1932

Abstract

The transforming growth factor β (TGF-β) and bone morphogenetic protein (BMP) signaling pathways play a pivotal role in bone development and skeletal health. More than 30 different types of skeletal dysplasia are now known to be caused by pathogenic variants in genes that belong to the TGF-β superfamily and/or regulate TGF-β/BMP bioavailability. This review describes the latest advances in skeletal dysplasia that is due to impaired TGF-β/BMP signaling and results in short stature (acromelic dysplasia and cardiospondylocarpofacial syndrome) or tall stature (Marfan syndrome). We thoroughly describe the clinical features of the patients, the underlying genetic findings, and the pathomolecular mechanisms leading to disease, which have been investigated mainly using patient-derived skin fibroblasts and mouse models. Although no pharmacological treatment is yet available for skeletal dysplasia due to impaired TGF-β/BMP signaling, in recent years advances in the use of drugs targeting TGF-β have been made, and we also discuss these advances.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-120922-094107
2023-08-25
2024-04-12
Loading full text...

Full text loading...

/deliver/fulltext/genom/24/1/annurev-genom-120922-094107.html?itemId=/content/journals/10.1146/annurev-genom-120922-094107&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abad V, Meyers JL, Weise M, Gafni RI, Barnes KM et al. 2002. The role of the resting zone in growth plate chondrogenesis. Endocrinology 143:1851–57
    [Google Scholar]
  2. 2.
    Abdul-Hussien H, Hanemaaijer R, Verheijen JH, van Bockel JH, Geelkerken RH, Lindeman JH. 2009. Doxycycline therapy for abdominal aneurysm: improved proteolytic balance through reduced neutrophil content. J. Vasc. Surg. 49:741–49
    [Google Scholar]
  3. 3.
    AbuBakr F, Jeffries L, Ji W, McGrath JM, Lakhani SA 2020. A novel variant in MAP3K7 associated with an expanded cardiospondylocarpofacial syndrome phenotype. Cold Spring Harb. Mol. Case Stud. 6:a005207
    [Google Scholar]
  4. 4.
    Aicher D, Urbich C, Zeiher A, Dimmeler S, Schafers HJ. 2007. Endothelial nitric oxide synthase in bicuspid aortic valve disease. Ann. Thorac. Surg. 83:1290–94
    [Google Scholar]
  5. 5.
    Alankarage D, Enriquez A, Steiner RD, Raggio C, Higgins M et al. 2022. Myhre syndrome is caused by dominant-negative dysregulation of SMAD4 and other co-factors. Differentiation 128:1–12
    [Google Scholar]
  6. 6.
    Allali S, Le Goff C, Pressac-Diebold I, Pfennig G, Mahaut C et al. 2011. Molecular screening of ADAMTSL2 gene in 33 patients reveals the genetic heterogeneity of geleophysic dysplasia. J. Med. Genet. 48:417–21
    [Google Scholar]
  7. 7.
    Arce C, Rodríguez-Rovira I, De Rycke K, Durán K, Campuzano V et al. 2021. Anti-TGFβ (transforming growth factor β) therapy with betaglycan-derived P144 peptide gene delivery prevents the formation of aortic aneurysm in a mouse model of Marfan syndrome. Arterioscler. Thromb. Vasc. Biol. 41:e440-e52
    [Google Scholar]
  8. 8.
    Ash P, Loutit JF, Townsend KM. 1980. Osteoclasts derived from haematopoietic stem cells. Nature 283:669–70
    [Google Scholar]
  9. 9.
    Attenhofer Jost CH, Greutmann M, Connolly HM, Weber R, Rohrbach M et al. 2014. Medical treatment of aortic aneurysms in Marfan syndrome and other heritable conditions. Curr. Cardiol. Rev. 10:161–71
    [Google Scholar]
  10. 10.
    Ballock RT, Heydemann A, Wakefield LM, Flanders KC, Roberts AB, Sporn MB. 1993. TGF-β1 prevents hypertrophy of epiphyseal chondrocytes: regulation of gene expression for cartilage matrix proteins and metalloproteases. Dev. Biol. 158:414–29
    [Google Scholar]
  11. 11.
    Baron J, Savendahl L, De Luca F, Dauber A, Phillip M et al. 2015. Short and tall stature: a new paradigm emerges. Nat. Rev. Endocrinol. 11:735–46
    [Google Scholar]
  12. 12.
    Ben-Salem S, Hertecant J, Al-Shamsi AM, Ali BR, Al-Gazali L. 2013. Novel mutations in ADAMTSL2 gene underlying geleophysic dysplasia in families from United Arab Emirates. Birth Defects Res. A 97:764–69
    [Google Scholar]
  13. 13.
    Biernacka A, Dobaczewski M, Frangogiannis NG. 2011. TGF-β signaling in fibrosis. Growth Factors 29:196–202
    [Google Scholar]
  14. 14.
    Bonewald LF, Mundy GR. 1990. Role of transforming growth factor-beta in bone remodeling. Clin. Orthop. Relat. Res. 250:261–76
    [Google Scholar]
  15. 15.
    Brighton CT. 1978. Structure and function of the growth plate. Clin. Orthop. Relat. Res. 136:22–32
    [Google Scholar]
  16. 16.
    Brooke BS, Habashi JP, Judge DP, Patel N, Loeys B, Dietz HC. 2008. Angiotensin II blockade and aortic-root dilation in Marfan's syndrome. N. Engl. J. Med. 358:2787–95
    [Google Scholar]
  17. 17.
    Cain SA, McGovern A, Baldwin AK, Baldock C, Kielty CM. 2012. Fibrillin-1 mutations causing Weill-Marchesani syndrome and acromicric and geleophysic dysplasias disrupt heparan sulfate interactions. PLOS ONE 7:e48634
    [Google Scholar]
  18. 18.
