1932

Abstract

Embryonic development and stem cell differentiation provide a paradigm to understand the molecular regulation of coordinated cell fate determination and the architecture of tissue patterning. Emerging technologies such as single-cell RNA sequencing and spatial transcriptomics are opening new avenues to dissect cell organization, the divergence of morphological and molecular properties, and lineage allocation. Rapid advances in experimental and computational tools have enabled researchers to make many discoveries and revisit old hypotheses. In this review, we describe the use of single-cell RNA sequencing in studies of molecular trajectories and gene regulation networks for stem cell lineages, while highlighting the integratedexperimental and computational analysis of single-cell and spatial transcriptomes in the molecular annotation of tissue lineages and development during postimplantation gastrulation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-120219-083220
2020-08-31
2024-06-17
Loading full text...

Full text loading...

/deliver/fulltext/genom/21/1/annurev-genom-120219-083220.html?itemId=/content/journals/10.1146/annurev-genom-120219-083220&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Achim K, Pettit JB, Saraiva LR, Gavriouchkina D, Larsson T et al. 2015. High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin. Nat. Biotechnol. 33:503–9
    [Google Scholar]
  2. 2. 
    Achim K, Vergara HM, Pettit JB 2018. Spatial transcriptomics: constructing a single-cell resolution transcriptome-wide expression atlas. Methods Mol. Biol. 1649:111–25
    [Google Scholar]
  3. 3. 
    Aibar S, González-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H et al. 2017. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14:1083–86
    [Google Scholar]
  4. 4. 
    Alemany A, Florescu M, Baron CS, Peterson-Maduro J, van Oudenaarden A 2018. Whole-organism clone tracing using single-cell sequencing. Nature 556:108–12
    [Google Scholar]
  5. 5. 
    Amodio M, van Dijk D, Srinivasan K, Chen WS, Mohsen H et al. 2019. Exploring single-cell data with deep multitasking neural networks. Nat. Methods 16:1139–45
    [Google Scholar]
  6. 6. 
    Antonica F, Orietti LC, Mort RL, Zernicka-Goetz M 2019. Concerted cell divisions in embryonic visceral endoderm guide anterior visceral endoderm migration. Dev. Biol. 450:132–40
    [Google Scholar]
  7. 7. 
    Arnold SJ, Robertson EJ. 2009. Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nat. Rev. Mol. Cell Biol. 10:91–103
    [Google Scholar]
  8. 8. 
    Baron CS, van Oudenaarden A 2019. Unravelling cellular relationships during development and regeneration using genetic lineage tracing. Nat. Rev. Mol. Cell Biol. 20:753–65
    [Google Scholar]
  9. 9. 
    Becht E, McInnes L, Healy J, Dutertre CA, Kwok IWH et al. 2018. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37:38–44
    [Google Scholar]
  10. 10. 
    Birnbaum KD. 2018. Power in numbers: single-cell RNA-seq strategies to dissect complex tissues. Annu. Rev. Genet. 52:203–21
    [Google Scholar]
  11. 11. 
    Callaway E. 2017. The trickiest family tree in biology. Nature 547:20–22
    [Google Scholar]
  12. 12. 
    Cannoodt R, Saelens W, Sichien D, Tavernier S, Janssens S et al. 2016. SCORPIUS improves trajectory inference and identifies novel modules in dendritic cell development. bioRxiv 079509. https://doi.org/10.1101/079509
    [Crossref]
  13. 13. 
    Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM et al. 2019. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566:496–502
    [Google Scholar]
  14. 14. 
    Chan MM, Smith ZD, Grosswendt S, Kretzmer H, Norman TM et al. 2019. Molecular recording of mammalian embryogenesis. Nature 570:77–82
    [Google Scholar]
  15. 15. 
    Chen J, Suo S, Tam PP, Han JJ, Peng G, Jing N 2017. Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq. Nat. Protoc. 12:566–80
    [Google Scholar]
  16. 16. 
    Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X 2015. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348:aaa6090
    [Google Scholar]
  17. 17. 
    Christodoulou N, Kyprianou C, Weberling A, Wang R, Cui G et al. 2018. Sequential formation and resolution of multiple rosettes drive embryo remodelling after implantation. Nat. Cell Biol. 20:1278–89
    [Google Scholar]
  18. 18. 
    Crosetto N, Bienko M, van Oudenaarden A 2015. Spatially resolved transcriptomics and beyond. Nat. Rev. Genet. 16:57–66
    [Google Scholar]
  19. 19. 
    Davie K, Janssens J, Koldere D, De Waegeneer M, Pech U et al. 2018. A single-cell transcriptome atlas of the aging Drosophila brain. Cell 174:982–98.e20
    [Google Scholar]
  20. 20. 
    Deglincerti A, Croft GF, Pietila LN, Zernicka-Goetz M, Siggia ED, Brivanlou AH 2016. Self-organization of the in vitro attached human embryo. Nature 533:251–54
    [Google Scholar]
  21. 21. 
    Dries R, Zhu Q, Eng C-HL, Sarkar A, Bao F et al. 2019. Giotto, a pipeline for integrative analysis and visualization of single-cell spatial transcriptomic data. bioRxiv 701680. https://doi.org/10.1101/701680
    [Crossref]
  22. 22. 
    Eng CL, Lawson M, Zhu Q, Dries R, Koulena N et al. 2019. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature 568:235–39
    [Google Scholar]
  23. 23. 
    Farrell JA, Wang Y, Riesenfeld SJ, Shekhar K, Regev A, Schier AF 2018. Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis. Science 360:eaar3131
    [Google Scholar]
  24. 24. 
    Fuxman Bass JI, Diallo A, Nelson J, Soto JM, Myers CL, Walhout AJ 2013. Using networks to measure similarity between genes: association index selection. Nat. Methods 10:1169–76
    [Google Scholar]
  25. 25. 
    Gawad C, Koh W, Quake SR 2016. Single-cell genome sequencing: current state of the science. Nat. Rev. Genet. 17:175–88
    [Google Scholar]
  26. 26. 
    Grapin-Botton A, Melton DA. 2000. Endoderm development: from patterning to organogenesis. Trends Genet 16:124–30
    [Google Scholar]
  27. 27. 
    Griffiths JA, Scialdone A, Marioni JC 2018. Using single-cell genomics to understand developmental processes and cell fate decisions. Mol. Syst. Biol. 14:e8046
    [Google Scholar]
  28. 28. 
    Haghverdi L, Buettner F, Theis FJ 2015. Diffusion maps for high-dimensional single-cell analysis of differentiation data. Bioinformatics 31:2989–98
    [Google Scholar]
  29. 29. 
    Han X, Luo S, Peng G, Lu JY, Cui G et al. 2018. Mouse knockout models reveal largely dispensable but context-dependent functions of lncRNAs during development. J. Mol. Cell Biol. 10:175–78
    [Google Scholar]
  30. 30. 
    Harrison SE, Sozen B, Christodoulou N, Kyprianou C, Zernicka-Goetz M 2017. Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro. Science 356:eaal1810
    [Google Scholar]
  31. 31. 
    Hashimshony T, Feder M, Levin M, Hall BK, Yanai I 2015. Spatiotemporal transcriptomics reveals the evolutionary history of the endoderm germ layer. Nature 519:219–22
    [Google Scholar]
  32. 32. 
    Hoppe PS, Coutu DL, Schroeder T 2014. Single-cell technologies sharpen up mammalian stem cell research. Nat. Cell Biol. 16:919–27
    [Google Scholar]
  33. 33. 
    Iacono G, Massoni-Badosa R, Heyn H 2019. Single-cell transcriptomics unveils gene regulatory network plasticity. Genome Biol 20:110
    [Google Scholar]
  34. 34. 
