1932

Abstract

Recent advances in understanding the genetic architecture of autism spectrum disorder have allowed for unprecedented insight into its biological underpinnings. New studies have elucidated the contributions of a variety of forms of genetic variation to autism susceptibility. While the roles of de novo copy number variants and single-nucleotide variants—causing loss-of-function or missense changes—have been increasingly recognized and refined, mosaic single-nucleotide variants have been implicated more recently in some cases. Moreover, inherited variants (including common variants) and, more recently, rare recessive inherited variants have come into greater focus. Finally, noncoding variants—both inherited and de novo—have been implicated in the last few years. This work has revealed a convergence of diverse genetic drivers on common biological pathways and has highlighted the ongoing importance of increasing sample size and experimental innovation. Continuing to synthesize these genetic findings with functional and phenotypic evidence and translating these discoveries to clinical care remain considerable challenges for the field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-121219-082309
2020-08-31
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/genom/21/1/annurev-genom-121219-082309.html?itemId=/content/journals/10.1146/annurev-genom-121219-082309&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Aguet F, Brown AA, Castel SE, Davis JR, He Y et al. 2017. Genetic effects on gene expression across human tissues. Nature 550:204–13
    [Google Scholar]
  2. 2. 
    Am. Psychiatr. Assoc 2013. Diagnostic and Statistical Manual of Mental Disorders Washington, DC: Am. Psychiatr. Assoc, 5th ed..
  3. 3. 
    Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY 1999. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet. 23:185–88
    [Google Scholar]
  4. 4. 
    An J-Y, Lin K, Zhu L, Werling DM, Dong S et al. 2018. Genome-wide de novo risk score implicates promoter variation in autism spectrum disorder. Science 362:eaat6576
    [Google Scholar]
  5. 5. 
    Baio J, Wiggins L, Christensen DL, Maenner MJ, Daniels J et al. 2018. Prevalence of autism spectrum disorder among children aged 8 years—Autism and Developmental Disabilities Monitoring Network, 11 sites, United States, 2014. MMWR. Surveill. Summ. 67:1–23
    [Google Scholar]
  6. 6. 
    Ben-Shalom R, Keeshen CM, Berrios KN, An JY, Sanders SJ, Bender KJ 2017. Opposing effects on NaV1.2 function underlie differences between SCN2A variants observed in individuals with autism spectrum disorder or infantile seizures. Biol. Psychiatry 82:224–32
    [Google Scholar]
  7. 7. 
    Brandler WM, Antaki D, Gujral M, Kleiber ML, Whitney J et al. 2018. Paternally inherited cis-regulatory structural variants are associated with autism. Science 360:327–31
    [Google Scholar]
  8. 8. 
    Brandler WM, Antaki D, Gujral M, Noor A, Rosanio G et al. 2016. Frequency and complexity of de novo structural mutation in autism. Am. J. Hum. Genet. 98:667–79
    [Google Scholar]
  9. 9. 
    Chaste P, Klei L, Sanders SJ, Hus V, Murtha MT et al. 2015. A genome-wide association study of autism using the Simons Simplex Collection: Does reducing phenotypic heterogeneity in autism increase genetic homogeneity. Biol. Psychiatry 77:775–84
    [Google Scholar]
  10. 10. 
    Chaste P, Roeder K, Devlin B 2017. The yin and yang of autism genetics: how rare de novo and common variations affect liability. Annu. Rev. Genom. Hum. Genet. 18:167–87
    [Google Scholar]
  11. 11. 
    D'Angelo D, Lebon S, Chen Q, Martin-Brevet S, Snyder LG et al. 2016. Defining the effect of the 16p11.2 duplication on cognition, behavior, and medical comorbidities. JAMA Psychiatry 73:20–30
    [Google Scholar]
  12. 12. 
    De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K et al. 2014. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515:209–15
    [Google Scholar]
  13. 13. 
    Deciphering Dev. Disord. Study 2017. Prevalence and architecture of de novo mutations in developmental disorders. Nature 542:433–38
    [Google Scholar]
  14. 14. 
    Deshpande A, Yadav S, Dao DQ, Wu Z-Y, Hokanson KC et al. 2017. Cellular phenotypes in human iPSC-derived neurons from a genetic model of autism spectrum disorder. Cell Rep 21:2678–87
    [Google Scholar]
  15. 15. 