    Canadas V, Vilacosta I, Bruna I, Fuster V. 2010. Marfan syndrome. Part 2: treatment and management of patients. Nat. Rev. Cardiol. 7:266–76
    [Google Scholar]
  19. 19.
    Caputo V, Bocchinfuso G, Castori M, Traversa A, Pizzuti A et al. 2014. Novel SMAD4 mutation causing Myhre syndrome. Am. J. Med. Genet. A 164:1835–40
    [Google Scholar]
  20. 20.
    Carta L, Smaldone S, Zilberberg L, Loch D, Dietz HC et al. 2009. p38 MAPK is an early determinant of promiscuous Smad2/3 signaling in the aortas of fibrillin-1 (Fbn1)-null mice. J. Biol. Chem. 284:5630–36
    [Google Scholar]
  21. 21.
    Cecchi A, Ogawa N, Martinez HR, Carlson A, Fan Y et al. 2013. Missense mutations in FBN1 exons 41 and 42 cause Weill-Marchesani syndrome with thoracic aortic disease and Marfan syndrome. Am. J. Med. Genet. A 161:2305–10
    [Google Scholar]
  22. 22.
    Chai Y, Ito Y, Han J. 2003. TGF-β signaling and its functional significance in regulating the fate of cranial neural crest cells. Crit. Rev. Oral Biol. Med. 14:78–88
    [Google Scholar]
  23. 23.
    Chung AW, Yang HH, Radomski MW, van Breemen C. 2008. Long-term doxycycline is more effective than atenolol to prevent thoracic aortic aneurysm in Marfan syndrome through the inhibition of matrix metalloproteinase-2 and -9. Circ. Res. 102:e73–85
    [Google Scholar]
  24. 24.
    Clevers H. 2006. Wnt/β-catenin signaling in development and disease. Cell 127:469–80
    [Google Scholar]
  25. 25.
    Costantini A, Muurinen MH, Makitie O. 2021. New gene discoveries in skeletal diseases with short stature. Endocr. Connect. 10:R160–74
    [Google Scholar]
  26. 26.
    Costantini A, Wallgren-Pettersson C, Makitie O. 2018. Expansion of the clinical spectrum of frontometaphyseal dysplasia 2 caused by the recurrent mutation p.Pro485Leu in MAP3K7. Eur. J. Med. Genet. 61:612–15
    [Google Scholar]
  27. 27.
    Dabovic B, Chen Y, Colarossi C, Obata H, Zambuto L et al. 2002. Bone abnormalities in latent TGF-β binding protein (Ltbp)-3-null mice indicate a role for Ltbp-3 in modulating TGF-β bioavailability. J. Cell Biol. 156:227–32
    [Google Scholar]
  28. 28.
    Dabovic B, Chen Y, Colarossi C, Zambuto L, Obata H, Rifkin DB. 2002. Bone defects in latent TGF-β binding protein (Ltbp)-3 null mice; a role for Ltbp in TGF-β presentation. J. Endocrinol. 175:129–41
    [Google Scholar]
  29. 29.
    Dagoneau N, Benoist-Lasselin C, Huber C, Faivre L, Megarbane A et al. 2004. ADAMTS10 mutations in autosomal recessive Weill-Marchesani syndrome. Am. J. Hum. Genet. 75:801–6
    [Google Scholar]
  30. 30.
    Dallas SL, Sivakumar P, Jones CJ, Chen Q, Peters DM et al. 2005. Fibronectin regulates latent transforming growth factor-β (TGFβ) by controlling matrix assembly of latent TGFβ-binding protein-1. J. Biol. Chem. 280:18871–80
    [Google Scholar]
  31. 31.
    Delhon L, Mahaut C, Goudin N, Gaudas E, Piquand K et al. 2019. Impairment of chondrogenesis and microfibrillar network in Adamtsl2 deficiency. FASEB J. 33:2707–18
    [Google Scholar]
  32. 32.
    Delhon L, Mougin Z, Jonquet J, Bibimbou A, Dubail J et al. 2022. The critical role of the TB5 domain of fibrillin-1 in endochondral ossification. Hum. Mol. Genet. 31:3777–88
    [Google Scholar]
  33. 33.
    Derynck R, Zhang YE. 2003. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 425:577–84
    [Google Scholar]
  34. 34.
    Erlebacher A, Filvaroff EH, Gitelman SE, Derynck R. 1995. Toward a molecular understanding of skeletal development. Cell 80:371–78
    [Google Scholar]
  35. 35.
    Erlebacher A, Filvaroff EH, Ye JQ, Derynck R. 1998. Osteoblastic responses to TGF-β during bone remodeling. Mol. Biol. Cell 9:1903–18
    [Google Scholar]
  36. 36.
    Evans DR, Green JS, Fahiminiya S, Majewski J, Fernandez BA et al. 2020. A novel pathogenic missense ADAMTS17 variant that impairs secretion causes Weill-Marchesani Syndrome with variably dysmorphic hand features. Sci. Rep. 10:10827
    [Google Scholar]
  37. 37.
    Faivre L, Gorlin RJ, Wirtz MK, Godfrey M, Dagoneau N et al. 2003. In frame fibrillin-1 gene deletion in autosomal dominant Weill-Marchesani syndrome. J. Med. Genet. 40:34–36
    [Google Scholar]
  38. 38.
    Faivre L, Le Merrer M, Baumann C, Polak M, Chatelain P et al. 2001. Acromicric dysplasia: long term outcome and evidence of autosomal dominant inheritance. J. Med. Genet. 38:745–49
    [Google Scholar]
  39. 39.
