1932

Abstract

The development and deployment of single-cell genomic technologies have driven a resolution revolution in our understanding of the immune system, providing unprecedented insight into the diversity of immune cells present throughout the body and their function in health and disease. Waldeyer's ring is the collective name for the lymphoid tissue aggregations of the upper aerodigestive tract, comprising the palatine, pharyngeal (adenoids), lingual, and tubal tonsils. These tonsils are the first immune sentinels encountered by ingested and inhaled antigens and are responsible for mounting the first wave of adaptive immune response. An effective mucosal immune response is critical to neutralizing infection in the upper airway and preventing systemic spread, and dysfunctional immune responses can result in ear, nose, and throat pathologies. This review uses Waldeyer's ring to demonstrate how single-cell technologies are being applied to advance our understanding of the immune system and highlight directions for future research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-120522-012938
2024-08-27
2025-02-11
Loading full text...

Full text loading...

/deliver/fulltext/genom/25/1/annurev-genom-120522-012938.html?itemId=/content/journals/10.1146/annurev-genom-120522-012938&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Afkhami S, D'Agostino MR, Zhang A, Stacey HD, Marzok A, et al. 2022.. Respiratory mucosal delivery of next-generation COVID-19 vaccine provides robust protection against both ancestral and variant strains of SARS-CoV-2. . Cell 185:(5):896915.e19
    [Crossref] [Google Scholar]
  2. 2.
    Agren K, Andersson U, Nordlander B, Nord CE, Linde A, et al. 1995.. Upregulated local cytokine production in recurrent tonsillitis compared with tonsillar hypertrophy. . Acta Otolaryngol. 115:(5):68996
    [Crossref] [Google Scholar]
  3. 3.
    Al Nabhani Z, Dulauroy S, Marques R, Cousu C, Al Bounny S, et al. 2019.. A weaning reaction to microbiota is required for resistance to immunopathologies in the adult. . Immunity 50:(5):127688.e5
    [Crossref] [Google Scholar]
  4. 4.
    Alaoui L, Villar J, Leclere R, Le Gallou S, Relouzat F, et al. 2023.. Functional specialization of short-lived and long-lived macrophage subsets in human tonsils. . J. Exp. Med. 220:(7):e20230002
    [Crossref] [Google Scholar]
  5. 5.
    Apps R, Qi Y, Carlson JM, Chen H, Gao X, et al. 2013.. Influence of HLA-C expression level on HIV control. . Science 340:(6128):8791
    [Crossref] [Google Scholar]
  6. 6.
    Baysoy A, Bai Z, Satija R, Fan R. 2023.. The technological landscape and applications of single-cell multi-omics. . Nat. Rev. Mol. Cell Biol. 24:(10):695713
    [Crossref] [Google Scholar]
  7. 7.
    Björklund ÅK, Forkel M, Picelli S, Konya V, Theorell J, et al. 2016.. The heterogeneity of human CD127+ innate lymphoid cells revealed by single-cell RNA sequencing. . Nat. Immunol. 17:(4):45160
    [Crossref] [Google Scholar]
  8. 8.
    Brown GJ, Cañete PF, Wang H, Medhavy A, Bones J, et al. 2022.. TLR7 gain-of-function genetic variation causes human lupus. . Nature 605:(7909):34956
    [Crossref] [Google Scholar]
  9. 9.
    Buscone S, Garavello W, Pagni F, Gaini RM, Cattoretti G. 2014.. Nasopharyngeal tonsils (adenoids) contain extrathymic corticothymocytes. . PLOS ONE 9:(5):e98222
    [Crossref] [Google Scholar]
  10. 10.
    Cashman KS, Jenks SA, Woodruff MC, Tomar D, Tipton CM, et al. 2019.. Understanding and measuring human B-cell tolerance and its breakdown in autoimmune disease. . Immunol. Rev. 292:(1):7689
    [Crossref] [Google Scholar]
  11. 11.
    Casteleyn C, Breugelmans S, Simoens P, Van den Broeck W. 2011.. The tonsils revisited: review of the anatomical localization and histological characteristics of the tonsils of domestic and laboratory animals. . Clin. Dev. Immunol. 2011::472460
    [Crossref] [Google Scholar]
  12. 12.