    D'Gama AM, Pochareddy S, Li M, Jamuar SS, Reiff RE et al. 2015. Targeted DNA sequencing from autism spectrum disorder brains implicates multiple genetic mechanisms. Neuron 88:910–17
    [Google Scholar]
  16. 16. 
    D'Gama AM, Woodworth MB, Hossain AA, Bizzotto S, Hatem NE et al. 2017. Somatic mutations activating the mTOR pathway in dorsal telencephalic progenitors cause a continuum of cortical dysplasias. Cell Rep 21:3754–66
    [Google Scholar]
  17. 17. 
    Doan RN, Bae B-I, Cubelos B, Chang C, Hossain AA et al. 2016. Mutations in human accelerated regions disrupt cognition and social behavior. Cell 167:341–54.e12
    [Google Scholar]
  18. 18. 
    Doan RN, Lim ET, De Rubeis S, Betancur C, Cutler DJ et al. 2019. Recessive gene disruptions in autism spectrum disorder. Nat. Genet. 51:1092–98
    [Google Scholar]
  19. 19. 
    Doherty JL, Owen MJ. 2014. Genomic insights into the overlap between psychiatric disorders: implications for research and clinical practice. Genome Med 6:29
    [Google Scholar]
  20. 20. 
    Doornbos M, Sikkema-Raddatz B, Ruijvenkamp CAL, Dijkhuizen T, Bijlsma EK et al. 2009. Nine patients with a microdeletion 15q11.2 between breakpoints 1 and 2 of the Prader-Willi critical region, possibly associated with behavioural disturbances. Eur. J. Med. Genet. 52:108–15
    [Google Scholar]
  21. 21. 
    Durkin MS, Maenner MJ, Baio J, Christensen D, Daniels J et al. 2017. Autism spectrum disorder among US children (2002–2010): socioeconomic, racial, and ethnic disparities. Am. J. Public Health. 107:1818–26
    [Google Scholar]
  22. 22. 
    Freed D, Pevsner J. 2016. The contribution of mosaic variants to autism spectrum disorder. PLOS Genet 12:e1006245
    [Google Scholar]
  23. 23. 
    Gandal MJ, Haney JR, Parikshak NN, Leppa V, Ramaswami G et al. 2018. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science 359:693–97
    [Google Scholar]
  24. 24. 
    Gaugler T, Klei L, Sanders SJ, Bodea CA, Goldberg AP et al. 2014. Most genetic risk for autism resides with common variation. Nat. Genet. 46:881–85
    [Google Scholar]
  25. 25. 
    Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C et al. 2007. Patterns of somatic mutation in human cancer genomes. Nature 446:153–58
    [Google Scholar]
  26. 26. 
    Grove J, Ripke S, Als TD, Mattheisen M, Walters RK et al. 2019. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 51:431–44
    [Google Scholar]
  27. 27. 
    Hallmayer J. 2011. Genetic heritability and shared environmental factors among twin pairs with autism. Arch. Gen. Psychiatry 68:1095
    [Google Scholar]
  28. 28. 
    Hanson E, Nasir RH, Fong A, Lian A, Hundley R et al. 2010. Cognitive and behavioral characterization of 16p11.2 deletion syndrome. J. Dev. Behav. Pediatr. 31:649–57
    [Google Scholar]
  29. 29. 
    Iakoucheva LM, Muotri AR, Sebat J 2019. Getting to the cores of autism. Cell 178:1287–98
    [Google Scholar]
  30. 30. 
    Iossifov I, O'Roak BJ, Sanders SJ, Ronemus M, Krumm N et al. 2014. The contribution of de novo coding mutations to autism spectrum disorder. Nature 515:216–21
    [Google Scholar]
  31. 31. 
    Iossifov I, Ronemus M, Levy D, Wang Z, Hakker I et al. 2012. De novo gene disruptions in children on the autistic spectrum. Neuron 74:285–99
    [Google Scholar]
  32. 32. 
    Järvinen A, Korenberg JR, Bellugi U 2013. The social phenotype of Williams syndrome. Curr. Opin. Neurobiol. 23:414–22
    [Google Scholar]
  33. 33. 
    Klei L, Sanders SJ, Murtha MT, Hus V, Lowe JK et al. 2012. Common genetic variants, acting additively, are a major source of risk for autism. Mol. Autism 3:9
    [Google Scholar]
  34. 34. 
    Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P et al. 2012. Rate of de novo mutations and the importance of father's age to disease risk. Nature 488:471–75
    [Google Scholar]
  35. 35. 