    Faivre L, Megarbane A, Alswaid A, Zylberberg L, Aldohayan N et al. 2002. Homozygosity mapping of a Weill-Marchesani syndrome locus to chromosome 19p13.3-p13.2. Hum. Genet. 110:366–70
    [Google Scholar]
  40. 40.
    Farias FH, Johnson GS, Taylor JF, Giuliano E, Katz ML et al. 2010. An ADAMTS17 splice donor site mutation in dogs with primary lens luxation. Investig. Ophthalmol. Vis. Sci. 51:4716–21
    [Google Scholar]
  41. 41.
    Filvaroff E, Erlebacher A, Ye J, Gitelman SE, Lotz J et al. 1999. Inhibition of TGF-β receptor signaling in osteoblasts leads to decreased bone remodeling and increased trabecular bone mass. Development 126:4267–79
    [Google Scholar]
  42. 42.
    Forney WR, Robinson SJ, Pascoe DJ. 1966. Congenital heart disease, deafness, and skeletal malformations: a new syndrome?. J. Pediatr. 68:14–26
    [Google Scholar]
  43. 43.
    Franzen P, Heldin CH, Miyazono K. 1995. The GS domain of the transforming growth factor-β type I receptor is important in signal transduction. Biochem. Biophys. Res. Commun. 207:682–89
    [Google Scholar]
  44. 44.
    Fukumoto S, Martin TJ. 2009. Bone as an endocrine organ. Trends Endocrinol. Metab. 20:230–36
    [Google Scholar]
  45. 45.
    Garcia-Ortiz L, Gutierrez-Salinas J, Del Carmen Chima Galan M, Garcia RL, de la Concepcion AYM. 2015. Geleophysic dysplasia: a novel in-frame deletion of a tandem repeat in the ADAMTSL2 gene. Am. J. Med. Genet. A 167:1949–51
    [Google Scholar]
  46. 46.
    Globa E, Zelinska N, Dauber A. 2018. The clinical cases of geleophysic dysplasia: one gene, different phenotypes. Case Rep. Endocrinol. 2018 8212417
    [Google Scholar]
  47. 47.
    Gordon KJ, Blobe GC. 2008. Role of transforming growth factor-β superfamily signaling pathways in human disease. Biochim. Biophys. Acta Mol. Basis Dis. 1782:197–228
    [Google Scholar]
  48. 48.
    Grafe I, Alexander S, Peterson JR, Snider TN, Levi B et al. 2018. TGF-β family signaling in mesenchymal differentiation. Cold Spring Harb. Perspect. Biol. 10:a022202
    [Google Scholar]
  49. 49.
    Greenblatt MB, Shim JH, Glimcher LH. 2010. TAK1 mediates BMP signaling in cartilage. Ann. N.Y. Acad. Sci. 1192:385–90
    [Google Scholar]
  50. 50.
    Gunnell LM, Jonason JH, Loiselle AE, Kohn A, Schwarz EM et al. 2010. TAK1 regulates cartilage and joint development via the MAPK and BMP signaling pathways. J. Bone Miner. Res. 25:1784–97
    [Google Scholar]
  51. 51.
    Guo DC, Regalado ES, Pinard A, Chen J, Lee K et al. 2018. LTBP3 pathogenic variants predispose individuals to thoracic aortic aneurysms and dissections. Am. J. Hum. Genet. 102:706–12
    [Google Scholar]
  52. 52.
    Habashi JP, Judge DP, Holm TM, Cohn RD, Loeys BL et al. 2006. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 312:117–21
    [Google Scholar]
  53. 53.
    Hadjidakis DJ, Androulakis II. 2006. Bone remodeling. Ann. N.Y. Acad. Sci. 1092:385–96
    [Google Scholar]
  54. 54.
    Haji-Seyed-Javadi R, Jelodari-Mamaghani S, Paylakhi SH, Yazdani S, Nilforushan N et al. 2012. LTBP2 mutations cause Weill-Marchesani and Weill-Marchesani-like syndrome and affect disruptions in the extracellular matrix. Hum. Mutat. 33:1182–87
    [Google Scholar]
  55. 55.
    Hasegawa K, Numakura C, Tanaka H, Furujo M, Kubo T et al. 2017. Three cases of Japanese acromicric/geleophysic dysplasia with FBN1 mutations: a comparison of clinical and radiological features. J. Pediatr. Endocrinol. Metab. 30:117–21
    [Google Scholar]
  56. 56.
    Heino TJ, Hentunen TA. 2008. Differentiation of osteoblasts and osteocytes from mesenchymal stem cells. Curr. Stem Cell Res. Ther. 3:131–45
    [Google Scholar]
  57. 57.
    Horner A, Kemp P, Summers C, Bord S, Bishop NJ et al. 1998. Expression and distribution of transforming growth factor-β isoforms and their signaling receptors in growing human bone. Bone 23:95–102
    [Google Scholar]
  58. 58.
    Hubmacher D, Taye N, Balic Z, Thacker S, Adams SM et al. 2019. Limb- and tendon-specific Adamtsl2 deletion identifies a role for ADAMTSL2 in tendon growth in a mouse model for geleophysic dysplasia. Matrix Biol. 82:38–53
    [Google Scholar]
  59. 59.
    Hubmacher D, Wang LW, Mecham RP, Reinhardt DP, Apte SS. 2015. Adamtsl2 deletion results in bronchial fibrillin microfibril accumulation and bronchial epithelial dysplasia—a novel mouse model providing insights into geleophysic dysplasia. Dis. Model. Mech. 8:487–99
    [Google Scholar]
  60. 60.
    Intarak N, Theerapanon T, Thaweesapphithak S, Suphapeetiporn K, Porntaveetus T, Shotelersuk V. 2019. Genotype–phenotype correlation and expansion of orodental anomalies in LTBP3-related disorders. Mol. Genet. Genom. 294:773–87
    [Google Scholar]
  61. 61.