    Ichikawa T, Nakazato K, Keller PJ, Kajiura-Kobayashi H, Stelzer EH et al. 2013. Live imaging of whole mouse embryos during gastrulation: migration analyses of epiblast and mesodermal cells. PLOS ONE 8:e64506
    [Google Scholar]
  35. 35. 
    Irie N, Kuratani S. 2014. The developmental hourglass model: a predictor of the basic body plan. Development 141:4649–55
    [Google Scholar]
  36. 36. 
    Kalhor R, Kalhor K, Mejia L, Leeper K, Graveline A et al. 2018. Developmental barcoding of whole mouse via homing CRISPR. Science 361:eaat9804
    [Google Scholar]
  37. 37. 
    Kalinka AT, Tomancak P. 2012. The evolution of early animal embryos: conservation or divergence. Trends Ecol. Evol. 27:385–93
    [Google Scholar]
  38. 38. 
    Kalinka AT, Varga KM, Gerrard DT, Preibisch S, Corcoran DL et al. 2010. Gene expression divergence recapitulates the developmental hourglass model. Nature 468:811–14
    [Google Scholar]
  39. 39. 
    Kalisky T, Blainey P, Quake SR 2011. Genomic analysis at the single-cell level. Annu. Rev. Genet. 45:431–45
    [Google Scholar]
  40. 40. 
    Karaiskos N, Wahle P, Alles J, Boltengagen A, Ayoub S et al. 2017. The Drosophila embryo at single-cell transcriptome resolution. Science 358:194–99
    [Google Scholar]
  41. 41. 
    Kelsey G, Stegle O, Reik W 2017. Single-cell epigenomics: recording the past and predicting the future. Science 358:69–75
    [Google Scholar]
  42. 42. 
    Kester L, van Oudenaarden A 2018. Single-cell transcriptomics meets lineage tracing. Cell Stem Cell 23:166–79
    [Google Scholar]
  43. 43. 
    Kojima Y, Tam OH, Tam PP 2014. Timing of developmental events in the early mouse embryo. Semin. Cell Dev. Biol. 34:65–75
    [Google Scholar]
  44. 44. 
    Kolodziejczyk AA, Kim JK, Svensson V, Marioni JC, Teichmann SA 2015. The technology and biology of single-cell RNA sequencing. Mol. Cell 58:610–20
    [Google Scholar]
  45. 45. 
    Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F et al. 2019. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16:1289–96
    [Google Scholar]
  46. 46. 
    Kretzschmar K, Watt FM. 2012. Lineage tracing. Cell 148:33–45
    [Google Scholar]
  47. 47. 
    Kwon GS, Viotti M, Hadjantonakis AK 2008. The endoderm of the mouse embryo arises by dynamic widespread intercalation of embryonic and extraembryonic lineages. Dev. Cell 15:509–20
    [Google Scholar]
  48. 48. 
    La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H et al. 2018. RNA velocity of single cells. Nature 560:494–98
    [Google Scholar]
  49. 49. 
    Lafzi A, Moutinho C, Picelli S, Heyn H 2018. Tutorial: guidelines for the experimental design of single-cell RNA sequencing studies. Nat. Protoc. 13:2742–57
    [Google Scholar]
  50. 50. 
    Langfelder P, Horvath S. 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform 9:559
    [Google Scholar]
  51. 51. 
    Lawson KA, Pedersen RA. 1987. Cell fate, morphogenetic movement and population kinetics of embryonic endoderm at the time of germ layer formation in the mouse. Development 101:627–52
    [Google Scholar]
  52. 52. 
    Lein E, Borm LE, Linnarsson S 2017. The promise of spatial transcriptomics for neuroscience in the era of molecular cell typing. Science 358:64–69
    [Google Scholar]
  53. 53. 
    Levin M, Anavy L, Cole AG, Winter E, Mostov N et al. 2016. The mid-developmental transition and the evolution of animal body plans. Nature 531:637–41
    [Google Scholar]
  54. 54. 
