1932

Abstract

Transposable elements (TEs) are genomic parasites found in nearly all eukaryotes, including humans. This evolutionary success of TEs is due to their replicative activity, involving insertion into new genomic locations. TE activity varies at multiple levels, from between taxa to within individuals. The rapidly accumulating evidence of the influence of TE activity on human health, as well as the rapid growth of new tools to study it, motivated an evaluation of what we know about TE activity thus far. Here, we discuss why TE activity varies, and the consequences of this variation, from an evolutionary perspective. By studying TE activity in nonhuman organisms in the context of evolutionary theories, we can shed light on the factors that affect TE activity. While the consequences of TE activity are usually deleterious, some have lasting evolutionary impacts by conferring benefits on the host or affecting other evolutionary processes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-120822-105708
2024-08-27
2025-02-12
Loading full text...

Full text loading...

/deliver/fulltext/genom/25/1/annurev-genom-120822-105708.html?itemId=/content/journals/10.1146/annurev-genom-120822-105708&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adrion JR, Song MJ, Schrider DR, Hahn MW, Schaack S. 2017.. Genome-wide estimates of transposable element insertion and deletion rates in Drosophila melanogaster. . Genome Biol. Evol. 9:(5):132940
    [Crossref] [Google Scholar]
  2. 2.
    Agren , Wang W, Koenig D, Neuffer B, Weigel D, Wright SI. 2014.. Mating system shifts and transposable element evolution in the plant genus Capsella. . BMC Genom. 15::602
    [Crossref] [Google Scholar]
  3. 3.
    Almeida MV, Vernaz G, Putman ALK, Miska EA. 2022.. Taming transposable elements in vertebrates: from epigenetic silencing to domestication. . Trends Genet. 38:(6):52953
    [Crossref] [Google Scholar]
  4. 4.
    Bachiller S, Del-Pozo-Martín Y, Carrión ÁM. 2017.. L1 retrotransposition alters the hippocampal genomic landscape enabling memory formation. . Brain Behav. Immun. 64::6570
    [Crossref] [Google Scholar]
  5. 5.
    Bachtrog D. 2013.. Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. . Nat. Rev. Genet. 14:(2):11324
    [Crossref] [Google Scholar]
  6. 6.
    Bailey JA, Carrel L, Chakravarti A, Eichler EE. 2000.. Molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: the Lyon repeat hypothesis. . PNAS 97:(12):663439
    [Crossref] [Google Scholar]
  7. 7.
    Baillie JK, Barnett MW, Upton KR, Gerhardt DJ, Richmond TA, et al. 2011.. Somatic retrotransposition alters the genetic landscape of the human brain. . Nature 479:(7374):53437
    [Crossref] [Google Scholar]
  8. 8.
    Balachandran P, Walawalkar IA, Flores JI, Dayton JN, Audano PA, Beck CR. 2022.. Transposable element-mediated rearrangements are prevalent in human genomes. . Nat. Commun. 13::7115
    [Crossref] [Google Scholar]
  9. 9.
    Barbulescu M, Turner G, Seaman MI, Deinard AS, Kidd KK, Lenz J. 1999.. Many human endogenous retrovirus K (HERV-K) proviruses are unique to humans. . Curr. Biol. 9:(16):86168
    [Crossref] [Google Scholar]
  10. 10.
    Bast J, Schaefer I, Schwander T, Maraun M, Scheu S, Kraaijeveld K. 2016.. No accumulation of transposable elements in asexual arthropods. . Mol. Biol. Evol. 33:(3):697706
    [Crossref] [Google Scholar]
  11. 11.
    Belshaw R, Dawson ALA, Woolven-Allen J, Redding J, Burt A, Tristem M. 2005.. Genomewide screening reveals high levels of insertional polymorphism in the human endogenous retrovirus family HERV-K(HML2): implications for present-day activity. . J. Virol. 79:(19):1250714
    [Crossref] [Google Scholar]
  12. 12.
    Belshaw R, Pereira V, Katzourakis A, Talbot G, Paces J, et al. 2004.. Long-term reinfection of the human genome by endogenous retroviruses. . PNAS 101:(14):489499
    [Crossref] [Google Scholar]
  13. 13.
    Belyeu JR, Brand H, Wang H, Zhao X, Pedersen BS, et al. 2021.. De novo structural mutation rates and gamete-of-origin biases revealed through genome sequencing of 2,396 families. . Am. J. Hum. Genet. 108:(4):597607
    [Crossref] [Google Scholar]
  14. 14.
    Bergman CM, Bensasson D. 2007.. Recent LTR retrotransposon insertion contrasts with waves of non-LTR insertion since speciation in Drosophila melanogaster. . PNAS 104:(27):1134045
    [Crossref] [Google Scholar]
  15. 15.
    Bergthorsson U, Sheeba CJ, Konrad A, Belicard T, Beltran T, et al. 2020.. Long-term experimental evolution reveals purifying selection on piRNA-mediated control of transposable element expression. . BMC Biol. 18::162
    [Crossref] [Google Scholar]
  16. 16.
    Billon V, Sanchez-Luque FJ, Rasmussen J, Bodea GO, Gerhardt DJ, et al. 2022.. Somatic retrotransposition in the developing rhesus macaque brain. . Genome Res. 32:(7):1298314
    [Crossref] [Google Scholar]
  17. 17.
    Blumenstiel JP. 2011.. Evolutionary dynamics of transposable elements in a small RNA world. . Trends Genet. 27:(1):2331
    [Crossref] [Google Scholar]
  18. 18.
    Blumenstiel JP. 2019.. Birth, school, work, death, and resurrection: the life stages and dynamics of transposable element proliferation. . Genes 10:(5):336
    [Crossref] [Google Scholar]
  19. 19.
    Blumenstiel JP, Erwin AA, Hemmer LW. 2016.. What drives positive selection in the Drosophila piRNA machinery? The genomic autoimmunity hypothesis. . Yale J. Biol. Med. 89:(4):499512
    [Google Scholar]
  20. 20.
    Boissinot S, Chevret P, Furano AV. 2000.. L1 (LINE-1) retrotransposon evolution and amplification in recent human history. . Mol. Biol. Evol. 17:(6):91528
    [Crossref] [Google Scholar]
  21. 21.
    Boissinot S, Sookdeo A. 2016.. The evolution of LINE-1 in vertebrates. . Genome Biol. Evol. 8:(12):3485507
    [Google Scholar]
  22. 22.
    Bracht JR, Fang W, Goldman AD, Dolzhenko E, Stein EM, Landweber LF. 2013.. Genomes on the edge: programmed genome instability in ciliates. . Cell 152:(3):40616
    [Crossref] [Google Scholar]
  23. 23.