    Cervia C, Nilsson J, Zurbuchen Y, Valaperti A, Schreiner J, et al. 2021.. Systemic and mucosal antibody responses specific to SARS-CoV-2 during mild versus severe COVID-19. . J. Allergy Clin. Immunol. 147:(2):54557.e9
    [Crossref] [Google Scholar]
  13. 13.
    Chen H, Zhang Y, Ye AY, Du Z, Xu M, et al. 2020.. BCR selection and affinity maturation in Peyer's patch germinal centres. . Nature 582:(7812):42125
    [Crossref] [Google Scholar]
  14. 14.
    Chow SSW, Craig ME, Jones CA, Hall B, Catteau J, et al. 2008.. Differences in amniotic fluid and maternal serum cytokine levels in early midtrimester women without evidence of infection. . Cytokine 44:(1):7884
    [Crossref] [Google Scholar]
  15. 15.
    Cillo A, Kürten C, Tabib T, Qi Z, Onkar S, et al. 2020.. Immune landscape of viral- and carcinogen-driven head and neck cancer. . Immunity 52:(1):18399
    [Crossref] [Google Scholar]
  16. 16.
    Constantinides MG, Link VM, Tamoutounour S, Wong AC, Perez-Chaparro PJ, et al. 2019.. MAIT cells are imprinted by the microbiota in early life and promote tissue repair. . Science 366:(6464):eaax6624
    [Crossref] [Google Scholar]
  17. 17.
    Corthésy B. 2013.. Multi-faceted functions of secretory IgA at mucosal surfaces. . Front. Immunol. 4::185
    [Crossref] [Google Scholar]
  18. 18.
    Cuomo ASE, Nathan A, Raychaudhuri S, MacArthur DG, Powell JE. 2023.. Single-cell genomics meets human genetics. . Nat. Rev. Genet. 24:(8):53549
    [Crossref] [Google Scholar]
  19. 19.
    Curran RC, Jones EL. 1977.. Immunoglobulin-containing cells in human tonsils as demonstrated by immunohistochemistry. . Clin. Exp. Immunol. 28:(1):10315
    [Google Scholar]
  20. 20.
    Dan JM, Havenar-Daughton C, Kendric K, Al-Kolla R, Kaushik K, et al. 2019.. Recurrent group A Streptococcus tonsillitis is an immunosusceptibility disease involving antibody deficiency and aberrant TFH cells. . Sci. Transl. Med. 11:(478):eaau3776
    [Crossref] [Google Scholar]
  21. 21.
    De Coppi P, Bartsch G Jr., Siddiqui MM, Xu T, Santos CC, et al. 2007.. Isolation of amniotic stem cell lines with potential for therapy. . Nat. Biotechnol. 25:(1):1006
    [Crossref] [Google Scholar]
  22. 22.
    De Martin A, Stanossek Y, Lütge M, Cadosch N, Onder L, et al. 2023.. PI16+ reticular cells in human palatine tonsils govern T cell activity in distinct subepithelial niches. . Nat. Immunol. 24:(7):113848
    [Crossref] [Google Scholar]
  23. 23.
    Debertin AS, Tschernig T, Tönjes H, Kleemann WJ, Tröger HD, Pabst R. 2003.. Nasal-associated lymphoid tissue (NALT): frequency and localization in young children. . Clin. Exp. Immunol. 134:(3):5037
    [Crossref] [Google Scholar]
  24. 24.
    DeFranco AL, Rookhuizen DC, Hou B. 2012.. Contribution of Toll-like receptor signaling to germinal center antibody responses. . Immunol. Rev. 247:(1):6472
    [Crossref] [Google Scholar]
  25. 25.
    Dekker ARJ, Verheij TJM, van der Velden AW. 2017.. Antibiotic management of children with infectious diseases in Dutch Primary Care. . Fam. Pract. 34:(2):16974
    [Google Scholar]
  26. 26.
    Ditadi A, de Coppi P, Picone O, Gautreau L, Smati R, et al. 2009.. Human and murine amniotic fluid c-Kit+Lin cells display hematopoietic activity. . Blood 113:(17):395360
    [Crossref] [Google Scholar]
  27. 27.
    Dorshkind K, Crooks G. 2023.. Layered immune system development in mice and humans. . Immunol. Rev. 315:(1):510
    [Crossref] [Google Scholar]
  28. 28.