    Li M, Izpisua Belmonte JC 2018. Deconstructing the pluripotency gene regulatory network. Nat. Cell Biol. 20:382–92
    [Google Scholar]
  55. 55. 
    Lin C, Jain S, Kim H, Bar-Joseph Z 2017. Using neural networks for reducing the dimensions of single-cell RNA-Seq data. Nucleic Acids Res 45:e156
    [Google Scholar]
  56. 56. 
    Liu D, Xu C, He W, Xu Z, Fu W et al. 2019. AutoGenome: an AutoML tool for genomic research. bioRxiv 842526. https://doi.org/10.1101/842526
    [Crossref]
  57. 57. 
    Lu R, Neff NF, Quake SR, Weissman IL 2011. Tracking single hematopoietic stem cells in vivo using high-throughput sequencing in conjunction with viral genetic barcoding. Nat. Biotechnol. 29:928–33
    [Google Scholar]
  58. 58. 
    Lubeck E, Coskun AF, Zhiyentayev T, Ahmad M, Cai L 2014. Single-cell in situ RNA profiling by sequential hybridization. Nat. Methods 11:360–61
    [Google Scholar]
  59. 59. 
    Ma H, Zhai J, Wan H, Jiang X, Wang X et al. 2019. In vitro culture of cynomolgus monkey embryos beyond early gastrulation. Science 366:seaax7890
    [Google Scholar]
  60. 60. 
    Marioni JC, Arendt D. 2017. How single-cell genomics is changing evolutionary and developmental biology. Annu. Rev. Cell Dev. Biol. 33:537–53
    [Google Scholar]
  61. 61. 
    Massarwa R, Niswander L. 2013. In toto live imaging of mouse morphogenesis and new insights into neural tube closure. Development 140:226–36
    [Google Scholar]
  62. 62. 
    Maynard KR, Jaffe AE, Martinowich K 2019. Spatial transcriptomics: putting genome-wide expression on the map. Neuropsychopharmacology 45:232–33
    [Google Scholar]
  63. 63. 
    Mazzarello P. 1999. A unifying concept: the history of cell theory. Nat. Cell Biol. 1:E13–15
    [Google Scholar]
  64. 64. 
    McDole K, Guignard L, Amat F, Berger A, Malandain G et al. 2018. In toto imaging and reconstruction of post-implantation mouse development at the single-cell level. Cell 175:859–76.e33
    [Google Scholar]
  65. 65. 
    McFaline-Figueroa JL, Hill AJ, Qiu X, Jackson D, Shendure J, Trapnell C 2019. A pooled single-cell genetic screen identifies regulatory checkpoints in the continuum of the epithelial-to-mesenchymal transition. Nat. Genet. 51:1389–98
    [Google Scholar]
  66. 66. 
    Miragaia RJ, Gomes T, Chomka A, Jardine L, Riedel A et al. 2019. Single-cell transcriptomics of regulatory T cells reveals trajectories of tissue adaptation. Immunity 50:493–504.e7
    [Google Scholar]
  67. 67. 
    Moffitt JR, Bambah-Mukku D, Eichhorn SW, Vaughn E, Shekhar K et al. 2018. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 362:eaau5324
    [Google Scholar]
  68. 68. 
    Mooijman D, Dey SS, Boisset JC, Crosetto N, van Oudenaarden A 2016. Single-cell 5hmC sequencing reveals chromosome-wide cell-to-cell variability and enables lineage reconstruction. Nat. Biotechnol. 34:852–56
    [Google Scholar]
  69. 69. 
    Mulas C, Chia G, Jones KA, Hodgson AC, Stirparo GG, Nichols J 2018. Oct4 regulates the embryonic axis and coordinates exit from pluripotency and germ layer specification in the mouse embryo. Development 145:dev159103
    [Google Scholar]
  70. 70. 
    Nakamura T, Okamoto I, Sasaki K, Yabuta Y, Iwatani C et al. 2016. A developmental coordinate of pluripotency among mice, monkeys and humans. Nature 537:57–62
    [Google Scholar]
  71. 71. 