    Janssens K, ten Dijke P, Janssens S, Van Hul W. 2005. Transforming growth factor-β1 to the bone. Endocr. Rev. 26:743–74
    [Google Scholar]
  62. 62.
    Jin HS, Song HY, Cho SY, Ki CS, Yang SH et al. 2017. Acromicric dysplasia caused by a novel heterozygous mutation of FBN1 and effects of growth hormone treatment. Ann. Lab. Med. 37:92–94
    [Google Scholar]
  63. 63.
    Judge DP, Biery NJ, Keene DR, Geubtner J, Myers L et al. 2004. Evidence for a critical contribution of haploinsufficiency in the complex pathogenesis of Marfan syndrome. J. Clin. Investig. 114:172–81
    [Google Scholar]
  64. 64.
    Karoulias SZ, Beyens A, Balic Z, Symoens S, Vandersteen A et al. 2020. A novel ADAMTS17 variant that causes Weill-Marchesani syndrome 4 alters fibrillin-1 and collagen type I deposition in the extracellular matrix. Matrix Biol. 88:1–18
    [Google Scholar]
  65. 65.
    Khan AO, Aldahmesh MA, Al-Ghadeer H, Mohamed JY, Alkuraya FS. 2012. Familial spherophakia with short stature caused by a novel homozygous ADAMTS17 mutation. Ophthalmic Genet. 33:235–39
    [Google Scholar]
  66. 66.
    Khan AO, Schatz P. 2019. Accommodative esotropia and Brown syndrome in a girl with recessive geleophysic dysplasia. J. AAPOS 23:101–2
    [Google Scholar]
  67. 67.
    Khosla S. 2001. Minireview: the OPG/RANKL/RANK system. Endocrinology 142:5050–55
    [Google Scholar]
  68. 68.
    Kinoshita A, Saito T, Tomita H, Makita Y, Yoshida K et al. 2000. Domain-specific mutations in TGFB1 result in Camurati-Engelmann disease. Nat. Genet. 26:19–20
    [Google Scholar]
  69. 69.
    Kochhar A, Kirmani S, Cetta F, Younge B, Hyland JC, Michels V. 2013. Similarity of geleophysic dysplasia and Weill-Marchesani syndrome. Am. J. Med. Genet. A 161:3130–32
    [Google Scholar]
  70. 70.
    Kronenberg HM. 2003. Developmental regulation of the growth plate. Nature 423:332–36
    [Google Scholar]
  71. 71.
    Kutz WE, Wang LW, Bader HL, Majors AK, Iwata K et al. 2011. ADAMTS10 protein interacts with fibrillin-1 and promotes its deposition in extracellular matrix of cultured fibroblasts. J. Biol. Chem. 286:17156–67
    [Google Scholar]
  72. 72.
    Kutz WE, Wang LW, Dagoneau N, Odrcic KJ, Cormier-Daire V et al. 2008. Functional analysis of an ADAMTS10 signal peptide mutation in Weill-Marchesani syndrome demonstrates a long-range effect on secretion of the full-length enzyme. Hum. Mutat. 29:1425–34
    [Google Scholar]
  73. 73.
    Le Goff C, Cormier-Daire V 2009. Genetic and molecular aspects of acromelic dysplasia. Pediatr. Endocrinol. Rev. 6:418–23
    [Google Scholar]
  74. 74.
    Le Goff C, Cormier-Daire V 2011. The ADAMTS(L) family and human genetic disorders. Hum. Mol. Genet. 20:R163–67
    [Google Scholar]
  75. 75.
    Le Goff C, Cormier-Daire V 2012. From tall to short: the role of TGFβ signaling in growth and its disorders. Am. J. Med. Genet. C 160C:145–53
    [Google Scholar]
  76. 76.
    Le Goff C, Cormier-Daire V 2015. Chondrodysplasias and TGFβ signaling. BoneKEy Rep. 4:642
    [Google Scholar]
  77. 77.
    Le Goff C, Mahaut C, Abhyankar A, Le Goff W, Serre V et al. 2011. Mutations at a single codon in Mad homology 2 domain of SMAD4 cause Myhre syndrome. Nat. Genet. 44:85–88
    [Google Scholar]
  78. 78.
    Le Goff C, Mahaut C, Wang LW, Allali S, Abhyankar A et al. 2011. Mutations in the TGFβ binding-protein-like domain 5 of FBN1 are responsible for acromicric and geleophysic dysplasias. Am. J. Hum. Genet. 89:7–14
    [Google Scholar]
  79. 79.
    Le Goff C, Morice-Picard F, Dagoneau N, Wang LW, Perrot C et al. 2008. ADAMTSL2 mutations in geleophysic dysplasia demonstrate a role for ADAMTS-like proteins in TGF-β bioavailability regulation. Nat. Genet. 40:1119–23
    [Google Scholar]
  80. 80.
    Le Goff C, Rogers C, Le Goff W, Pinto G, Bonnet D et al. 2016. Heterozygous mutations in MAP3K7, encoding TGF-β-activated kinase 1, cause cardiospondylocarpofacial syndrome. Am. J. Hum. Genet. 99:407–13
    [Google Scholar]
  81. 81.
    Lee JH, Ellison JW, Schears GJ, Thompson DM. 2006. Subglottic stenosis in short-statured children: a case for further investigation of airway symptoms in patients with skeletal dysplasias. Int. J. Pediatr. Otorhinolaryngol. 70:147–53
    [Google Scholar]
  82. 82.
    Lee T, Takeshima Y, Okizuka Y, Hamahira K, Kusunoki N et al. 2013. A Japanese child with geleophysic dysplasia caused by a novel mutation of FBN1. Gene 512:456–59
    [Google Scholar]
  83. 83.