    Elmentaite R, Kumasaka N, Roberts K, Fleming A, Dann E, et al. 2021.. Cells of the human intestinal tract mapped across space and time. . Nature 597:(7875):25055
    [Crossref] [Google Scholar]
  29. 29.
    Feenstra B, Bager P, Liu X, Hjalgrim H, Nohr EA, et al. 2017.. Genome-wide association study identifies variants in HORMAD2 associated with tonsillectomy. . J. Med. Genet. 54:(5):35864
    [Crossref] [Google Scholar]
  30. 30.
    Freeman TL, Zhao C, Schrode N, Fortune T, Shroff S, et al. 2023.. HIV-1 activates oxidative phosphorylation in infected CD4 T cells in a human tonsil explant model. . Front. Immunol. 14::1172938
    [Crossref] [Google Scholar]
  31. 31.
    Fujihashi K, Kiyono H. 2009.. Mucosal immunosenescence: new developments and vaccines to control infectious diseases. . Trends Immunol. 30:(7):33443
    [Crossref] [Google Scholar]
  32. 32.
    Fukuyama S, Hiroi T, Yokota Y, Rennert PD, Yanagita M, et al. 2002.. Initiation of NALT organogenesis is independent of the IL-7R, LTβR, and NIK signaling pathways but requires the Id2 gene and CD3CD4+CD45+ cells. . Immunity 17:(1):3140
    [Crossref] [Google Scholar]
  33. 33.
    Fukuyama S, Nagatake T, Kim D-Y, Takamura K, Park EJ, et al. 2006.. Cutting edge: uniqueness of lymphoid chemokine requirement for the initiation and maturation of nasopharynx-associated lymphoid tissue organogenesis. . J. Immunol. 177:(7):427680
    [Crossref] [Google Scholar]
  34. 34.
    Gerli MFM, Calà G, Beesley MA, Sina B, Tullie L, et al. 2023.. Single cell-guided prenatal derivation of primary epithelial organoids from the human amniotic and tracheal fluids. . bioRxiv 2023.05.31.539801. https://doi.org/10.1101/2023.05.31.539801
  35. 35.
    Goh I, Botting RA, Rose A, Webb S, Engelbert J, et al. 2023.. Yolk sac cell atlas reveals multiorgan functions during human early development. . Science 381:(6659):eadd7564
    [Crossref] [Google Scholar]
  36. 36.
    Graham A, Hikspoors JPJM, Anderson RH, Lamers WH, Bamforth SD. 2023.. A revised terminology for the pharyngeal arches and the arch arteries. . J. Anat. 243:(4):56469
    [Crossref] [Google Scholar]
  37. 37.
    Grow EJ, Flynn RA, Chavez SL, Bayless NL, Wossidlo M, et al. 2015.. Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells. . Nature 522:(7555):22125
    [Crossref] [Google Scholar]
  38. 38.
    Haapasalo K, Koskinen LLE, Suvilehto J, Jousilahti P, Wolin A, et al. 2018.. The psoriasis risk allele HLA-C*06:02 shows evidence of association with chronic or recurrent streptococcal tonsillitis. . Infect. Immun. 86:(10):e00304-18
    [Crossref] [Google Scholar]
  39. 39.
    Halpern KB, Kohanim YK, Biram A, Harnik Y, Egozi A, et al. 2023.. The cellular states and fates of shed intestinal cells. . Nat. Metab. 5:(11):185869
    [Crossref] [Google Scholar]
  40. 40.
    Harmsen A, Kusser K, Hartson L, Tighe M, Sunshine MJ, et al. 2002.. Cutting edge: organogenesis of nasal-associated lymphoid tissue (NALT) occurs independently of lymphotoxin-α (LTα) and retinoic acid receptor-related orphan receptor-γ, but the organization of NALT is LTα dependent. . J. Immunol. 168:(3):98690
    [Crossref] [Google Scholar]
  41. 41.
    Herzenberg LA, Herzenberg LA. 1989.. Toward a layered immune system. . Cell 59:(6):95354
    [Crossref] [Google Scholar]
  42. 42.