    Navin N, Kendall J, Troge J, Andrews P, Rodgers L et al. 2011. Tumour evolution inferred by single-cell sequencing. Nature 472:90–94
    [Google Scholar]
  72. 72. 
    Nitzan M, Karaiskos N, Friedman N, Rajewsky N 2019. Gene expression cartography. Nature 576:132–37
    [Google Scholar]
  73. 73. 
    Niu Y, Sun N, Li C, Lei Y, Huang Z et al. 2019. Dissecting primate early post-implantation development using long-term in vitro embryo culture. Science 366:eaaw5754
    [Google Scholar]
  74. 74. 
    Nowotschin S, Hadjantonakis AK, Campbell K 2019. The endoderm: a divergent cell lineage with many commonalities. Development 146:dev150920
    [Google Scholar]
  75. 75. 
    Nowotschin S, Setty M, Kuo YY, Liu V, Garg V et al. 2019. The emergent landscape of the mouse gut endoderm at single-cell resolution. Nature 569:361–67
    [Google Scholar]
  76. 76. 
    Osteil P, Studdert JB, Goh HN, Wilkie EE, Fan X et al. 2019. Dynamics of Wnt activity on the acquisition of ectoderm potency in epiblast stem cells. Development 146:dev172858
    [Google Scholar]
  77. 77. 
    Park J, Choi W, Tiesmeyer S, Long B, Borm LE et al. 2019. Segmentation-free inference of cell types from in situ transcriptomics data. bioRxiv 800748. https://doi.org/10.1101/800748
    [Crossref]
  78. 78. 
    Peng G, Suo S, Chen J, Chen W, Liu C et al. 2016. Spatial transcriptome for the molecular annotation of lineage fates and cell identity in mid-gastrula mouse embryo. Dev. Cell 36:681–97
    [Google Scholar]
  79. 79. 
    Peng G, Suo S, Cui G, Yu F, Wang R et al. 2019. Molecular architecture of lineage allocation and tissue organization in early mouse embryo. Nature 572:528–32
    [Google Scholar]
  80. 80. 
    Picelli S. 2017. Single-cell RNA-sequencing: The future of genome biology is now. RNA Biol 14:637–50
    [Google Scholar]
  81. 81. 
    Pijuan-Sala B, Griffiths JA, Guibentif C, Hiscock TW, Jawaid W et al. 2019. A single-cell molecular map of mouse gastrulation and early organogenesis. Nature 566:490–95
    [Google Scholar]
  82. 82. 
    Proserpio V, Lönnberg T. 2016. Single-cell technologies are revolutionizing the approach to rare cells. Immunol. Cell Biol. 94:225–29
    [Google Scholar]
  83. 83. 
    Quinlan GA, Williams EA, Tan SS, Tam PP 1995. Neuroectodermal fate of epiblast cells in the distal region of the mouse egg cylinder: implication for body plan organization during early embryogenesis. Development 121:87–98
    [Google Scholar]
  84. 84. 
    Rivera-Pérez JA, Hadjantonakis AK. 2014. The dynamics of morphogenesis in the early mouse embryo. Cold Spring Harb. Perspect. Biol. 7:a015867
    [Google Scholar]
  85. 85. 
    Rodriques SG, Stickels RR, Goeva A, Martin CA, Murray E et al. 2019. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363:1463–67
    [Google Scholar]
  86. 86. 
    Saelens W, Cannoodt R, Todorov H, Saeys Y 2019. A comparison of single-cell trajectory inference methods. Nat. Biotechnol. 37:547–54
    [Google Scholar]
  87. 87. 
    Satija R, Farrell JA, Gennert D, Schier AF, Regev A 2015. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33:495–502
    [Google Scholar]
  88. 88. 
    Scialdone A, Tanaka Y, Jawaid W, Moignard V, Wilson NK et al. 2016. Resolving early mesoderm diversification through single-cell expression profiling. Nature 535:289–93
    [Google Scholar]
  89. 89. 