    Li D, Dong H, Zheng H, Song J, Li X et al. 2017. A Chinese boy with geleophysic dysplasia caused by compound heterozygous mutations in ADAMTSL2. Eur. J. Med. Genet. 60:685–89
    [Google Scholar]
  84. 84.
    Li J, Jia X, Li S, Fang S, Guo X. 2014. Mutation survey of candidate genes in 40 Chinese patients with congenital ectopia lentis. Mol. Vis. 20:1017–24
    [Google Scholar]
  85. 85.
    Li M, Li Y, Liu H, Zhou H, Xie W, Peng Q. 2022. Case report: a homozygous ADAMTSL2 missense variant causes geleophysic dysplasia with high similarity to Weill-Marchesani syndrome. Front. Genet. 13:1014188
    [Google Scholar]
  86. 86.
    Lima BL, Santos EJ, Fernandes GR, Merkel C, Mello MR et al. 2010. A new mouse model for Marfan syndrome presents phenotypic variability associated with the genetic background and overall levels of Fbn1 expression. PLOS ONE 5:e14136
    [Google Scholar]
  87. 87.
    Lin AE, Michot C, Cormier-Daire V, L'Ecuyer TJ, Matherne GP et al. 2016. Gain-of-function mutations in SMAD4 cause a distinctive repertoire of cardiovascular phenotypes in patients with Myhre syndrome. Am. J. Med. Genet. A 170:2617–31
    [Google Scholar]
  88. 88.
    Lindeman JH, Abdul-Hussien H, van Bockel JH, Wolterbeek R, Kleemann R. 2009. Clinical trial of doxycycline for matrix metalloproteinase-9 inhibition in patients with an abdominal aneurysm: doxycycline selectively depletes aortic wall neutrophils and cytotoxic T cells. Circulation 119:2209–16
    [Google Scholar]
  89. 89.
    Lloyd RI. 1934. Arachnodactyly (dystrophia mesodermalis congenita, typus Marfanis; Marfan's syndrome; dolichostenomelie). Trans. Am. Ophthalmol. Soc. 32:361–68
    [Google Scholar]
  90. 90.
    MacFarlane EG, Haupt J, Dietz HC, Shore EM. 2017. TGF-β family signaling in connective tissue and skeletal diseases. Cold Spring Harb. Perspect. Biol. 9:a022269
    [Google Scholar]
  91. 91.
    Mackenroth L, Rump A, Lorenz P, Schrock E, Tzschach A. 2016. Novel ADAMTSL2-mutations in a patient with geleophysic dysplasia type I. Clin. Dysmorphol. 25:106–9
    [Google Scholar]
  92. 92.
    Maroteaux P, Stanescu R, Stanescu V, Rappaport R. 1986. Acromicric dysplasia. Am. J. Med. Genet. 24:447–59
    [Google Scholar]
  93. 93.
    Marzin P, Thierry B, Dancasius A, Cavau A, Michot C et al. 2021. Geleophysic and acromicric dysplasias: natural history, genotype-phenotype correlations, and management guidelines from 38 cases. Genet. Med. 23:331–40
    [Google Scholar]
  94. 94.
    Massague J, Wotton D. 2000. Transcriptional control by the TGF-β/Smad signaling system. EMBO J. 19:1745–54
    [Google Scholar]
  95. 95.
    McGowan R, Gulati R, McHenry P, Cooke A, Butler S et al. 2011. Clinical features and respiratory complications in Myhre syndrome. Eur. J. Med. Genet. 54:e553–59
    [Google Scholar]
  96. 96.
    McInerney-Leo AM, Le Goff C, Leo PJ, Kenna TJ, Keith P et al. 2016. Mutations in LTBP3 cause acromicric dysplasia and geleophysic dysplasia. J. Med. Genet. 53:457–64
    [Google Scholar]
  97. 97.
    Micale L, Morlino S, Biagini T, Carbone A, Fusco C et al. 2020. Insights into the molecular pathogenesis of cardiospondylocarpofacial syndrome: MAP3K7 c.737-7A>G variant alters the TGFβ-mediated α-SMA cytoskeleton assembly and autophagy. Biochim. Biophys. Acta Mol. Basis Dis. 1866:165742
    [Google Scholar]
  98. 98.
    Michot C, Le Goff C, Mahaut C, Afenjar A, Brooks AS et al. 2014. Myhre and LAPS syndromes: clinical and molecular review of 32 patients. Eur. J. Hum. Genet. 22:1272–77
    [Google Scholar]
  99. 99.
    Milleron O, Arnoult F, Ropers J, Aegerter P, Detaint D et al. 2015. Marfan sartan: a randomized, double-blind, placebo-controlled trial. Eur. Heart J. 36:2160–66
    [Google Scholar]
  100. 100.
    Minatogawa M, Miyake N, Tsukahara Y, Tanabe Y, Uchiyama T et al. 2022. Expanding the phenotypic spectrum of cardiospondylocarpofacial syndrome: from a detailed clinical and radiological observation of a boy with a novel missense variant in MAP3K7. Am. J. Med. Genet. A 188:350–56
    [Google Scholar]
  101. 101.
    Miyazono K, Maeda S, Imamura T. 2005. BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev. 16:251–63
    [Google Scholar]
  102. 102.
    Morales J, Al-Sharif L, Khalil DS, Shinwari JM, Bavi P et al. 2009. Homozygous mutations in ADAMTS10 and ADAMTS17 cause lenticular myopia, ectopia lentis, glaucoma, spherophakia, and short stature. Am. J. Hum. Genet. 85:558–68
    [Google Scholar]
  103. 103.