    Hua X, Vijay R, Channappanavar R, Athmer J, Meyerholz DK, et al. 2018.. Nasal priming by a murine coronavirus provides protective immunity against lethal heterologous virus pneumonia. . JCI Insight 3:(11):e99025
    [Crossref] [Google Scholar]
  43. 43.
    Hum. Cell Atlas. 2023.. More about the Human Cell Atlas. . Human Cell Atlas. https://www.humancellatlas.org/learn-more
    [Google Scholar]
  44. 44.
    Iwasaki A. 2016.. Exploiting mucosal immunity for antiviral vaccines. . Annu. Rev. Immunol. 34::575608
    [Crossref] [Google Scholar]
  45. 45.
    Jameson SC, Masopust D. 2018.. What is the predictive value of animal models for vaccine efficacy in humans? Reevaluating the potential of mouse models for the human immune system. . Cold Spring Harb. Perspect. Biol. 10:(4):a029132
    [Crossref] [Google Scholar]
  46. 46.
    Janesick A, Shelansky R, Gottscho AD, Wagner F, Rouault M, et al. 2022.. High resolution mapping of the breast cancer tumor microenvironment using integrated single cell, spatial and in situ analysis of FFPE tissue. . bioRxiv 2022.10.06.510405. https://doi.org/10.1101/2022.10.06.510405
  47. 47.
    Jeong JH, Lee DW, Ryu RA, Lee YS, Lee SH, et al. 2007.. Bacteriologic comparison of tonsil core in recurrent tonsillitis and tonsillar hypertrophy. . Laryngoscope 117:(12):214651
    [Crossref] [Google Scholar]
  48. 48.
    Kastenschmidt JM, Sureshchandra S, Jain A, Hernandez-Davies JE, de Assis R, et al. 2023.. Influenza vaccine format mediates distinct cellular and antibody responses in human immune organoids. . Immunity 56:(8):191026.e7
    [Crossref] [Google Scholar]
  49. 49.
    King HW, Orban N, Riches JC, Clear AJ, Warnes G, et al. 2021.. Single-cell analysis of human B cell maturation predicts how antibody class switching shapes selection dynamics. . Sci. Immunol. 6:(56):eabe6291
    [Crossref] [Google Scholar]
  50. 50.
    King HW, Wells KL, Shipony Z, Kathiria AS, Wagar LE, et al. 2021.. Integrated single-cell transcriptomics and epigenomics reveals strong germinal center–associated etiology of autoimmune risk loci. . Sci. Immunol. 6:(64):eabh3768
    [Crossref] [Google Scholar]
  51. 51.
    Kjeldsen MK, Perez-Andres M, Schmitz A, Johansen P, Boegsted M, et al. 2011.. Multiparametric flow cytometry for identification and fluorescence activated cell sorting of five distinct B-cell subpopulations in normal tonsil tissue. . Am. J. Clin. Pathol. 136:(6):96069
    [Crossref] [Google Scholar]
  52. 52.
    Kotowski M, Niedzielski A, Niedzielska G, Lachowska-Kotowska P. 2011.. Dendritic cells and lymphocyte subpopulations of the adenoid in the pathogenesis of otitis media with effusion. . Int. J. Pediatr. Otorhinolaryngol. 75:(2):26569
    [Crossref] [Google Scholar]
  53. 53.
    Kumar Bharathkar S, Parker BW, Malyutin AG, Haloi N, Huey-Tubman KE, et al. 2020.. The structures of secretory and dimeric immunoglobulin A. . eLife 9::e56098
    [Crossref] [Google Scholar]
  54. 54.
    Kvestad E, Kvaerner KJ, Røysamb E, Tambs K, Harris JR, Magnus P. 2005.. Heritability of recurrent tonsillitis. . Arch. Otolaryngol. Head Neck Surg. 131:(5):38387
    [Crossref] [Google Scholar]
  55. 55.
    Lapuente D, Fuchs J, Willar J, Vieira Antão A, Eberlein V, et al. 2021.. Protective mucosal immunity against SARS-CoV-2 after heterologous systemic prime-mucosal boost immunization. . Nat. Commun. 12::6871
    [Crossref] [Google Scholar]
  56. 56.
    Leene W. 1971.. Origin and fate of lymphoid cells in the developing palatine tonsil of the rabbit. . Z. Zellforsch. Mikrosk. Anat. 116:(4):50222
    [Crossref] [Google Scholar]
  57. 57.