    Brennecke J, Malone CD, Aravin AA, Sachidanandam R, Stark A, Hannon GJ. 2008.. An epigenetic role for maternally inherited piRNAs in transposon silencing. . Science 322:(5906):138792
    [Crossref] [Google Scholar]
  24. 24.
    Britten RJ, Davidson EH. 1971.. Repetitive and non-repetitive DNA sequences and a speculation on the origins of evolutionary novelty. . Q. Rev. Biol. 46:(2):11138
    [Crossref] [Google Scholar]
  25. 25.
    Brouha B, Schustak J, Badge RM, Lutz-Prigge S, Farley AH, et al. 2003.. Hot L1s account for the bulk of retrotransposition in the human population. . PNAS 100:(9):528085
    [Crossref] [Google Scholar]
  26. 26.
    Bruno M, Mahgoub M, Macfarlan TS. 2019.. The arms race between KRAB–zinc finger proteins and endogenous retroelements and its impact on mammals. . Annu. Rev. Genet. 53::393416
    [Crossref] [Google Scholar]
  27. 27.
    Burns KH. 2017.. Transposable elements in cancer. . Nat. Rev. Cancer 17:(7):41524
    [Crossref] [Google Scholar]
  28. 28.
    Carbone L, Harris RA, Mootnick AR, Milosavljevic A, Martin DIK, et al. 2012.. Centromere remodeling in Hoolock leuconedys (Hylobatidae) by a new transposable element unique to the gibbons. . Genome Biol. Evol. 4:(7):64858
    [Crossref] [Google Scholar]
  29. 29.
    Casacuberta E, González J. 2013.. The impact of transposable elements in environmental adaptation. . Mol. Ecol. 22:(6):150317
    [Crossref] [Google Scholar]
  30. 30.
    Castro-Diaz N, Ecco G, Coluccio A, Kapopoulou A, Yazdanpanah B, et al. 2014.. Evolutionally dynamic L1 regulation in embryonic stem cells. . Genes Dev. 28:(13):1397409
    [Crossref] [Google Scholar]
  31. 31.
    Chang C-H, Chavan A, Palladino J, Wei X, Martins NMC, et al. 2019.. Islands of retroelements are major components of Drosophila centromeres. . PLOS Biol. 17:(5):e3000241
    [Crossref] [Google Scholar]
  32. 32.
    Chang Y-H, Keegan RM, Prazak L, Dubnau J. 2019.. Cellular labeling of endogenous retrovirus replication (CLEVR) reveals de novo insertions of the gypsy retrotransposable element in cell culture and in both neurons and glial cells of aging fruit flies. . PLOS Biol. 17:(5):e3000278
    [Crossref] [Google Scholar]
  33. 33.
    Charlesworth B, Charlesworth D. 1983.. The population dynamics of transposable elements. . Genet. Res. 42:(1):127
    [Crossref] [Google Scholar]
  34. 34.
    Charlesworth B, Langley CH. 1986.. The evolution of self-regulated transposition of transposable elements. . Genetics 112:(2):35983
    [Crossref] [Google Scholar]
  35. 35.
    Charlesworth B, Langley CH. 1989.. The population genetics of Drosophila transposable elements. . Annu. Rev. Genet. 23::25187
    [Crossref] [Google Scholar]
  36. 36.
    Chmiel NH, Rio DC, Doudna JA. 2006.. Distinct contributions of KH domains to substrate binding affinity of Drosophila P-element somatic inhibitor protein. . RNA 12:(2):28391
    [Crossref] [Google Scholar]
  37. 37.
    Choi JY, Lee YCG. 2020.. Double-edged sword: the evolutionary consequences of the epigenetic silencing of transposable elements. . PLOS Genet. 16:(7):e1008872
    [Crossref] [Google Scholar]
  38. 38.
    Chow JC, Ciaudo C, Fazzari MJ, Mise N, Servant N, et al. 2010.. LINE-1 activity in facultative heterochromatin formation during X chromosome inactivation. . Cell 141:(6):95669
    [Crossref] [Google Scholar]
  39. 39.
    Chuong EB, Elde NC, Feschotte C. 2017.. Regulatory activities of transposable elements: from conflicts to benefits. . Nat. Rev. Genet. 18:(2):7186
    [Crossref] [Google Scholar]
  40. 40.
    Clark JB, Kidwell MG. 1997.. A phylogenetic perspective on P transposable element evolution in Drosophila. . PNAS 94:(21):1142833
    [Crossref] [Google Scholar]
  41. 41.
    Comeaux MS, Roy-Engel AM, Hedges DJ, Deininger PL. 2009.. Diverse cis factors controlling Alu retrotransposition: What causes Alu elements to die?. Genome Res. 19:(4):54555
    [Crossref] [Google Scholar]
  42. 42.
    Cordaux R, Batzer MA. 2009.. The impact of retrotransposons on human genome evolution. . Nat. Rev. Genet. 10:(10):691703
    [Crossref] [Google Scholar]
  43. 43.
    Cosby RL, Chang N-C, Feschotte C. 2019.. Host-transposon interactions: conflict, cooperation, and cooption. . Genes Dev. 33:(17–18):1098116
    [Crossref] [Google Scholar]
  44. 44.
    Coufal NG, Garcia-Perez JL, Peng GE, Yeo GW, Mu Y, et al. 2009.. L1 retrotransposition in human neural progenitor cells. . Nature 460:(7259):112731
    [Crossref] [Google Scholar]
  45. 45.
    Coyne JA, Orr AH. 2004.. Speciation. Sunderland, MA:: Sinauer
    [Google Scholar]
  46. 46.
    Crespi B, Nosil P. 2013.. Conflictual speciation: species formation via genomic conflict. . Trends Ecol. Evol. 28:(1):4857
    [Crossref] [Google Scholar]
  47. 47.
    Czech B, Munafò M, Ciabrelli F, Eastwood EL, Fabry MH, et al. 2018.. piRNA-guided genome defense: from biogenesis to silencing. . Annu. Rev. Genet. 52::13157
    [Crossref] [Google Scholar]
  48. 48.
    de Vanssay A, Bougé A-L, Boivin A, Hermant C, Teysset L, et al. 2012.. Paramutation in Drosophila linked to emergence of a piRNA-producing locus. . Nature 490:(7418):11215
    [Crossref] [Google Scholar]
  49. 49.
    Deininger P. 2011.. Alu elements: know the SINEs. . Genome Biol. 12:(12):236
    [Crossref] [Google Scholar]
  50. 50.
    Dewannieux M, Esnault C, Heidmann T. 2003.. LINE-mediated retrotransposition of marked Alu sequences. . Nat. Genet. 35:(1):4148
    [Crossref] [Google Scholar]
  51. 51.
