miRNA-mRNA hybrids reveals miRNA target conservation among gammaherpesviruses including host translation and protein modification machinery. PLOS Pathog 15:e1007843
    [Google Scholar]
  9. 9. 
    Burger K, Muhl B, Kellner M, Rohrmoser M, Gruber-Eber A et al. 2013. 4-Thiouridine inhibits rRNA synthesis and causes a nucleolar stress response. RNA Biol 10:1623–30
    [Google Scholar]
  10. 10. 
    Dadonaite B, Gilbertson B, Knight ML, Trifkovic S, Rockman S et al. 2019. The structure of the influenza A virus genome. Nat. Microbiol. 4:1781–89
    [Google Scholar]
  11. 11. 
    Dekker J, Rippe K, Dekker M, Kleckner N 2002. Capturing chromosome conformation. Science 295:1306–11
    [Google Scholar]
  12. 12. 
    Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C et al. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21
    [Google Scholar]
  13. 13. 
    Engreitz JM, Sirokman K, McDonel P, Shishkin AA, Surka C et al. 2014. RNA-RNA interactions enable specific targeting of noncoding RNAs to nascent pre-mRNAs and chromatin sites. Cell 159:188–99
    [Google Scholar]
  14. 14. 
    Flyamer IM, Gassler J, Imakaev M, Brandao HB, Ulianov SV et al. 2017. Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature 544:110–14
    [Google Scholar]
  15. 15. 
    Friedländer MR, Lizano E, Houben AJ, Bezdan D, Báñez-Coronel M et al. 2014. Evidence for the biogenesis of more than 1,000 novel human microRNAs. Genome Biol 15:R57
    [Google Scholar]
  16. 16. 
    Galej WP, Wilkinson ME, Fica SM, Oubridge C, Newman AJ, Nagai K 2016. Cryo-EM structure of the spliceosome immediately after branching. Nature 537:197–201
    [Google Scholar]
  17. 17. 
    Ganser LR, Kelly ML, Herschlag D, Al-Hashimi HM 2019. The roles of structural dynamics in the cellular functions of RNAs. Nat. Rev. Mol. Cell Biol. 20:474–89
    [Google Scholar]
  18. 18. 
    Garalde DR, Snell EA, Jachimowicz D, Sipos B, Lloyd JH et al. 2018. Highly parallel direct RNA sequencing on an array of nanopores. Nat. Methods 15:201–6
    [Google Scholar]
  19. 19. 
    Gibcus JH, Samejima K, Goloborodko A, Samejima I, Naumova N et al. 2018. A pathway for mitotic chromosome formation. Science 359:eaao6135
    [Google Scholar]
  20. 20. 
    Granneman S, Kudla G, Petfalski E, Tollervey D 2009. Identification of protein binding sites on U3 snoRNA and pre-rRNA by UV cross-linking and high-throughput analysis of cDNAs. PNAS 106:9613–18
    [Google Scholar]
  21. 21. 
    Grosswendt S, Filipchyk A, Manzano M, Klironomos F, Schilling M et al. 2014. Unambiguous identification of miRNA:target site interactions by different types of ligation reactions. Mol. Cell 54:1042–54
    [Google Scholar]
  22. 22. 
    Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J et al. 2010. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141:129–41
    [Google Scholar]
  23. 23. 
    Halvorsen M, Martin JS, Broadaway S, Laederach A 2010. Disease-associated mutations that alter the RNA structural ensemble. PLOS Genet 6:e1001074
    [Google Scholar]
  24. 24. 
    Hearst JE. 1981. Psoralen photochemistry and nucleic acid structure. J. Investig. Dermatol. 77:39–44
    [Google Scholar]
  25. 25. 
    Helwak A, Kudla G, Dudnakova T, Tollervey D 2013. Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153:654–65
    [Google Scholar]
  26. 26. 
    Helwak A, Tollervey D. 2014. Mapping the miRNA interactome by cross-linking ligation and sequencing of hybrids (CLASH). Nat. Protoc. 9:711–28
    [Google Scholar]
  27. 27. 