    Lewis ACF, Molina SJ, Appelbaum PS, Dauda B, Fuentes A, et al. 2023.. An ethical framework for research using genetic ancestry. . Perspect. Biol. Med. 66:(2):22548
    [Crossref] [Google Scholar]
  58. 58.
    Li D, Wu M. 2021.. Pattern recognition receptors in health and diseases. . Signal Transduct. Target Ther. 6:(1):291
    [Crossref] [Google Scholar]
  59. 59.
    Li H, Ren H, Zhang Y, Cao L, Xu W. 2021.. Intranasal vaccination with a recombinant protein CTA1-DD-RBF protects mice against hRSV infection. . Sci. Rep. 11::18641
    [Crossref] [Google Scholar]
  60. 60.
    Li T, Horsfall D, Basurto-Lozada D, Roberts K, Prete M, et al. 2023.. WebAtlas pipeline for integrated single cell and spatial transcriptomic data. . bioRxiv 2023.05.19.541329. https://doi.org/10.1101/2023.05.19.541329
  61. 61.
    Liebler-Tenorio EM, Pabst R. 2006.. MALT structure and function in farm animals. . Vet. Res. 37:(3):25780
    [Crossref] [Google Scholar]
  62. 62.
    Lima-Junior DS, Krishnamurthy SR, Bouladoux N, Collins N, Han S-J, et al. 2021.. Endogenous retroviruses promote homeostatic and inflammatory responses to the microbiota. . Cell 184:(14):3794811.e19
    [Crossref] [Google Scholar]
  63. 63.
    Lin J-R, Izar B, Wang S, Yapp C, Mei S, et al. 2018.. Highly multiplexed immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional optical microscopes. . eLife 7::e31657
    [Crossref] [Google Scholar]
  64. 64.
    Liu X, Liu Z, Wu Z, Ren J, Fan Y, et al. 2023.. Resurrection of endogenous retroviruses during aging reinforces senescence. . Cell 186:(2):287304.e26
    [Crossref] [Google Scholar]
  65. 65.
    Lock C, Wilson J, Steen N, Eccles M, Mason H, et al. 2010.. North of England and Scotland Study of Tonsillectomy and Adeno-tonsillectomy in Children (NESSTAC): a pragmatic randomised controlled trial with a parallel non-randomised preference study. . Health Technol. Assess. 14:(13):1164
    [Crossref] [Google Scholar]
  66. 66.
    Luther SA, Ansel KM, Cyster JG. 2003.. Overlapping roles of CXCL13, interleukin 7 receptor α, and CCR7 ligands in lymph node development. . J. Exp. Med. 197:(9):119198
    [Crossref] [Google Scholar]
  67. 67.
    Manabe A, Ishida T, Yoon HS, Yang S-S, Kanda E, Ono T. 2017.. Differential changes in the adenoids and tonsils in Japanese children and teenagers: a cross-sectional study. . Sci. Rep. 7::9734
    [Crossref] [Google Scholar]
  68. 68.
    Massoni-Badosa R, Soler-Vila P, Aguilar-Fernández S, Nieto JC, Elosua-Bayes M, et al. 2022.. An atlas of cells in the human tonsil. . bioRxiv 2022.06.24.497299. https://doi.org/10.1101/2022.06.24.497299
  69. 69.
    Mather MW, Jardine L, Talks B, Gardner L, Haniffa M. 2021.. Complexity of immune responses in COVID-19. . Semin. Immunol. 55::101545
    [Crossref] [Google Scholar]
  70. 70.
    Mather MW, Powell S, Talks B, Ward C, Bingle CD, et al. 2021.. Dysregulation of immune response in otitis media. . Expert Rev. Mol. Med. 23::e10
    [Crossref] [Google Scholar]
  71. 71.
    Matsumoto R, Gray J, Rybkina K, Oppenheimer H, Levy L, et al. 2023.. Induction of bronchus-associated lymphoid tissue is an early life adaptation for promoting human B cell immunity. . Nat. Immunol. 24:(8):137081
    [Crossref] [Google Scholar]
  72. 72.