    Dolgin ES, Charlesworth B, Cutter AD. 2008.. Population frequencies of transposable elements in selfing and outcrossing Caenorhabditis nematodes. . Genet. Res. 90:(4):31729
    [Crossref] [Google Scholar]
  52. 52.
    Eggleston WB, Johnson-Schlitz DM, Engels WR. 1988.. P-M hybrid dysgenesis does not mobilize other transposable element families in D. melanogaster. . Nature 331:(6154):36870
    [Crossref] [Google Scholar]
  53. 53.
    Eickbush DG, Ye J, Zhang X, Burke WD, Eickbush TH. 2008.. Epigenetic regulation of retrotransposons within the nucleolus of Drosophila. . Mol. Cell. Biol. 28:(20):645261
    [Crossref] [Google Scholar]
  54. 54.
    Ellison CE, Bachtrog D. 2013.. Dosage compensation via transposable element mediated rewiring of a regulatory network. . Science 342:(6160):84650
    [Crossref] [Google Scholar]
  55. 55.
    Erwin JA, Marchetto MC, Gage FH. 2014.. Mobile DNA elements in the generation of diversity and complexity in the brain. . Nat. Rev. Neurosci. 15:(8):497506
    [Crossref] [Google Scholar]
  56. 56.
    Escamilla-Del-Arenal M, da Rocha ST, Heard E. 2011.. Evolutionary diversity and developmental regulation of X-chromosome inactivation. . Hum. Genet. 130:(2):30727
    [Crossref] [Google Scholar]
  57. 57.
    Evrony GD, Lee E, Park PJ, Walsh CA. 2016.. Resolving rates of mutation in the brain using single-neuron genomics. . eLife 5::e12966
    [Crossref] [Google Scholar]
  58. 58.
    Ewing AD, Kazazian HH. 2011.. Whole-genome resequencing allows detection of many rare LINE-1 insertion alleles in humans. . Genome Res. 21:(6):98590
    [Crossref] [Google Scholar]
  59. 59.
    Feng Q, Moran JV, Kazazian HH Jr., Boeke JD. 1996.. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. . Cell 87:(5):90516
    [Crossref] [Google Scholar]
  60. 60.
    Feschotte C. 2008.. Transposable elements and the evolution of regulatory networks. . Nat. Rev. Genet. 9:(5):397405
    [Crossref] [Google Scholar]
  61. 61.
    Feusier J, Watkins WS, Thomas J, Farrell A, Witherspoon DJ, et al. 2019.. Pedigree-based estimation of human mobile element retrotransposition rates. . Genome Res. 29:(10):156777
    [Crossref] [Google Scholar]
  62. 62.
    Finnegan DJ. 1989.. Eukaryotic transposable elements and genome evolution. . Trends Genet. 5::1037
    [Crossref] [Google Scholar]
  63. 63.
    Flatt T, Partridge L. 2018.. Horizons in the evolution of aging. . BMC Biol. 16::93
    [Crossref] [Google Scholar]
  64. 64.
    Fueyo R, Judd J, Feschotte C, Wysocka J. 2022.. Roles of transposable elements in the regulation of mammalian transcription. . Nat. Rev. Mol. Cell Biol. 23:(7):48197
    [Crossref] [Google Scholar]
  65. 65.
    Furano AV, Duvernell DD, Boissinot S. 2004.. L1 (LINE-1) retrotransposon diversity differs dramatically between mammals and fish. . Trends Genet. 20:(1):914
    [Crossref] [Google Scholar]
  66. 66.
    Garcia-Perez JL, Marchetto MCN, Muotri AR, Coufal NG, Gage FH, et al. 2007.. LINE-1 retrotransposition in human embryonic stem cells. . Hum. Mol. Genet. 16:(13):156977
    [Crossref] [Google Scholar]
  67. 67.
    Gardner EJ, Lam VK, Harris DN, Chuang NT, Scott EC, et al. 2017.. The Mobile Element Locator Tool (MELT): population-scale mobile element discovery and biology. . Genome Res. 27:(11):191629
    [Crossref] [Google Scholar]
  68. 68.
    Gianfrancesco O, Geary B, Savage AL, Billingsley KJ, Bubb VJ, Quinn JP. 2019.. The role of SINE-VNTR-Alu (SVA) retrotransposons in shaping the human genome. . Int. J. Mol. Sci. 20:(23):5977
    [Crossref] [Google Scholar]
  69. 69.
    Gilbert C, Feschotte C. 2018.. Horizontal acquisition of transposable elements and viral sequences: patterns and consequences. . Curr. Opin. Genet. Dev. 49::1524
    [Crossref] [Google Scholar]
  70. 70.
    Glémin S, François CM, Galtier N. 2019.. Genome evolution in outcrossing versus selfing versus asexual species. . Methods Mol. Biol. 1910::33169
    [Crossref] [Google Scholar]
  71. 71.
    Gorbunova V, Seluanov A, Mita P, McKerrow W, Fenyö D, et al. 2021.. The role of retrotransposable elements in ageing and age-associated diseases. . Nature 596:(7870):4353
    [Crossref] [Google Scholar]
  72. 72.
    Greider CW, Blackburn EH. 1989.. A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. . Nature 337:(6205):33137
    [Crossref] [Google Scholar]
  73. 73.
    Haig D. 2016.. Transposable elements: self-seekers of the germline, team-players of the soma. . BioEssays 38:(11):115866
    [Crossref] [Google Scholar]
  74. 74.
    Hancks DC, Kazazian HH Jr. 2016.. Roles for retrotransposon insertions in human disease. . Mob. DNA 7::9
    [Crossref] [Google Scholar]
  75. 75.
    Haring NL, van Bree EJ, Jordaan WS, Roels JRE, Sotomayor GC, et al. 2021.. Deletion in human embryonic stem cells leads to ectopic activation of SVA retrotransposons and up-regulation of KRAB zinc finger gene clusters. . Genome Res. 31:(4):55163
    [Crossref] [Google Scholar]
  76. 76.
    Harris CR, Dewan A, Zupnick A, Normart R, Gabriel A, et al. 2009.. p53 responsive elements in human retrotransposons. . Oncogene 28:(44):385765
    [Crossref] [Google Scholar]
  77. 77.
    Hedges DJ, Deininger PL. 2007.. Inviting instability: transposable elements, double-strand breaks, and the maintenance of genome integrity. . Mutat. Res. 616:(1–2):4659
    [Crossref] [Google Scholar]
  78. 78.
    Hemmer LW, Negm S, Geng X, Courret C, Navarro-Domínguez B, et al. 2023.. Centromere-associated retroelement evolution in Drosophila melanogaster reveals an underlying conflict. . bioRxiv 2022.11.25.518008. https://doi.org/10.1101/2022.11.25.518008
  79. 79.