    Homan PJ, Favorov OV, Lavender CA, Kursun O, Ge X et al. 2014. Single-molecule correlated chemical probing of RNA. PNAS 111:13858–63
    [Google Scholar]
  28. 28. 
    Huber RG, Lim XN, Ng WC, Sim AYL, Poh HX et al. 2019. Structure mapping of dengue and Zika viruses reveals functional long-range interactions. Nat. Commun. 10:1408
    [Google Scholar]
  29. 29. 
    Jamonnak N, Creamer TJ, Darby MM, Schaughency P, Wheelan SJ, Corden JL 2011. Yeast Nrd1, Nab3, and Sen1 transcriptome-wide binding maps suggest multiple roles in post-transcriptional RNA processing. RNA 17:2011–25
    [Google Scholar]
  30. 30. 
    Jungkamp AC, Stoeckius M, Mecenas D, Grun D, Mastrobuoni G et al. 2011. In vivo and transcriptome-wide identification of RNA binding protein target sites. Mol. Cell 44:828–40
    [Google Scholar]
  31. 31. 
    Kim SH, Suddath FL, Quigley GJ, McPherson A, Sussman JL et al. 1974. Three-dimensional tertiary structure of yeast phenylalanine transfer RNA. Science 185:435–40
    [Google Scholar]
  32. 32. 
    Kirsch R, Olzog VJ, Bonin S, Weinberg CE, Betat H et al. 2019. A streamlined protocol for the detection of mRNA–sRNA interactions using AMT-crosslinking in vitro. Biotechniques 67:178–83
    [Google Scholar]
  33. 33. 
    Kiss T. 2001. Small nucleolar RNA-guided post-transcriptional modification of cellular RNAs. EMBO J 20:3617–22
    [Google Scholar]
  34. 34. 
    Kudla G, Granneman S, Hahn D, Beggs JD, Tollervey D 2011. Cross-linking, ligation, and sequencing of hybrids reveals RNA-RNA interactions in yeast. PNAS 108:10010–15
    [Google Scholar]
  35. 35. 
    Li P, Wei Y, Mei M, Tang L, Sun L et al. 2018. Integrative analysis of Zika virus genome RNA structure reveals critical determinants of viral infectivity. Cell Host Microbe 24:875–86.e5
    [Google Scholar]
  36. 36. 
    Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T et al. 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–93
    [Google Scholar]
  37. 37. 
    Liu N, Zhou KI, Parisien M, Dai Q, Diatchenko L, Pan T 2017. N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res 45:6051–63
    [Google Scholar]
  38. 38. 
    Liu T, Zhang K, Xu S, Wang Z, Fu H et al. 2017. Detecting RNA-RNA interactions in E. coli using a modified CLASH method. BMC Genom 3:343
    [Google Scholar]
  39. 39. 
    Lu Z, Zhang QC, Lee B, Flynn RA, Smith MA et al. 2016. RNA duplex map in living cells reveals higher-order transcriptome structure. Cell 165:1267–79
    [Google Scholar]
  40. 40. 
    Maenner S, Blaud M, Fouillen L, Savoye A, Marchand V et al. 2010. 2-D structure of the A region of Xist RNA and its implication for PRC2 association. PLOS Biol 8:e1000276
    [Google Scholar]
  41. 41. 
    Melamed S, Peer A, Faigenbaum-Romm R, Gatt YE, Reiss N et al. 2016. Global mapping of small RNA-target interactions in bacteria. Mol. Cell 63:884–97
    [Google Scholar]
  42. 42. 
    Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J et al. 2013. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495:333–38
    [Google Scholar]
  43. 43. 
    Metkar M, Ozadam H, Lajoie BR, Imakaev M, Mirny LA et al. 2018. Higher-order organization principles of pre-translational mRNPs. Mol. Cell 72:715–26.e3
    [Google Scholar]
  44. 44. 
    Monahan K, Horta A, Lomvardas S 2019. LHX2- and LDB1-mediated trans interactions regulate olfactory receptor choice. Nature 565:448–53
    [Google Scholar]
  45. 45. 