    Kosmicki JA, Samocha KE, Howrigan DP, Sanders SJ, Slowikowski K et al. 2017. Refining the role of de novo protein-truncating variants in neurodevelopmental disorders by using population reference samples. Nat. Genet. 49:504–10
    [Google Scholar]
  36. 36. 
    Krumm N, Sudmant PH, Ko A, O'Roak BJ, Malig M et al. 2012. Copy number variation detection and genotyping from exome sequence data. Genome Res 22:1525–32
    [Google Scholar]
  37. 37. 
    Krumm N, Turner TN, Baker C, Vives L, Mohajeri K et al. 2015. Excess of rare, inherited truncating mutations in autism. Nat. Genet. 47:582–88
    [Google Scholar]
  38. 38. 
    Kumar RA, KaraMohamed S, Sudi J, Conrad DF, Brune C et al. 2007. Recurrent 16p11.2 microdeletions in autism. Hum. Mol. Genet. 17:628–38
    [Google Scholar]
  39. 39. 
    Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E et al. 2016. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:285–91
    [Google Scholar]
  40. 40. 
    Li M, Santpere G, Imamura Kawasawa Y, Evgrafov OV, Gulden FO et al. 2018. Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science 362:eaat7615
    [Google Scholar]
  41. 41. 
    Lim ET, Raychaudhuri S, Sanders SJ, Stevens C, Sabo A et al. 2013. Rare complete knockouts in humans: population distribution and significant role in autism spectrum disorders. Neuron 77:235–42
    [Google Scholar]
  42. 42. 
    Lim ET, Uddin M, De Rubeis S, Chan Y, Kamumbu AS et al. 2017. Rates, distribution and implications of postzygotic mosaic mutations in autism spectrum disorder. Nat. Neurosci. 20:1217–24
    [Google Scholar]
  43. 43. 
    Lindstrand A, Eisfeldt J, Pettersson M, Carvalho CMB, Kvarnung M et al. 2019. From cytogenetics to cytogenomics: whole-genome sequencing as a first-line test comprehensively captures the diverse spectrum of disease-causing genetic variation underlying intellectual disability. Genome Med 11:68
    [Google Scholar]
  44. 44. 
    Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L et al. 2008. Structural variation of chromosomes in autism spectrum disorder. Am. J. Hum. Genet. 82:477–88
    [Google Scholar]
  45. 45. 
    Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR et al. 2010. Consensus statement: Chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am. J. Hum. Genet. 86:749–64
    [Google Scholar]
  46. 46. 
    Morrow EM, Yoo S-Y, Flavell SW, Kim T-K, Lin Y et al. 2008. Identifying autism loci and genes by tracing recent shared ancestry. Science 321:218–23
    [Google Scholar]
  47. 47. 
    Neale BM, Kou Y, Liu L, Ma'ayan A, Samocha KE et al. 2012. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485:242–45
    [Google Scholar]
  48. 48. 
    Nowakowski TJ, Bhaduri A, Pollen AA, Alvarado B, Mostajo-Radji MA et al. 2017. Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex. Science 358:1318–23
    [Google Scholar]
  49. 49. 
    O'Roak BJ, Deriziotis P, Lee C, Vives L, Schwartz JJ et al. 2011. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat. Genet. 43:585–89
    [Google Scholar]
  50. 50. 
    Phan BN, Bohlen F, Davis BA, Ye Z, Chen H-Y et al. 2020. A myelin-related transcriptomic profile is shared by Pitt–Hopkins syndrome models and human autism spectrum disorder. Nat. Neurosci. 23:375–85
    [Google Scholar]
  51. 51. 
    Poduri A, Evrony GD, Cai X, Elhosary PC, Beroukhim R et al. 2012. Somatic activation of AKT3 causes hemispheric developmental brain malformations. Neuron 74:41–48
    [Google Scholar]
  52. 52. 
    Ritvo ER, Spence MA, Freeman BJ, Mason-Brothers A, Mo A, Marazita ML 1985. Evidence for autosomal recessive inheritance in 46 families with multiple incidences of autism. Am. J. Psychiatry 142:187–92
    [Google Scholar]
  53. 53. 
    Rodin RE, Dou Y, Kwon M, Sherman MA, D'Gama AM et al. 2020. The landscape of mutational mosaicism in autistic and normal human cerebral cortex. bioRxiv 2020.02.11.944413. https://doi.org/10.1101/2020.02.11.944413
    [Crossref]
  54. 54. 