    Morlino S, Castori M, Dordoni C, Cinquina V, Santoro G et al. 2018. A novel MAP3K7 splice mutation causes cardiospondylocarpofacial syndrome with features of hereditary connective tissue disorder. Eur. J. Hum. Genet. 26:582–86
    [Google Scholar]
  104. 104.
    Mortier GR, Cohn DH, Cormier-Daire V, Hall C, Krakow D et al. 2019. Nosology and classification of genetic skeletal disorders: 2019 revision. Am. J. Med. Genet. A 179:2393–419
    [Google Scholar]
  105. 105.
    Mularczyk EJ, Singh M, Godwin ARF, Galli F, Humphreys N et al. 2018. ADAMTS10-mediated tissue disruption in Weill–Marchesani syndrome. Hum. Mol. Genet. 27:3675–87
    [Google Scholar]
  106. 106.
    Myhre SA, Ruvalcaba RH, Graham CB. 1981. A new growth deficiency syndrome. Clin. Genet. 20:1–5
    [Google Scholar]
  107. 107.
    Neptune ER, Frischmeyer PA, Arking DE, Myers L, Bunton TE et al. 2003. Dysregulation of TGF-β activation contributes to pathogenesis in Marfan syndrome. Nat. Genet. 33:407–11
    [Google Scholar]
  108. 108.
    Newell K, Smith W, Ghoshhajra B, Isselbacher E, Lin A, Lindsay ME. 2017. Cervical artery dissection expands the cardiovascular phenotype in FBN1-related Weill-Marchesani syndrome. Am. J. Med. Genet. A 173:2551–56
    [Google Scholar]
  109. 109.
    Ng CM, Cheng A, Myers LA, Martinez-Murillo F, Jie C et al. 2004. TGF-β-dependent pathogenesis of mitral valve prolapse in a mouse model of Marfan syndrome. J. Clin. Investig. 114:1586–92
    [Google Scholar]
  110. 110.
    Nilsson O, Marino R, De Luca F, Phillip M, Baron J 2005. Endocrine regulation of the growth plate. Horm. Res. 64:157–65
    [Google Scholar]
  111. 111.
    Noor A, Windpassinger C, Vitcu I, Orlic M, Rafiq MA et al. 2009. Oligodontia is caused by mutation in LTBP3, the gene encoding latent TGF-β binding protein 3. Am. J. Hum. Genet. 84:519–23
    [Google Scholar]
  112. 112.
    Oichi T, Taniguchi Y, Soma K, Oshima Y, Yano F et al. 2019. Adamts17 is involved in skeletogenesis through modulation of BMP-Smad1/5/8 pathway. Cell. Mol. Life Sci. 76:4795–809
    [Google Scholar]
  113. 113.
    Olsen BR, Reginato AM, Wang W. 2000. Bone development. Annu. Rev. Cell Dev. Biol. 16:191–220
    [Google Scholar]
  114. 114.
    Pereira L, Andrikopoulos K, Tian J, Lee SY, Keene DR et al. 1997. Targetting of the gene encoding fibrillin-1 recapitulates the vascular aspect of Marfan syndrome. Nat. Genet. 17:218–22
    [Google Scholar]
  115. 115.
    Piccolo P, Mithbaokar P, Sabatino V, Tolmie J, Melis D et al. 2014. SMAD4 mutations causing Myhre syndrome result in disorganization of extracellular matrix improved by losartan. Eur. J. Hum. Genet. 22:988–94
    [Google Scholar]
  116. 116.
    Piccolo P, Sabatino V, Mithbaokar P, Polishchuk E, Hicks J et al. 2019. Skin fibroblasts of patients with geleophysic dysplasia due to FBN1 mutations have lysosomal inclusions and losartan improves their microfibril deposition defect. Mol. Genet. Genom. Med. 7:e844
    [Google Scholar]
  117. 117.
    Piccolo P, Sabatino V, Mithbaokar P, Polishchuk E, Law SK et al. 2019. Geleophysic dysplasia: novel missense variants and insights into ADAMTSL2 intracellular trafficking. Mol. Genet. Metab. Rep. 21:100504
    [Google Scholar]
  118. 118.
    Pimienta AL, Wilcox WR, Reinstein E. 2013. More than meets the eye: the evolving phenotype of Weill-Marchesani syndrome-diagnostic confusion with geleophysic dysplasia. Am. J. Med. Genet. A 161:3126–29
    [Google Scholar]
  119. 119.
    Pogue R, Lyons K. 2006. BMP signaling in the cartilage growth plate. Current Topics in Developmental Biology, Vol. 76, ed. GP Schatten1–48. San Diego, CA: Academic
    [Google Scholar]
  120. 120.
    Porayette P, Fruitman D, Lauzon JL, Le Goff C, Cormier-Daire V et al. 2014. Novel mutations in geleophysic dysplasia type 1. Pediatr. Dev. Pathol. 17:209–16
    [Google Scholar]
  121. 121.
    Pyeritz RE. 2000. The Marfan syndrome. Annu. Rev. Med. 51:481–510
    [Google Scholar]
  122. 122.
    Radonic T, de Witte P, Baars MJ, Zwinderman AH, Mulder BJ et al. 2010. Losartan therapy in adults with Marfan syndrome: study protocol of the multi-center randomized controlled COMPARE trial. Trials 11:3
    [Google Scholar]
  123. 123.
    Raisz LG. 1999. Physiology and pathophysiology of bone remodeling. Clin. Chem. 45:1353–58
    [Google Scholar]
  124. 124.
    Ramirez F, Rifkin DB. 2009. Extracellular microfibrils: contextual platforms for TGFβ and BMP signaling. Curr. Opin. Cell Biol. 21:616–22
    [Google Scholar]
  125. 125.