    Moore MJ, Scheel TK, Luna JM, Park CY, Fak JJ et al. 2015. miRNA-target chimeras reveal miRNA 3′-end pairing as a major determinant of Argonaute target specificity. Nat. Commun. 6:8864
    [Google Scholar]
  46. 46. 
    Morf J, Wingett SW, Farabella I, Cairns J, Furlan-Magaril M et al. 2019. RNA proximity sequencing reveals the spatial organization of the transcriptome in the nucleus. Nat. Biotechnol. 37:793–802
    [Google Scholar]
  47. 47. 
    Mustoe AM, Lama NN, Irving PS, Olson SW, Weeks KM 2019. RNA base-pairing complexity in living cells visualized by correlated chemical probing. PNAS 116:24574–82
    [Google Scholar]
  48. 48. 
    Nguyen TC, Cao X, Yu P, Xiao S, Lu J et al. 2016. Mapping RNA-RNA interactome and RNA structure in vivo by MARIO. Nat. Commun. 7:12023
    [Google Scholar]
  49. 49. 
    Ramani V, Qiu R, Shendure J 2015. High-throughput determination of RNA structure by proximity ligation. Nat. Biotechnol. 33:980–84
    [Google Scholar]
  50. 50. 
    Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID et al. 2014. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159:1665–80
    [Google Scholar]
  51. 51. 
    Ries RJ, Zaccara S, Klein P, Olarerin-George A, Namkoong S et al. 2019. m6A enhances the phase separation potential of mRNA. Nature 571:424–28
    [Google Scholar]
  52. 52. 
    Rivas E, Clements J, Eddy SR 2017. A statistical test for conserved RNA structure shows lack of evidence for structure in lncRNAs. Nat. Methods 14:45–48
    [Google Scholar]
  53. 53. 
    Sharma E, Sterne-Weiler T, O'Hanlon D, Blencowe BJ 2016. Global mapping of human RNA-RNA interactions. Mol. Cell 62:618–26
    [Google Scholar]
  54. 54. 
    Sharma Y, Miladi M, Dukare S, Boulay K, Caudron-Herger M et al. 2019. A pan-cancer analysis of synonymous mutations. Nat. Commun. 10:2569
    [Google Scholar]
  55. 55. 
    Shchepachev V, Bresson S, Spanos C, Petfalski E, Fischer L et al. 2019. Defining the RNA interactome by total RNA-associated protein purification. Mol. Syst. Biol. 15:e8689
    [Google Scholar]
  56. 56. 
    Shen EZ, Chen H, Ozturk AR, Tu S, Shirayama M et al. 2018. Identification of piRNA binding sites reveals the Argonaute regulatory landscape of the C. elegans germline. Cell 172:937–51.e18
    [Google Scholar]
  57. 57. 
    Sheu-Gruttadauria J, Xiao Y, Gebert LF, MacRae IJ 2019. Beyond the seed: structural basis for supplementary microRNA targeting by human Argonaute2. EMBO J 38:e101153
    [Google Scholar]
  58. 58. 
    Shi J, Deng Y, Huang S, Huang C, Wang J et al. 2019. Suboptimal RNA-RNA interaction limits U1 snRNP inhibition of canonical mRNA 3′ processing. RNA Biol 16:1448–60
    [Google Scholar]
  59. 59. 
    Siegfried NA, Busan S, Rice GM, Nelson JA, Weeks KM 2014. RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP). Nat. Methods 11:959–65
    [Google Scholar]
  60. 60. 
    Smith KC, Meun DH. 1968. Kinetics of the photochemical addition of cysteine-35S to polynucleotides and nucleic acids. Biochemistry 7:1033–37
    [Google Scholar]
  61. 61. 
    Spitale RC, Flynn RA, Zhang QC, Crisalli P, Lee B et al. 2015. Structural imprints in vivo decode RNA regulatory mechanisms. Nature 519:486–90
    [Google Scholar]
  62. 62. 