    Hénault M. 2021.. The challenges of predicting transposable element activity in hybrids. . Curr. Genet. 67:(4):56772
    [Crossref] [Google Scholar]
  80. 80.
    Hill T, Schlötterer C, Betancourt AJ. 2016.. Hybrid dysgenesis in Drosophila simulans associated with a rapid invasion of the P-element. . PLOS Genet. 12:(3):e1005920
    [Crossref] [Google Scholar]
  81. 81.
    Ho EKH, Bellis ES, Calkins J, Adrion JR, Latta LC IV, Schaack S. 2021.. Engines of change: Transposable element mutation rates are high and variable within Daphnia magna. . PLOS Genet. 17:(11):e1009827
    [Crossref] [Google Scholar]
  82. 82.
    Hoyt SJ, Storer JM, Hartley GA, Grady PGS, Gershman A, et al. 2022.. From telomere to telomere: the transcriptional and epigenetic state of human repeat elements. . Science 376:(6588):eabk3112
    [Crossref] [Google Scholar]
  83. 83.
    Huang CRL, Burns KH, Boeke JD. 2012.. Active transposition in genomes. . Annu. Rev. Genet. 46::65175
    [Crossref] [Google Scholar]
  84. 84.
    Huang Y, Shukla H, Lee YCG. 2022.. Species-specific chromatin landscape determines how transposable elements shape genome evolution. . eLife 11::e81567
    [Crossref] [Google Scholar]
  85. 85.
    Huang Z, Sun S, Lee M, Maslov AY, Shi M, et al. 2022.. Single-cell analysis of somatic mutations in human bronchial epithelial cells in relation to aging and smoking. . Nat. Genet. 54:(4):49298
    [Crossref] [Google Scholar]
  86. 86.
    Jachowicz JW, Bing X, Pontabry J, Bošković A, Rando OJ, Torres-Padilla M-E. 2017.. LINE-1 activation after fertilization regulates global chromatin accessibility in the early mouse embryo. . Nat. Genet. 49:(10):150210
    [Crossref] [Google Scholar]
  87. 87.
    Jacobs FMJ, Greenberg D, Nguyen N, Haeussler M, Ewing AD, et al. 2014.. An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons. . Nature 516:(7530):24245
    [Crossref] [Google Scholar]
  88. 88.
    Jangam D, Feschotte C, Betrán E. 2017.. Transposable element domestication as an adaptation to evolutionary conflicts. . Trends Genet. 33:(11):81731
    [Crossref] [Google Scholar]
  89. 89.
    Kano H, Godoy I, Courtney C, Vetter MR, Gerton GL, et al. 2009.. L1 retrotransposition occurs mainly in embryogenesis and creates somatic mosaicism. . Genes Dev. 23:(11):130312
    [Crossref] [Google Scholar]
  90. 90.
    Kapitonov VV, Jurka J. 2001.. Rolling-circle transposons in eukaryotes. . PNAS 98:(15):871419
    [Crossref] [Google Scholar]
  91. 91.
    Kapitonov VV, Jurka J. 2005.. RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. . PLOS Biol. 3:(6):e181
    [Crossref] [Google Scholar]
  92. 92.
    Kaplan N, Darden T, Langley CH. 1985.. Evolution and extinction of transposable elements in Mendelian populations. . Genetics 109:(2):45980
    [Crossref] [Google Scholar]
  93. 93.
    Kasinathan B, Colmenares SU III, McConnell H, Young JM, Karpen GH, Malik HS. 2020.. Innovation of heterochromatin functions drives rapid evolution of essential ZAD-ZNF genes in Drosophila. . eLife 9::e63368
    [Crossref] [Google Scholar]
  94. 94.
    Khan H, Smit A, Boissinot S. 2006.. Molecular evolution and tempo of amplification of human LINE-1 retrotransposons since the origin of primates. . Genome Res. 16:(1):7887
    [Crossref] [Google Scholar]
  95. 95.
    Kidwell MG, Kidwell JF, Sved JA. 1977.. Hybrid dysgenesis in Drosophila melanogaster: a syndrome of aberrant traits including mutation, sterility and male recombination. . Genetics 86:(4):81333
    [Crossref] [Google Scholar]
  96. 96.
    Kijima TE, Innan H. 2010.. On the estimation of the insertion time of LTR retrotransposable elements. . Mol. Biol. Evol. 27:(4):896904
    [Crossref] [Google Scholar]
  97. 97.
    Kofler R, Nolte V, Schlötterer C. 2015.. Tempo and mode of transposable element activity in Drosophila. . PLOS Genet. 11:(7):e1005406
    [Crossref] [Google Scholar]
  98. 98.
    Kohlrausch FB, Berteli TS, Wang F, Navarro PA, Keefe DL. 2022.. Control of LINE-1 expression maintains genome integrity in germline and early embryo development. . Reprod. Sci. 29:(2):32840
    [Crossref] [Google Scholar]
  99. 99.
    Kovaka S, Ou S, Jenike KM, Schatz MC. 2023.. Approaching complete genomes, transcriptomes and epi-omes with accurate long-read sequencing. . Nat. Methods 20:(1):1216
    [Crossref] [Google Scholar]
  100. 100.
    Kurnosov AA, Ustyugova SV, Nazarov VI, Minervina AA, Komkov AY, et al. 2015.. The evidence for increased L1 activity in the site of human adult brain neurogenesis. . PLOS ONE 10:(2):e0117854
    [Crossref] [Google Scholar]
  101. 101.
    Lanciano S, Cristofari G. 2020.. Measuring and interpreting transposable element expression. . Nat. Rev. Genet. 21:(12):72136
    [Crossref] [Google Scholar]
  102. 102.
    Langley CH, Brookfield JF, Kaplan N. 1983.. Transposable elements in Mendelian populations. I. A theory. . Genetics 104:(3):45771
    [Crossref] [Google Scholar]
  103. 103.
    Larouche J-D, Laumont CM, Trofimov A, Vincent K, Hesnard L, et al. 2023.. Transposable elements regulate thymus development and function. . eLife 12::RP91037
    [Crossref] [Google Scholar]
  104. 104.
    Lavialle C, Cornelis G, Dupressoir A, Esnault C, Heidmann O, et al. 2013.. Paleovirology of “syncytins”, retroviral env genes exapted for a role in placentation. . Philos. Trans. R. Soc. B 368:(1626):20120507
    [Crossref] [Google Scholar]
  105. 105.
    Le Rouzic A, Capy P. 2006.. Population genetics models of competition between transposable element subfamilies. . Genetics 174:(2):78593
    [Crossref] [Google Scholar]
  106. 106.