    Mattila PS, Nykänen A, Eloranta M, Tarkkanen J. 2000.. Adenoids provide a microenvironment for the generation of CD4+, CD45RO+, L-selectin, CXCR4+, CCR5+ T lymphocytes, a lymphocyte phenotype found in the middle ear effusion. . Int. Immunol. 12:(9):123543
    [Crossref] [Google Scholar]
  73. 73.
    Nera K-P, Kyläniemi MK, Lassila O. 2015.. Regulation of B cell to plasma cell transition within the follicular B cell response. . Scand. J. Immunol. 82:(3):22534
    [Crossref] [Google Scholar]
  74. 74.
    New JS, Dizon BLP, Fucile CF, Rosenberg AF, Kearney JF, King RG. 2020.. Neonatal exposure to commensal-bacteria-derived antigens directs polysaccharide-specific B-1 B cell repertoire development. . Immunity 53:(1):17286.e6
    [Crossref] [Google Scholar]
  75. 75.
    Ng KW, Boumelha J, Enfield KSS, Almagro J, Cha H, et al. 2023.. Antibodies against endogenous retroviruses promote lung cancer immunotherapy. . Nature 616:(7957):56373
    [Crossref] [Google Scholar]
  76. 76.
    NHS Digit. 2023.. Hospital admitted patient care activity, 2022–23. . NHS Digital. https://digital.nhs.uk/data-and-information/publications/statistical/hospital-admitted-patient-care-activity/2022-23
    [Google Scholar]
  77. 77.
    Nowosad CR, Mesin L, Castro TBR, Wichmann C, Donaldson GP, et al. 2020.. Tunable dynamics of B cell selection in gut germinal centres. . Nature 588:(7837):32126
    [Crossref] [Google Scholar]
  78. 78.
    Oh JE, Song E, Moriyama M, Wong P, Zhang S, et al. 2021.. Intranasal priming induces local lung-resident B cell populations that secrete protective mucosal antiviral IgA. . Sci. Immunol. 6:(66):eabj5129
    [Crossref] [Google Scholar]
  79. 79.
    Ohl L, Henning G, Krautwald S, Lipp M, Hardtke S, et al. 2003.. Cooperating mechanisms of CXCR5 and CCR7 in development and organization of secondary lymphoid organs. . J. Exp. Med. 197:(9):1199204
    [Crossref] [Google Scholar]
  80. 80.
    Parada C, Chai Y. 2015.. Mandible and tongue development. . Curr. Top. Dev. Biol. 115::3158
    [Crossref] [Google Scholar]
  81. 81.
    Paradise JL, Rockette HE, Colborn DK, Bernard BS, Smith CG, et al. 1997.. Otitis media in 2253 Pittsburgh-area infants: prevalence and risk factors during the first two years of life. . Pediatrics 99:(3):31833
    [Crossref] [Google Scholar]
  82. 82.
    Perry ME. 1994.. The specialised structure of crypt epithelium in the human palatine tonsil and its functional significance. . J. Anat. 185:(1):11127
    [Google Scholar]
  83. 83.
    Perry ME, Whyte A. 1998.. Immunology of the tonsils. . Immunol. Today 19:(9):41421
    [Crossref] [Google Scholar]
  84. 84.
    Petrikovsky B, Gross B, Kaplan G. 1996.. Fetal pharyngeal distention—is it a normal component of fetal swallowing?. Early Hum. Dev. 46:(1–2):7781
    [Crossref] [Google Scholar]
  85. 85.
    Pontin IPO, Sanchez DCJ, Di Francesco R. 2016.. Asymptomatic Group A Streptococcus carriage in children with recurrent tonsillitis and tonsillar hypertrophy. . Int. J. Pediatr. Otorhinolaryngol. 86::5759
    [Crossref] [Google Scholar]
  86. 86.
    Randall TD, Carragher DM, Rangel-Moreno J. 2008.. Development of secondary lymphoid organs. . Annu. Rev. Immunol. 26::62750
    [Crossref] [Google Scholar]
  87. 87.
    Razai M, Hussain K. 2017.. Improving antimicrobial prescribing practice for sore throat symptoms in a general practice setting. . BMJ Qual. Improv. Rep. 6:(1):u211706.w4738
    [Crossref] [Google Scholar]
  88. 88.
    Reynolds G, Vegh P, Fletcher J, Poyner EFM, Stephenson E, et al. 2021.. Developmental cell programs are co-opted in inflammatory skin disease. . Science 371:(6527):eaba6500
    [Crossref] [Google Scholar]
  89. 89.