    Strobel EJ, Yu AM, Lucks JB 2018. High-throughput determination of RNA structures. Nat. Rev. Genet. 19:615–34
    [Google Scholar]
  63. 63. 
    Sugimoto Y, Vigilante A, Darbo E, Zirra A, Militti C et al. 2015. hiCLIP reveals the in vivo atlas of mRNA secondary structures recognized by Staufen 1. Nature 519:491–94
    [Google Scholar]
  64. 64. 
    Sun L, Fazal FM, Li P, Broughton JP, Lee B et al. 2019. RNA structure maps across mammalian cellular compartments. Nat. Struct. Mol. Biol. 26:322–30
    [Google Scholar]
  65. 65. 
    Sussman JL, Holbrook SR, Warrant RW, Church GM, Kim SH 1978. Crystal structure of yeast phenylalanine transfer RNA. I. Crystallographic refinement. J. Mol. Biol. 123:607–30
    [Google Scholar]
  66. 66. 
    Tan L, Xing D, Daley N, Xie XS 2019. Three-dimensional genome structures of single sensory neurons in mouse visual and olfactory systems. Nat. Struct. Mol. Biol. 26:297–307
    [Google Scholar]
  67. 67. 
    Trapnell C, Pachter L, Salzberg SL 2009. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–11
    [Google Scholar]
  68. 68. 
    Travis AJ, Moody J, Helwak A, Tollervey D, Kudla G 2014. Hyb: a bioinformatics pipeline for the analysis of CLASH (crosslinking, ligation and sequencing of hybrids) data. Methods 65:263–73
    [Google Scholar]
  69. 69. 
    Ule J, Jensen KB, Ruggiu M, Mele A, Ule A, Darnell RB 2003. CLIP identifies Nova-regulated RNA networks in the brain. Science 302:1212–15
    [Google Scholar]
  70. 70. 
    Vara C, Paytuvi-Gallart A, Cuartero Y, Le Dily F, Garcia F et al. 2019. Three-dimensional genomic structure and cohesin occupancy correlate with transcriptional activity during spermatogenesis. Cell Rep 28:352–67.e9
    [Google Scholar]
  71. 71. 
    Wan Y, Kertesz M, Spitale RC, Segal E, Chang HY 2011. Understanding the transcriptome through RNA structure. Nat. Rev. Genet. 12:641–55
    [Google Scholar]
  72. 72. 
    Wan Y, Qu K, Ouyang Z, Kertesz M, Li J et al. 2012. Genome-wide measurement of RNA folding energies. Mol. Cell 48:169–81
    [Google Scholar]
  73. 73. 
    Wan Y, Qu K, Zhang QC, Flynn RA, Manor O et al. 2014. Landscape and variation of RNA secondary structure across the human transcriptome. Nature 505:706–9
    [Google Scholar]
  74. 74. 
    Waters SA, McAteer SP, Kudla G, Pang I, Deshpande NP et al. 2016. Small RNA interactome of pathogenic E. coli revealed through crosslinking of RNase E. EMBO J 36:374–87
    [Google Scholar]
  75. 75. 
    Yang A, Bofill-De Ros X, Shao TJ, Jiang M, Li K et al. 2019. 3′ uridylation confers miRNAs with non-canonical target repertoires. Mol. Cell 75:511–22.e4
    [Google Scholar]
  76. 76. 
    Zhong C, Zhang S. 2019. Accurate and efficient mapping of the cross-linked microRNA-mRNA duplex reads. iScience 18:11–19
    [Google Scholar]
  77. 77. 
    Zisoulis DG, Lovci MT, Wilbert ML, Hutt KR, Liang TY et al. 2010. Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans. Nat. Struct. Mol. Biol 17:173–79
    [Google Scholar]
  78. 78. 
    Ziv O, Gabryelska MM, Lun ATL, Gebert LFR, Sheu-Gruttadauria J et al. 2018. COMRADES determines in vivo RNA structures and interactions. Nat. Methods 15:785–88
    [Google Scholar]
/content/journals/10.1146/annurev-genom-120219-073756
Loading
/content/journals/10.1146/annurev-genom-120219-073756
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error