    Shahbazi MN, Jedrusik A, Vuoristo S, Recher G, Hupalowska A et al. 2016. Self-organization of the human embryo in the absence of maternal tissues. Nat. Cell Biol. 18:700–8
    [Google Scholar]
  90. 90. 
    Shahbazi MN, Zernicka-Goetz M. 2018. Deconstructing and reconstructing the mouse and human early embryo. Nat. Cell Biol. 20:878–87
    [Google Scholar]
  91. 91. 
    Shapiro E, Biezuner T, Linnarsson S 2013. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat. Rev. Genet. 14:618–30
    [Google Scholar]
  92. 92. 
    Sherwood RI, Jitianu C, Cleaver O, Shaywitz DA, Lamenzo JO et al. 2007. Prospective isolation and global gene expression analysis of definitive and visceral endoderm. Dev. Biol. 304:541–55
    [Google Scholar]
  93. 93. 
    Solnica-Krezel L. 2005. Conserved patterns of cell movements during vertebrate gastrulation. Curr. Biol. 15:R213–28
    [Google Scholar]
  94. 94. 
    Solnica-Krezel L, Sepich DS. 2012. Gastrulation: making and shaping germ layers. Annu. Rev. Cell Dev. Biol. 28:687–717
    [Google Scholar]
  95. 95. 
    Sozen B, Amadei G, Cox A, Wang R, Na E et al. 2018. Self-assembly of embryonic and two extra-embryonic stem cell types into gastrulating embryo-like structures. Nat. Cell Biol. 20:979–89
    [Google Scholar]
  96. 96. 
    Spanjaard B, Hu B, Mitic N, Olivares-Chauvet P, Janjuha S et al. 2018. Simultaneous lineage tracing and cell-type identification using CRISPR-Cas9-induced genetic scars. Nat. Biotechnol. 36:469–73
    [Google Scholar]
  97. 97. 
    Ståhl PL, Salmén F, Vickovic S, Lundmark A, Navarro JF et al. 2016. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353:78–82
    [Google Scholar]
  98. 98. 
    Steinmetz PRH, Aman A, Kraus JEM, Technau U 2017. Gut-like ectodermal tissue in a sea anemone challenges germ layer homology. Nat. Ecol. Evol. 1:1535–42
    [Google Scholar]
  99. 99. 
    Stoltzfus CR, Filipek J, Gern BH, Olin BE, Leal JM et al. 2019. CytoMAP: a spatial analysis toolbox reveals features of myeloid cell organization in lymphoid tissues. bioRxiv 769877. https://doi.org/10.1101/769877
    [Crossref]
  100. 100. 
    Street K, Risso D, Fletcher RB, Das D, Ngai J et al. 2018. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genom 19:477
    [Google Scholar]
  101. 101. 
    Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E et al. 2019. Comprehensive integration of single-cell data. Cell 177:1888–902.e21
    [Google Scholar]
  102. 102. 
    Stuart T, Satija R. 2019. Integrative single-cell analysis. Nat. Rev. Genet. 20:257–72
    [Google Scholar]
  103. 103. 
    Suo S, Zhu Q, Saadatpour A, Fei L, Guo G, Yuan GC 2018. Revealing the critical regulators of cell identity in the mouse cell atlas. Cell Rep 25:1436–45.e3
    [Google Scholar]
  104. 104. 
    Svensson V, Teichmann SA, Stegle O 2018. SpatialDE: identification of spatially variable genes. Nat. Methods 15:343–46
    [Google Scholar]
  105. 105. 
    Talwar D, Mongia A, Sengupta D, Majumdar A 2018. AutoImpute: autoencoder based imputation of single-cell RNA-seq data. Sci. Rep. 8:16329
    [Google Scholar]
  106. 106. 
    Tam PP, Beddington RS. 1992. Establishment and organization of germ layers in the gastrulating mouse embryo. Ciba Found. Symp. 165:27–41
    [Google Scholar]
  107. 107. 