    Lee YCG, Langley CH. 2010.. Transposable elements in natural populations of Drosophila melanogaster. . Philos. Trans. R. Soc. B 365:(1544):121928
    [Crossref] [Google Scholar]
  107. 107.
    Lee YCG, Langley CH. 2012.. Long-term and short-term evolutionary impacts of transposable elements on Drosophila. . Genetics 192:(4):141132
    [Crossref] [Google Scholar]
  108. 108.
    Lee YCG, Leek C, Levine MT. 2017.. Recurrent innovation at genes required for telomere integrity in Drosophila. . Mol. Biol. Evol. 34:(2):46782
    [Google Scholar]
  109. 109.
    Levine AJ, Ting DT, Greenbaum BD. 2016.. P53 and the defenses against genome instability caused by transposons and repetitive elements. . BioEssays 38:(6):50813
    [Crossref] [Google Scholar]
  110. 110.
    Liu GE, Alkan C, Jiang L, Zhao S, Eichler EE. 2009.. Comparative analysis of Alu repeats in primate genomes. . Genome Res. 19:(5):87685
    [Crossref] [Google Scholar]
  111. 111.
    Lu AT, Fei Z, Haghani A, Robeck TR, Zoller JA, et al. 2023.. Universal DNA methylation age across mammalian tissues. . Nat. Aging 3:(9):114466
    [Crossref] [Google Scholar]
  112. 112.
    Lynch M, Conery JS. 2003.. The origins of genome complexity. . Science 302:(5649):14014
    [Crossref] [Google Scholar]
  113. 113.
    Macia A, Widmann TJ, Heras SR, Ayllon V, Sanchez L, et al. 2017.. Engineered LINE-1 retrotransposition in nondividing human neurons. . Genome Res. 27:(3):33548
    [Crossref] [Google Scholar]
  114. 114.
    Mahé D, Matusali G, Deleage C, Alvarenga RLLS, Satie A-P, et al. 2020.. Potential for virus endogenization in humans through testicular germ cell infection: the case of HIV. . J. Virol. 94:(24):e01145-20
    [Crossref] [Google Scholar]
  115. 115.
    Majic P, Erten EY, Payne JL. 2022.. The adaptive potential of nonheritable somatic mutations. . Am. Nat. 200:(6):75572
    [Crossref] [Google Scholar]
  116. 116.
    Majumdar S, Singh A, Rio DC. 2013.. The human THAP9 gene encodes an active P-element DNA transposase. . Science 339:(6118):44648
    [Crossref] [Google Scholar]
  117. 117.
    Maksakova IA, Romanish MT, Gagnier L, Dunn CA, van de Lagemaat LN, Mager DL. 2006.. Retroviral elements and their hosts: insertional mutagenesis in the mouse germ line. . PLOS Genet. 2:(1):e2
    [Crossref] [Google Scholar]
  118. 118.
    Malki S, van der Heijden GW, O'Donnell KA, Martin SL, Bortvin A. 2014.. A role for retrotransposon LINE-1 in fetal oocyte attrition in mice. . Dev. Cell 29:(5):52133
    [Crossref] [Google Scholar]
  119. 119.
    Martin SL, Cruceanu M, Branciforte D, Wai-Lun Li P, Kwok SC, et al. 2005.. LINE-1 retrotransposition requires the nucleic acid chaperone activity of the ORF1 protein. . J. Mol. Biol. 348:(3):54961
    [Crossref] [Google Scholar]
  120. 120.
    Mathias SL, Scott AF, Kazazian HH Jr., Boeke JD, Gabriel A. 1991.. Reverse transcriptase encoded by a human transposable element. . Science 254:(5039):180810
    [Crossref] [Google Scholar]
  121. 121.
    McClintock B. 1950.. The origin and behavior of mutable loci in maize. . PNAS 36:(6):34455
    [Crossref] [Google Scholar]
  122. 122.
    Medstrand P, Blomberg J. 1993.. Characterization of novel reverse transcriptase encoding human endogenous retroviral sequences similar to type A and type B retroviruses: differential transcription in normal human tissues. . J. Virol. 67:(11):677887
    [Crossref] [Google Scholar]
  123. 123.
    Metzger DCH, Porter I, Mobley B, Sandkam BA, Fong LJM, et al. 2023.. Transposon wave remodeled the epigenomic landscape in the rapid evolution of X-chromosome dosage compensation. . Genome Res. 33:(11):191731
    [Crossref] [Google Scholar]
  124. 124.
    Mi S, Lee X, Li X, Veldman GM, Finnerty H, et al. 2000.. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. . Nature 403:(6771):78589
    [Crossref] [Google Scholar]
  125. 125.
    Mills RE, Bennett EA, Iskow RC, Devine SE. 2007.. Which transposable elements are active in the human genome?. Trends Genet. 23:(4):18391
    [Crossref] [Google Scholar]
  126. 126.
    Mills RE, Bennett EA, Iskow RC, Luttig CT, Tsui C, et al. 2006.. Recently mobilized transposons in the human and chimpanzee genomes. . Am. J. Hum. Genet. 78:(4):67179
    [Crossref] [Google Scholar]
  127. 127.
    Monot C, Kuciak M, Viollet S, Mir AA, Gabus C, et al. 2013.. The specificity and flexibility of L1 reverse transcription priming at imperfect T-tracts. . PLOS Genet. 9:(5):e1003499
    [Crossref] [Google Scholar]
  128. 128.
    Moran JV, Holmes SE, Naas TP, DeBerardinis RJ, Boeke JD, Kazazian HH. 1996.. High frequency retrotransposition in cultured mammalian cells. . Cell 87:(5):91727
    [Crossref] [Google Scholar]
  129. 129.
    Muñoz-Lopez M, Vilar R, Philippe C, Rahbari R, Richardson SR, et al. 2019.. LINE-1 retrotransposition impacts the genome of human pre-implantation embryos and extraembryonic tissues. . bioRxiv 522623. https://doi.org/10.1101/522623
  130. 130.
    Muotri AR, Chu VT, Marchetto MCN, Deng W, Moran JV, Gage FH. 2005.. Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. . Nature 435:(7044):90310
    [Crossref] [Google Scholar]
  131. 131.
    Nelson JO, Slicko A, Yamashita YM. 2023.. The retrotransposon R2 maintains Drosophila ribosomal DNA repeats. . PNAS 120:(23):e2221613120
    [Crossref] [Google Scholar]
  132. 132.
    Nowacki M, Higgins BP, Maquilan GM, Swart EC, Doak TG, Landweber LF. 2009.. A functional role for transposases in a large eukaryotic genome. . Science 324:(5929):93538
    [Crossref] [Google Scholar]
  133. 133.