    Rodrigues Bento J, Meester J, Luyckx I, Peeters S, Verstraeten A, Loeys B 2022. The genetics and typical traits of thoracic aortic aneurysm and dissection. Annu. Rev. Genom. Hum. Genet. 23:223–53
    [Google Scholar]
  126. 126.
    Sakou T, Onishi T, Yamamoto T, Nagamine T, Sampath T, Ten Dijke P 1999. Localization of Smads, the TGF-β family intracellular signaling components during endochondral ossification. J. Bone Miner. Res. 14:1145–52
    [Google Scholar]
  127. 127.
    Salazar VS, Gamer LW, Rosen V. 2016. BMP signalling in skeletal development, disease and repair. Nat. Rev. Endocrinol. 12:203–21
    [Google Scholar]
  128. 128.
    Salhotra A, Shah HN, Levi B, Longaker MT. 2020. Mechanisms of bone development and repair. Nat. Rev. Mol. Cell Biol. 21:696–711
    [Google Scholar]
  129. 129.
    Samsa WE, Zhou X, Zhou G. 2017. Signaling pathways regulating cartilage growth plate formation and activity. Semin. Cell Dev. Biol. 62:3–15
    [Google Scholar]
  130. 130.
    Sengle G, Tsutsui K, Keene DR, Tufa SF, Carlson EJ et al. 2012. Microenvironmental regulation by fibrillin-1. PLOS Genet. 8:e1002425
    [Google Scholar]
  131. 131.
    Shah MH, Bhat V, Shetty JS, Kumar A. 2014. Whole exome sequencing identifies a novel splice-site mutation in ADAMTS17 in an Indian family with Weill-Marchesani syndrome. Mol. Vis. 20:790–96
    [Google Scholar]
  132. 132.
    Shi M, Zhu J, Wang R, Chen X, Mi L et al. 2011. Latent TGF-β structure and activation. Nature 474:343–49
    [Google Scholar]
  133. 133.
    Shim JH, Greenblatt MB, Xie M, Schneider MD, Zou W et al. 2009. TAK1 is an essential regulator of BMP signalling in cartilage. EMBO J. 28:2028–41
    [Google Scholar]
  134. 134.
    Shimono K, Tung WE, Macolino C, Chi AH, Didizian JH et al. 2011. Potent inhibition of heterotopic ossification by nuclear retinoic acid receptor-gamma agonists. Nat. Med. 17:454–60
    [Google Scholar]
  135. 135.
    Song B, Estrada KD, Lyons KM. 2009. Smad signaling in skeletal development and regeneration. Cytokine Growth Factor Rev. 20:379–88
    [Google Scholar]
  136. 136.
    Song IW, Nagamani SC, Nguyen D, Grafe I, Sutton VR et al. 2022. Targeting TGF-β for treatment of osteogenesis imperfecta. J. Clin. Investig. 132:e152571
    [Google Scholar]
  137. 137.
    Sousa SB, Baujat G, Abadie V, Bonnet D, Sidi D et al. 2010. Postnatal growth retardation, facial dysmorphism, spondylocarpal synostosis, cardiac defect, and inner ear malformation (cardiospondylocarpofacial syndrome?)—a distinct syndrome?. Am. J. Med. Genet. A 152A:539–46
    [Google Scholar]
  138. 138.
    Spranger J, Gilbert EF, Arya S, Hoganson GM, Opitz JM. 1984. Geleophysic dysplasia. Am. J. Med. Genet. 19:487–99
    [Google Scholar]
  139. 139.
    Stanley S, Balic Z, Hubmacher D. 2021. Acromelic dysplasias: how rare musculoskeletal disorders reveal biological functions of extracellular matrix proteins. Ann. N.Y. Acad. Sci. 1490:57–76
    [Google Scholar]
  140. 140.
    Steinkellner H, Etzler J, Gogoll L, Neesen J, Stifter E et al. 2015. Identification and molecular characterisation of a homozygous missense mutation in the ADAMTS10 gene in a patient with Weill-Marchesani syndrome. Eur. J. Hum. Genet. 23:1186–91
    [Google Scholar]
  141. 141.
    Steinle J, Hossain WA, Lovell S, Veatch OJ, Butler MG. 2021. ADAMTSL2 gene variant in patients with features of autosomal dominant connective tissue disorders. Am. J. Med. Genet. A 185:743–52
    [Google Scholar]
  142. 142.
    Stengl R, Bors A, Agg B, Polos M, Matyas G et al. 2020. Optimising the mutation screening strategy in Marfan syndrome and identifying genotypes with more severe aortic involvement. Orphanet J. Rare. Dis. 15:290
    [Google Scholar]
  143. 143.
    van Andel MM, Indrakusuma R, Jalalzadeh H, Balm R, Timmermans J et al. 2020. Long-term clinical outcomes of losartan in patients with Marfan syndrome: follow-up of the multicentre randomized controlled COMPARE trial. Eur. Heart J. 41:4181–87
    [Google Scholar]
  144. 144.
    van der Eerden BC, Karperien M, Wit JM. 2003. Systemic and local regulation of the growth plate. Endocr. Rev. 24:782–801
    [Google Scholar]
  145. 145.
    Van Gucht I, Meester JAN, Bento JR, Bastiaansen M, Bastianen J et al. 2021. A human importin-β-related disorder: syndromic thoracic aortic aneurysm caused by bi-allelic loss-of-function variants in IPO8. Am. J. Hum. Genet. 108:1115–25
    [Google Scholar]
  146. 146.
    van Woerden GM, Senden R, de Konink C, Trezza RA, Baban A et al. 2022.. The MAP3K7 gene: further delineation of clinical characteristics and genotype/phenotype correlations. Hum. Mutat. 43:1377–95
  147. 147.