    Tam PP, Behringer RR. 1997. Mouse gastrulation: the formation of a mammalian body plan. Mech. Dev. 68:3–25
    [Google Scholar]
  108. 108. 
    Tam PP, Khoo PL, Wong N, Tsang TE, Behringer RR 2004. Regionalization of cell fates and cell movement in the endoderm of the mouse gastrula and the impact of loss of Lhx1(Lim1) function. Dev. Biol. 274:171–87
    [Google Scholar]
  109. 109. 
    Tam PP, Loebel DA. 2007. Gene function in mouse embryogenesis: Get set for gastrulation. Nat. Rev. Genet. 8:368–81
    [Google Scholar]
  110. 110. 
    Tam PP, Quinlan GA. 1996. Mapping vertebrate embryos. Curr. Biol. 6:104–6
    [Google Scholar]
  111. 111. 
    Tang F, Barbacioru C, Wang Y, Nordman E, Lee C et al. 2009. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6:377–82
    [Google Scholar]
  112. 112. 
    Tatapudy S, Aloisio F, Barber D, Nystul T 2017. Cell fate decisions: emerging roles for metabolic signals and cell morphology. EMBO Rep 18:2105–18
    [Google Scholar]
  113. 113. 
    Technau U, Scholz CB. 2003. Origin and evolution of endoderm and mesoderm. Int. J. Dev. Biol. 47:531–39
    [Google Scholar]
  114. 114. 
    Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S et al. 2014. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32:381–86
    [Google Scholar]
  115. 115. 
    Tritschler S, Büttner M, Fischer DS, Lange M, Bergen V et al. 2019. Concepts and limitations for learning developmental trajectories from single cell genomics. Development 146:dev170506
    [Google Scholar]
  116. 116. 
    van den Brink SC, Sage F, Vértesy Á, Spanjaard B, Peterson-Maduro J et al. 2017. Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations. Nat. Methods 14:935–36
    [Google Scholar]
  117. 117. 
    van der Maaten L, Hinton G 2008. Visualizing data using t-SNE. J. Mach. Learn. Res. 9:2579–605
    [Google Scholar]
  118. 118. 
    Vickovic S, Eraslan G, Salmén F, Klughammer J, Stenbeck L et al. 2019. High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 16:987–90
    [Google Scholar]
  119. 119. 
    Viotti M, Nowotschin S, Hadjantonakis AK 2014. SOX17 links gut endoderm morphogenesis and germ layer segregation. Nat. Cell Biol. 16:1146–56
    [Google Scholar]
  120. 120. 
    Wagner DE, Weinreb C, Collins ZM, Briggs JA, Megason SG, Klein AM 2018. Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo. Science 360:981–87
    [Google Scholar]
  121. 121. 
    Wolf FA, Hamey FK, Plass M, Solana J, Dahlin JS et al. 2019. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biol 20:59
    [Google Scholar]
  122. 122. 
    Wu AR, Wang J, Streets AM, Huang Y 2017. Single-cell transcriptional analysis. Annu. Rev. Anal. Chem. 10:439–62
    [Google Scholar]
  123. 123. 
    Zhang J, Zhao J, Dahan P, Lu V, Zhang C et al. 2018. Metabolism in pluripotent stem cells and early mammalian development. Cell Metab 27:332–38
    [Google Scholar]
  124. 124. 
    Zheng Y, Xue X, Shao Y, Wang S, Esfahani SN et al. 2019. Controlled modelling of human epiblast and amnion development using stem cells. Nature 573:421–25
    [Google Scholar]
  125. 125. 
    Zhou F, Wang R, Yuan P, Ren Y, Mao Y et al. 2019. Reconstituting the transcriptome and DNA methylome landscapes of human implantation. Nature 572:660–64
    [Google Scholar]
/content/journals/10.1146/annurev-genom-120219-083220
Loading
/content/journals/10.1146/annurev-genom-120219-083220
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error