    Roberts AL, Connolly KL, Kirse DJ, Evans AK, Poehling KA, et al. 2012.. Detection of group A Streptococcus in tonsils from pediatric patients reveals high rate of asymptomatic streptococcal carriage. . BMC Pediatr. 12::3
    [Crossref] [Google Scholar]
  90. 90.
    Roco JA, Mesin L, Binder SC, Nefzger C, Gonzalez-Figueroa P, et al. 2019.. Class-switch recombination occurs infrequently in germinal centers. . Immunity 51:(2):33750.e7
    [Crossref] [Google Scholar]
  91. 91.
    Ruprecht CR, Lanzavecchia A. 2006.. Toll-like receptor stimulation as a third signal required for activation of human naive B cells. . Eur. J. Immunol. 36:(4):81016
    [Crossref] [Google Scholar]
  92. 92.
    Schilder AGM, Chonmaitree T, Cripps AW, Rosenfeld RM, Casselbrant ML, et al. 2016.. Otitis media. . Nat. Rev. Dis. Primers 2:(1):16063
    [Crossref] [Google Scholar]
  93. 93.
    Shamsnajafabadi H, Soheili Z-S. 2022.. Amniotic fluid characteristics and its application in stem cell therapy: a review. . Int. J. Reprod. Biomed. 20:(8):62743
    [Google Scholar]
  94. 94.
    Shen N, Fu Q, Deng Y, Qian X, Zhao J, et al. 2010.. Sex-specific association of X-linked Toll-like receptor 7 (TLR7) with male systemic lupus erythematosus. . PNAS 107:(36):1583843
    [Crossref] [Google Scholar]
  95. 95.
    Shinnakasu R, Inoue T, Kometani K, Moriyama S, Adachi Y, et al. 2016.. Regulated selection of germinal-center cells into the memory B cell compartment. . Nat. Immunol. 17:(7):86169
    [Crossref] [Google Scholar]
  96. 96.
    Stephenson E, Reynolds G, Botting RA, Calero-Nieto FJ, Morgan MD, et al. 2021.. Single-cell multi-omics analysis of the immune response in COVID-19. . Nat. Med. 27:(5):90416
    [Crossref] [Google Scholar]
  97. 97.
    Suan D, Kräutler NJ, Maag JLV, Butt D, Bourne K, et al. 2017.. CCR6 defines memory B cell precursors in mouse and human germinal centers, revealing light-zone location and predominant low antigen affinity. . Immunity 47:(6):114253.e4
    [Crossref] [Google Scholar]
  98. 98.
    Summers KL, Hock BD, McKenzie JL, Hart DN. 2001.. Phenotypic characterization of five dendritic cell subsets in human tonsils. . Am. J. Pathol. 159:(1):28595
    [Crossref] [Google Scholar]
  99. 99.
    Suo C, Dann E, Goh I, Jardine L, Kleshchevnikov V, et al. 2022.. Mapping the developing human immune system across organs. . Science 376:(6597):eabo0510
    [Crossref] [Google Scholar]
  100. 100.
    Suzuki S, Fuchimoto D. 2019.. Fetal and early postnatal development of the porcine tonsils of the soft palate. . Exp. Anim. 68:(2):23339
    [Crossref] [Google Scholar]
  101. 101.
    Tameris MD, Hatherill M, Landry BS, Scriba TJ, Snowden MA, et al. 2013.. Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. . Lancet 381:(9871):102128
    [Crossref] [Google Scholar]
  102. 102.
    Thomas R, Apps R, Qi Y, Gao X, Male V, et al. 2009.. HLA-C cell surface expression and control of HIV/AIDS correlate with a variant upstream of HLA-C. . Nat. Genet. 41:(12):129094
    [Crossref] [Google Scholar]
  103. 103.
    Tian C, Hromatka BS, Kiefer AK, Eriksson N, Noble SM, et al. 2017.. Genome-wide association and HLA region fine-mapping studies identify susceptibility loci for multiple common infections. . Nat. Commun. 8::599
    [Crossref] [Google Scholar]
  104. 104.