    Nowell RW, Wilson CG, Almeida P, Schiffer PH, Fontaneto D, et al. 2021.. Evolutionary dynamics of transposable elements in bdelloid rotifers. . eLife 10::e63194
    [Crossref] [Google Scholar]
  134. 134.
    Obbard DJ, Dudas G. 2014.. The genetics of host-virus coevolution in invertebrates. . Curr. Opin. Virol. 8::7378
    [Crossref] [Google Scholar]
  135. 135.
    Orr HA, Kim Y. 1998.. An adaptive hypothesis for the evolution of the Y chromosome. . Genetics 150:(4):169398
    [Crossref] [Google Scholar]
  136. 136.
    Osmanski AB, Paulat NS, Korstian J, Grimshaw JR, Halsey M, et al. 2023.. Insights into mammalian TE diversity through the curation of 248 genome assemblies. . Science 380:(6643):eabn1430
    [Crossref] [Google Scholar]
  137. 137.
    Ostertag EM, Goodier JL, Zhang Y, Kazazian HH Jr. 2003.. SVA elements are nonautonomous retrotransposons that cause disease in humans. . Am. J. Hum. Genet. 73:(6):144451
    [Crossref] [Google Scholar]
  138. 138.
    Ostertag EM, Prak ET, DeBerardinis RJ, Moran JV, Kazazian HH Jr. 2000.. Determination of L1 retrotransposition kinetics in cultured cells. . Nucleic Acids Res. 28:(6):141823
    [Crossref] [Google Scholar]
  139. 139.
    Ozata DM, Gainetdinov I, Zoch A, O'Carroll D, Zamore PD. 2019.. PIWI-interacting RNAs: small RNAs with big functions. . Nat. Rev. Genet. 20:(2):89108
    [Crossref] [Google Scholar]
  140. 140.
    Pace JK II, Feschotte C. 2007.. The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage. . Genome Res. 17:(4):42232
    [Crossref] [Google Scholar]
  141. 141.
    Pardue M-L, DeBaryshe PG. 2011.. Retrotransposons that maintain chromosome ends. . PNAS 108:(51):2031724
    [Crossref] [Google Scholar]
  142. 142.
    Parhad SS, Tu S, Weng Z, Theurkauf WE. 2017.. Adaptive evolution leads to cross-species incompatibility in the piRNA transposon silencing machinery. . Dev. Cell 43:(1):6070.e5
    [Crossref] [Google Scholar]
  143. 143.
    Partridge L, Fuentealba M, Kennedy BK. 2020.. The quest to slow ageing through drug discovery. . Nat. Rev. Drug Discov. 19:(8):51332
    [Crossref] [Google Scholar]
  144. 144.
    Payer LM, Burns KH. 2019.. Transposable elements in human genetic disease. . Nat. Rev. Genet. 20:(12):76072
    [Crossref] [Google Scholar]
  145. 145.
    Payer LM, Steranka JP, Kryatova MS, Grillo G, Lupien M, et al. 2021.. Insertion variants alter gene transcript levels. . Genome Res. 31:(12):223648
    [Crossref] [Google Scholar]
  146. 146.
    Peccoud J, Loiseau V, Cordaux R, Gilbert C. 2017.. Massive horizontal transfer of transposable elements in insects. . PNAS 114:(18):472126
    [Crossref] [Google Scholar]
  147. 147.
    Pedro DLF, Amorim TS, Varani A, Guyot R, Domingues DS, Paschoal AR. 2021.. An atlas of plant transposable elements. . F1000Research 10::1194
    [Crossref] [Google Scholar]
  148. 148.
    Percharde M, Lin C-J, Yin Y, Guan J, Peixoto GA, et al. 2018.. A LINE1-nucleolin partnership regulates early development and ESC identity. . Cell 174:(2):391405.e19
    [Crossref] [Google Scholar]
  149. 149.
    Petersen M, Armisén D, Gibbs RA, Hering L, Khila A, et al. 2019.. Diversity and evolution of the transposable element repertoire in arthropods with particular reference to insects. . BMC Evol. Biol. 19::11
    [Crossref] [Google Scholar]
  150. 150.
    Pritham EJ, Feschotte C. 2007.. Massive amplification of rolling-circle transposons in the lineage of the bat Myotis lucifugus. . PNAS 104:(6):1895900
    [Crossref] [Google Scholar]
  151. 151.
    Rasmusson KE, Raymond JD, Simmons MJ. 1993.. Repression of hybrid dysgenesis in Drosophila melanogaster by individual naturally occurring P elements. . Genetics 133:(3):60522
    [Crossref] [Google Scholar]
  152. 152.
    Ravel-Godreuil C, Znaidi R, Bonnifet T, Joshi RL, Fuchs J. 2021.. Transposable elements as new players in neurodegenerative diseases. . FEBS Lett. 595:(22):273355
    [Crossref] [Google Scholar]
  153. 153.
    Ricci M, Peona V, Boattini A, Taccioli C. 2023.. Comparative analysis of bats and rodents’ genomes suggests a relation between non-LTR retrotransposons, cancer incidence, and ageing. . Sci. Rep. 13::9039
    [Crossref] [Google Scholar]
  154. 154.
    Richardson SR, Gerdes P, Gerhardt DJ, Sanchez-Luque FJ, Bodea G-O, et al. 2017.. Heritable L1 retrotransposition in the mouse primordial germline and early embryo. . Genome Res. 27:(8):1395405
    [Crossref] [Google Scholar]
  155. 155.
    Richardson SR, Morell S, Faulkner GJ. 2014.. L1 retrotransposons and somatic mosaicism in the brain. . Annu. Rev. Genet. 48::127
    [Crossref] [Google Scholar]
  156. 156.
    Robillard É, Le Rouzic A, Zhang Z, Capy P, Hua-Van A. 2016.. Experimental evolution reveals hyperparasitic interactions among transposable elements. . PNAS 113:(51):1476368
    [Crossref] [Google Scholar]
  157. 157.
    Rodriguez F, Yushenova IA, DiCorpo D, Arkhipova IR. 2022.. Bacterial N4-methylcytosine as an epigenetic mark in eukaryotic DNA. . Nat. Commun. 13::1072
    [Crossref] [Google Scholar]
  158. 158.
    Rogers RL, Zhou L, Chu C, Márquez R, Corl A, et al. 2018.. Genomic takeover by transposable elements in the strawberry poison frog. . Mol. Biol. Evol. 35:(12):291327
    [Google Scholar]
  159. 159.
    Rubin GM, Kidwell MG, Bingham PM. 1982.. The molecular basis of P-M hybrid dysgenesis: the nature of induced mutations. . Cell 29:(3):98794
    [Crossref] [Google Scholar]
  160. 160.