    Voller T, Cameron P, Watson J, Phadnis J. 2020. The growth plate: anatomy and disorders. Orthopaedics Trauma 34:135–40
    [Google Scholar]
  148. 148.
    Wade EM, Daniel PB, Jenkins ZA, McInerney-Leo A, Leo P et al. 2016. Mutations in MAP3K7 that alter the activity of the TAK1 signaling complex cause frontometaphyseal dysplasia. Am. J. Hum. Genet. 99:392–406
    [Google Scholar]
  149. 149.
    Wang LW, Kutz WE, Mead TJ, Beene LC, Singh S et al. 2019. Adamts10 inactivation in mice leads to persistence of ocular microfibrils subsequent to reduced fibrillin-2 cleavage. Matrix Biol. 77:117–28
    [Google Scholar]
  150. 150.
    Wang RN, Green J, Wang Z, Deng Y, Qiao M et al. 2014. Bone Morphogenetic Protein (BMP) signaling in development and human diseases. Genes Dis. 1:87–105
    [Google Scholar]
  151. 151.
    Wang T, Yang Y, Dong Q, Zhu H, Liu Y. 2020. Acromicric dysplasia with stiff skin syndrome-like severe cutaneous presentation in an 8-year-old boy with a missense FBN1 mutation: case report and literature review. Mol. Genet. Genom. Med. 8:e1282
    [Google Scholar]
  152. 152.
    Wang Y, Zhang H, Ye J, Han L, Gu X. 2014. Three novel mutations of the FBN1 gene in Chinese children with acromelic dysplasia. J. Hum. Genet. 59:563–67
    [Google Scholar]
  153. 153.
    Weiss A, Attisano L. 2013. The TGFβ superfamily signaling pathway. WIREs Dev. Biol. 2:47–63
    [Google Scholar]
  154. 154.
    Weyman AE, Scherrer-Crosbie M. 2004. Marfan syndrome and mitral valve prolapse. J. Clin. Investig. 114:1543–46
    [Google Scholar]
  155. 155.
    Wirtz MK, Samples JR, Kramer PL, Rust K, Yount J et al. 1996. Weill-Marchesani syndrome – possible linkage of the autosomal dominant form to 15q21.1. Am. J. Med. Genet. 65:68–75
    [Google Scholar]
  156. 156.
    Wu M, Chen G, Li YP. 2016. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. 4:16009
    [Google Scholar]
  157. 157.
    Xiong W, Knispel RA, Dietz HC, Ramirez F, Baxter BT. 2008. Doxycycline delays aneurysm rupture in a mouse model of Marfan syndrome. J. Vasc. Surg. 47:166–72
    [Google Scholar]
  158. 158.
    Yamashita M, Fatyol K, Jin C, Wang X, Liu Z, Zhang YE 2008. TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-β. Mol. Cell 31:918–24
    [Google Scholar]
  159. 159.
    Yang GY, Huang X, Chen BJ, Xu ZP. 2021. Weill-Marchesani-like syndrome caused by an FBN1 mutation with low-penetrance. Chin. Med. J. 134:1359–61
    [Google Scholar]
  160. 160.
    Yang HH, Kim JM, Chum E, van Breemen C, Chung AW. 2009. Long-term effects of losartan on structure and function of the thoracic aorta in a mouse model of Marfan syndrome. Br. J. Pharmacol. 158:1503–12
    [Google Scholar]
  161. 161.
    Yi H, Zha X, Zhu Y, Lv J, Hu S et al. 2019. A novel nonsense mutation in ADAMTS17 caused autosomal recessive inheritance Weill-Marchesani syndrome from a Chinese family. J. Hum. Genet. 64:681–87
    [Google Scholar]
  162. 162.
    Yu L, Hebert MC, Zhang YE. 2002. TGF-β receptor-activated p38 MAP kinase mediates Smad-independent TGF-β responses. EMBO J. 21:3749–59
    [Google Scholar]
  163. 163.
    Yu X, Kline B, Han Y, Gao Y, Fan Z, Shi Y. 2022. Weill-Marchesani syndrome 4 caused by compound heterozygosity of a maternal submicroscopic deletion and a paternal nonsense variant in the ADAMTS17 gene: a case report. Am. J. Ophthalmol. Case Rep. 26:101541
    [Google Scholar]
  164. 164.
    Zabriskie J, Reisman M. 1958. Marchesani syndrome. J. Pediatr. 52:158–69
    [Google Scholar]
  165. 165.
    Zhang YE. 2009. Non-Smad pathways in TGF-β signaling. Cell Res. 19:128–39
    [Google Scholar]
  166. 166.
    Zhang YE. 2017. Non-Smad signaling pathways of the TGF-β family. Cold Spring Harb. Perspect. Biol. 9:a022129
    [Google Scholar]
  167. 167.
    Zhao M, Mishra L, Deng CX. 2018. The role of TGF-β/SMAD4 signaling in cancer. Int. J. Biol. Sci. 14:111–23
    [Google Scholar]
  168. 168.
    Zhou X, Edmonson MN, Wilkinson MR, Patel A, Wu G et al. 2016. Exploring genomic alteration in pediatric cancer using ProteinPaint. Nat. Genet. 48:4–6
    [Google Scholar]
  169. 169.
    Ziegler A, Duclaux-Loras R, Revenu C, Charbit-Henrion F, Begue B et al. 2021. Bi-allelic variants in IPO8 cause a connective tissue disorder associated with cardiovascular defects, skeletal abnormalities, and immune dysregulation. Am. J. Hum. Genet. 108:1126–37
    [Google Scholar]
/content/journals/10.1146/annurev-genom-120922-094107
Loading
/content/journals/10.1146/annurev-genom-120922-094107
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error