    Tokuyama M, Kong Y, Song E, Jayewickreme T, Kang I, Iwasaki A. 2018.. ERVmap analysis reveals genome-wide transcription of human endogenous retroviruses. . PNAS 115:(50):1256572
    [Crossref] [Google Scholar]
  105. 105.
    UK Health Secur. Agency. 2023.. Routine childhood immunisation schedule. . GOV.UK. https://www.gov.uk/government/publications/routine-childhood-immunisation-schedule
    [Google Scholar]
  106. 106.
    Underwood MA, Gilbert WM, Sherman MP. 2005.. Amniotic fluid: not just fetal urine anymore. . J. Perinatol. 25:(5):34148
    [Crossref] [Google Scholar]
  107. 107.
    van de Pavert SA, Mebius RE. 2010.. New insights into the development of lymphoid tissues. . Nat. Rev. Immunol. 10:(9):66474
    [Crossref] [Google Scholar]
  108. 108.
    Vergani S, Muleta KG, Da Silva C, Doyle A, Kristiansen TA, et al. 2022.. A self-sustaining layer of early-life-origin B cells drives steady-state IgA responses in the adult gut. . Immunity 55:(10):182942.e6
    [Crossref] [Google Scholar]
  109. 109.
    Villani A-C, Satija R, Reynolds G, Sarkizova S, Shekhar K, et al. 2017.. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. . Science 356:(6335):eaah4573
    [Crossref] [Google Scholar]
  110. 110.
    Vinuesa CG, Grenov A, Kassiotis G. 2023.. Innate virus-sensing pathways in B cell systemic autoimmunity. . Science 380:(6644):47884
    [Crossref] [Google Scholar]
  111. 111.
    von Gaudecker B, Müller-Hermelink HK. 1982.. The development of the human tonsilla palatina. . Cell Tissue Res. 224:(3):579600
    [Crossref] [Google Scholar]
  112. 112.
    Wagar LE, Salahudeen A, Constantz CM, Wendel BS, Lyons MM, et al. 2021.. Modeling human adaptive immune responses with tonsil organoids. . Nat. Med. 27:(1):12535
    [Crossref] [Google Scholar]
  113. 113.
    Waldeyer W. 1884.. Uber denlymphatischen apparat dês Pharynx. . Dtsch. Med. Wochenschr. 10::31315
    [Crossref] [Google Scholar]
  114. 114.
    Wellford SA, Moseman AP, Dao K, Wright KE, Chen A, et al. 2022.. Mucosal plasma cells are required to protect the upper airway and brain from infection. . Immunity 55:(11):211834.e6
    [Crossref] [Google Scholar]
  115. 115.
    Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, et al. 2019.. Addendum: the FAIR Guiding Principles for scientific data management and stewardship. . Sci. Data 6:(1):6
    [Crossref] [Google Scholar]
  116. 116.
    Williams MA, Shprintzen RJ, Rakoff SJ. 1987.. Adenoid hypoplasia in the velo-cardio-facial syndrome. . J. Craniofac. Genet. Dev. Biol. 7:(1):2326
    [Google Scholar]
  117. 117.
    Wilson JA, O'Hara J, Fouweather T, Homer T, Stocken DD, et al. 2023.. Conservative management versus tonsillectomy in adults with recurrent acute tonsillitis in the UK (NATTINA): a multicentre, open-label, randomised controlled trial. . Lancet 401:(10393):205159
    [Crossref] [Google Scholar]
  118. 118.
    Xu Q, Milanez-Almeida P, Martins AJ, Radtke AJ, Hoehn KB, et al. 2023.. Adaptive immune responses to SARS-CoV-2 persist in the pharyngeal lymphoid tissue of children. . Nat. Immunol. 24:(1):18699
    [Crossref] [Google Scholar]
  119. 119.
    Zhao Z, Chen X, Dowbaj AM, Sljukic A, Bratlie K, et al. 2022.. Organoids. . Nat. Rev. Methods Primers 2:(1):94
    [Crossref] [Google Scholar]
  120. 120.
    Zhou D, Chan JF-W, Zhou B, Zhou R, Li S, et al. 2021.. Robust SARS-CoV-2 infection in nasal turbinates after treatment with systemic neutralizing antibodies. . Cell Host Microbe 29:(4):55163.e5
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-genom-120522-012938
Loading
/content/journals/10.1146/annurev-genom-120522-012938
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error