    Saha A, Mitchell JA, Nishida Y, Hildreth JE, Ariberre JA, et al. 2015.. A trans-dominant form of Gag restricts Ty1 retrotransposition and mediates copy number control. . J. Virol. 89:(7):392238
    [Crossref] [Google Scholar]
  161. 161.
    Saint-Leandre B, Nguyen SC, Levine MT. 2019.. Diversification and collapse of a telomere elongation mechanism. . Genome Res. 29:(6):92031
    [Crossref] [Google Scholar]
  162. 162.
    Sakashita A, Kitano T, Ishizu H, Guo Y, Masuda H, et al. 2023.. Transcription of MERVL retrotransposons is required for preimplantation embryo development. . Nat. Genet. 55:(3):48495
    [Crossref] [Google Scholar]
  163. 163.
    Sasani TA, Pedersen BS, Gao Z, Baird L, Przeworski M, et al. 2019.. Large, three-generation human families reveal post-zygotic mosaicism and variability in germline mutation accumulation. . eLife 8::e46922
    [Crossref] [Google Scholar]
  164. 164.
    Savage AL, Lopez AI, Iacoangeli A, Bubb VJ, Smith B, et al. 2020.. Frequency and methylation status of selected retrotransposition competent L1 loci in amyotrophic lateral sclerosis. . Mol. Brain 13::154
    [Crossref] [Google Scholar]
  165. 165.
    Schneider BK, Sun S, Lee M, Li W, Skvir N, et al. 2023.. Expression of retrotransposons contributes to aging in Drosophila. . Genetics 224:(2):iyad073
    [Crossref] [Google Scholar]
  166. 166.
    Seleme M del C, Vetter MR, Cordaux R, Bastone L, Batzer MA, Kazazian HH Jr. 2006.. Extensive individual variation in L1 retrotransposition capability contributes to human genetic diversity. . PNAS 103:(17):661116
    [Crossref] [Google Scholar]
  167. 167.
    Senti K-A, Handler D, Rafanel B, Kosiol C, Schlötterer C, Brennecke J. 2023.. Functional adaptations of endogenous retroviruses to the Drosophila host underlie their evolutionary diversification. . bioRxiv 2023.08.03.551782. https://doi.org/10.1101/2023.08.03.551782
  168. 168.
    Shao F, Han M, Peng Z. 2019.. Evolution and diversity of transposable elements in fish genomes. . Sci. Rep. 9::15399
    [Crossref] [Google Scholar]
  169. 169.
    Shen L, Wu LC, Sanlioglu S, Chen R, Mendoza AR, et al. 1994.. Structure and genetics of the partially duplicated gene RP located immediately upstream of the complement C4A and the C4B genes in the HLA class III region: molecular cloning, exon-intron structure, composite retroposon, and breakpoint of gene duplication. . J. Biol. Chem. 269:(11):846676
    [Crossref] [Google Scholar]
  170. 170.
    Shpiz S, Ryazansky S, Olovnikov I, Abramov Y, Kalmykova A. 2014.. Euchromatic transposon insertions trigger production of novel pi- and endo-siRNAs at the target sites in the Drosophila germline. . PLOS Genet. 10:(2):e1004138
    [Crossref] [Google Scholar]
  171. 171.
    Siebel CW, Rio DC. 1990.. Regulated splicing of the Drosophila P transposable element third intron in vitro: somatic repression. . Science 248:(4960):12008
    [Crossref] [Google Scholar]
  172. 172.
    Singer T, McConnell MJ, Marchetto MCN, Coufal NG, Gage FH. 2010.. LINE-1 retrotransposons: mediators of somatic variation in neuronal genomes?. Trends Neurosci. 33:(8):34554
    [Crossref] [Google Scholar]
  173. 173.
    Siudeja K, van den Beek M, Riddiford N, Boumard B, Wurmser A, et al. 2021.. Unraveling the features of somatic transposition in the Drosophila intestine. . EMBO J. 40:(9):e106388
    [Crossref] [Google Scholar]
  174. 174.
    Sproul JS, Hotaling S, Heckenhauer J, Powell A, Marshall D, et al. 2023.. Analyses of 600+ insect genomes reveal repetitive element dynamics and highlight biodiversity-scale repeat annotation challenges. . Genome Res. 33:(10):170817
    [Crossref] [Google Scholar]
  175. 175.
    Stewart C, Kural D, Strömberg MP, Walker JA, Konkel MK, et al. 2011.. A comprehensive map of mobile element insertion polymorphisms in humans. . PLOS Genet. 7:(8):e1002236
    [Crossref] [Google Scholar]
  176. 176.
    Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, et al. 2015.. An integrated map of structural variation in 2,504 human genomes. . Nature 526:(7571):7581
    [Crossref] [Google Scholar]
  177. 177.
    Thomas JH, Schneider S. 2011.. Coevolution of retroelements and tandem zinc finger genes. . Genome Res. 21:(11):180012
    [Crossref] [Google Scholar]
  178. 178.
    Traverse KL, Pardue ML. 1988.. A spontaneously opened ring chromosome of Drosophila melanogaster has acquired He-T DNA sequences at both new telomeres. . PNAS 85:(21):811620
    [Crossref] [Google Scholar]
  179. 179.
    Treiber CD, Waddell S. 2017.. Resolving the prevalence of somatic transposition in Drosophila. . eLife 6::e28297
    [Crossref] [Google Scholar]
  180. 180.
    Tucker S, Vitins A, Pikaard CS. 2010.. Nucleolar dominance and ribosomal RNA gene silencing. . Curr. Opin. Cell Biol. 22:(3):35156
    [Crossref] [Google Scholar]
  181. 181.
    Upton KR, Gerhardt DJ, Jesuadian JS, Richardson SR, Sánchez-Luque FJ, et al. 2015.. Ubiquitous L1 mosaicism in hippocampal neurons. . Cell 161:(2):22839
    [Crossref] [Google Scholar]
  182. 182.
    van den Hurk JAJM, Meij IC, Seleme MDC, Kano H, Nikopoulos K, et al. 2007.. L1 retrotransposition can occur early in human embryonic development. . Hum. Mol. Genet. 16:(13):158792
    [Crossref] [Google Scholar]
  183. 183.
    Van Valen L. 1973.. A new evolutionary law. . Evol. Theory 1:(1):130
    [Google Scholar]
  184. 184.
    Van't Hof AE, Campagne P, Rigden DJ, Yung CJ, Lingley J, et al. 2016.. The industrial melanism mutation in British peppered moths is a transposable element. . Nature 534:(7605):1025
    [Crossref] [Google Scholar]
  185. 185.
    Venner S, Feschotte C, Biémont C. 2009.. Dynamics of transposable elements: towards a community ecology of the genome. . Trends Genet. 25:(7):31723
    [Crossref] [Google Scholar]
  186. 186.
    Vogt A, Goldman AD, Mochizuki K, Landweber LF. 2013.. Transposon domestication versus mutualism in ciliate genome rearrangements. . PLOS Genet. 9:(8):e1003659
    [Crossref] [Google Scholar]
  187. 187.
    Wang H, Xing J, Grover D, Hedges DJ, Han K, et al. 2005.. SVA elements: a hominid-specific retroposon family. . J. Mol. Biol. 354:(4):9941007
    [Crossref] [Google Scholar]
  188. 188.
    Wang J, Han G-Z. 2023.. Genome mining shows that retroviruses are pervasively invading vertebrate genomes. . Nat. Commun. 14::4968
    [Crossref] [Google Scholar]
  189. 189.
    Wang L, Barbash DA, Kelleher ES. 2020.. Adaptive evolution among cytoplasmic piRNA proteins leads to decreased genomic auto-immunity. . PLOS Genet. 16:(6):e1008861
    [Crossref] [Google Scholar]
  190. 190.
    Wang L, Tracy L, Su W, Yang F, Feng Y, et al. 2022.. Retrotransposon activation during Drosophila metamorphosis conditions adult antiviral responses. . Nat. Genet. 54:(12):193345
    [Crossref] [Google Scholar]
  191. 191.
    Wang L, Zhang S, Hadjipanteli S, Saiz L, Nguyen L, et al. 2023.. P-element invasion fuels molecular adaptation in laboratory populations of Drosophila melanogaster. . Evolution 77:(4):98094
    [Crossref] [Google Scholar]
  192. 192.
    Wang Y, McNeil P, Abdulazeez R, Pascual M, Johnston SE, et al. 2023.. Variation in mutation, recombination, and transposition rates in Drosophila melanogaster and Drosophila simulans. . Genome Res. 33:(4):58798
    [Crossref] [Google Scholar]
  193. 193.
    Wei KH-C, Chan C, Bachtrog D. 2021.. Establishment of H3K9me3-dependent heterochromatin during embryogenesis in Drosophila miranda. . eLife 10::e55612
    [Crossref] [Google Scholar]
  194. 194.
    Wei KH-C, Gibilisco L, Bachtrog D. 2020.. Epigenetic conflict on a degenerating Y chromosome increases mutational burden in Drosophila males. . Nat. Commun. 11::5537
    [Crossref] [Google Scholar]
  195. 195.
    Wells JN, Feschotte C. 2020.. A field guide to eukaryotic transposable elements. . Annu. Rev. Genet. 54::53961
    [Crossref] [Google Scholar]
  196. 196.
    Werren JH. 2011.. Selfish genetic elements, genetic conflict, and evolutionary innovation. . PNAS 108:(Suppl. 2):1086370
    [Crossref] [Google Scholar]
  197. 197.
    Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, et al. 2007.. A unified classification system for eukaryotic transposable elements. . Nat. Rev. Genet. 8:(12):97382
    [Crossref] [Google Scholar]
  198. 198.
    Widen SA, Bes IC, Koreshova A, Pliota P, Krogull D, Burga A. 2023.. Virus-like transposons cross the species barrier and drive the evolution of genetic incompatibilities. . Science 380:(6652):eade0705
    [Crossref] [Google Scholar]
  199. 199.
    Wildschutte JH, Williams ZH, Montesion M, Subramanian RP, Kidd JM, Coffin JM. 2016.. Discovery of unfixed endogenous retrovirus insertions in diverse human populations. . PNAS 113:(16):E232634
    [Crossref] [Google Scholar]
  200. 200.
    Wlodzimierz P, Rabanal FA, Burns R, Naish M, Primetis E, et al. 2023.. Cycles of satellite and transposon evolution in Arabidopsis centromeres. . Nature 618:(7965):55765
    [Crossref] [Google Scholar]
  201. 201.
    Wood JG, Jones BC, Jiang N, Chang C, Hosier S, et al. 2016.. Chromatin-modifying genetic interventions suppress age-associated transposable element activation and extend life span in Drosophila. . PNAS 113:(40):1127782
    [Crossref] [Google Scholar]
  202. 202.
    Wright SI, Schoen DJ. 1999.. Transposon dynamics and the breeding system. . Genetica 107:(1–3):13948
    [Crossref] [Google Scholar]
  203. 203.
    Xia B, Zhang W, Zhao G, Zhang X, Bai J, . 2024.. On the genetic basis of tail-loss evolution in humans and apes. . Nature 626(8001):104248
    [Google Scholar]
  204. 204.
    Yang N, Srivastav SP, Rahman R, Ma Q, Dayama G, et al. 2022.. Transposable element landscapes in aging Drosophila. . PLOS Genet. 18:(3):e1010024
    [Crossref] [Google Scholar]
  205. 205.
    Yang P, Wang Y, Macfarlan TS. 2017.. The role of KRAB-ZFPs in transposable element repression and mammalian evolution. . Trends Genet. 33:(11):87181
    [Crossref] [Google Scholar]
  206. 206.
    Yoth M, Maupetit-Méhouas S, Akkouche A, Gueguen N, Bertin B, et al. 2023.. Reactivation of a somatic errantivirus and germline invasion in Drosophila ovaries. . Nat. Commun. 14::6096
    [Crossref] [Google Scholar]
  207. 207.
    Zhang S, Pointer B, Kelleher ES. 2020.. Rapid evolution of piRNA-mediated silencing of an invading transposable element was driven by abundant de novo mutations. . Genome Res. 30:(4):56675
    [Crossref] [Google Scholar]
  208. 208.
    Zheng K, Wang PJ. 2012.. Blockade of pachytene piRNA biogenesis reveals a novel requirement for maintaining post-meiotic germline genome integrity. . PLOS Genet. 8:(11):e1003038
    [Crossref] [Google Scholar]
  209. 209.
    Zhou J, Eickbush MT, Eickbush TH. 2013.. A population genetic model for the maintenance of R2 retrotransposons in rRNA gene loci. . PLOS Genet. 9:(1):e1003179
    [Crossref] [Google Scholar]
  210. 210.
    Zhou Q, Ellison CE, Kaiser VB, Alekseyenko AA, Gorchakov AA, Bachtrog D. 2013.. The epigenome of evolving Drosophila neo-sex chromosomes: dosage compensation and heterochromatin formation. . PLOS Biol. 11:(11):e1001711
    [Crossref] [Google Scholar]
  211. 211.
    Zuo Z. 2023.. Quantifying the arms race between LINE-1 and KRAB-zinc finger genes through TECookbook. . NAR Genom. Bioinform. 5:(3):lqad078
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-genom-120822-105708
Loading
/content/journals/10.1146/annurev-genom-120822-105708
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error