    Rodin RE, Walsh CA. 2018. Somatic mutation in pediatric neurological diseases. Pediatr. Neurol. 87:20–22
    [Google Scholar]
  55. 55. 
    Ruzzo EK, Pérez-Cano L, Jung J-Y, Wang L, Kashef-Haghighi D et al. 2019. Inherited and de novo genetic risk for autism impacts shared networks. Cell 178:850–66.e26
    [Google Scholar]
  56. 56. 
    Samocha KE, Kosmicki JA, Karczewski KJ, O'Donnell-Luria AH, Pierce-Hoffman E et al. 2017. Regional missense constraint improves variant deleteriousness prediction. bioRxiv 148353. https://doi.org/10.1101/148353
    [Crossref]
  57. 57. 
    Sanders SJ, Ercan-Sencicek AG, Hus V, Luo R, Murtha MT et al. 2011. Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron 70:863–85
    [Google Scholar]
  58. 58. 
    Sanders SJ, He X, Willsey AJ, Ercan-Sencicek AG, Samocha KE et al. 2015. Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron 87:1215–33
    [Google Scholar]
  59. 59. 
    Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ et al. 2012. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485:237–41
    [Google Scholar]
  60. 60. 
    Sandin S, Lichtenstein P, Kuja-Halkola R, Hultman C, Larsson H, Reichenberg A 2017. The heritability of autism spectrum disorder. JAMA 318:1182
    [Google Scholar]
  61. 61. 
    Sandin S, Lichtenstein P, Kuja-Halkola R, Larsson H, Hultman CM, Reichenberg A 2014. The familial risk of autism. JAMA 311:1770
    [Google Scholar]
  62. 62. 
    Satterstrom FK, Kosmicki JA, Wang J, Breen MS, De Rubeis S et al. 2019. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell 180:568–84.e23
    [Google Scholar]
  63. 63. 
    Schaefer GB, Mendelsohn NJ. 2008. Genetics evaluation for the etiologic diagnosis of autism spectrum disorders. Genet. Med. 10:4–12
    [Google Scholar]
  64. 64. 
    Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C et al. 2007. Strong association of de novo copy number mutations with autism. Science 316:445–49
    [Google Scholar]
  65. 65. 
    Shen Y, Dies KA, Holm IA, Bridgemohan C, Sobeih MM et al. 2010. Clinical genetic testing for patients with autism spectrum disorders. Pediatrics 125:e727–35
    [Google Scholar]
  66. 65a. 
    Sherman MA, Rodin RE, Genovese G, Dias C, Barton AR et al. 2020. Large mosaic copy number variations confer autism risk. medRxiv 2020.01.22.20017624. https://doi.org/10.1101/2020.01.22.20017624
    [Crossref]
  67. 66. 
    Shirley MD, Tang H, Gallione CJ, Baugher JD, Frelin LP et al. 2013. Sturge-Weber syndrome and port-wine stains caused by somatic mutation in GNAQ. N. Engl. J. Med 368:1971–79
    [Google Scholar]
  68. 67. 
    Short PJ, McRae JF, Gallone G, Sifrim A, Won H et al. 2018. De novo mutations in regulatory elements in neurodevelopmental disorders. Nature 555:611–16
    [Google Scholar]
  69. 68. 
    Smoller JW, Kendler K, Craddock N, Lee PH, Neale BM et al. 2013. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381:1371–79
    [Google Scholar]
  70. 69. 
    Somerville MJ, Mervis CB, Young EJ, Seo E-J, del Campo M et al. 2005. Severe expressive-language delay related to duplication of the Williams-Beuren locus. N. Engl. J. Med. 353:1694–701
    [Google Scholar]
  71. 70. 
    Srivastava S, Love-Nichols JA, Dies KA, Ledbetter DH, Martin CL et al. 2019. Meta-analysis and multidisciplinary consensus statement: exome sequencing is a first-tier clinical diagnostic test for individuals with neurodevelopmental disorders. Genet. Med. 21:2413–21
    [Google Scholar]
  72. 71. 
    Stein JL, Parikshak NN, Geschwind DH 2013. Rare inherited variation in autism: beginning to see the forest and a few trees. Neuron 77:209–11
    [Google Scholar]
  73. 72. 
    Tick B, Bolton P, Happé F, Rutter M, Rijsdijk F 2016. Heritability of autism spectrum disorders: a meta-analysis of twin studies. J. Child Psychol. Psychiatry 57:585–95
    [Google Scholar]
  74. 73. 
    Turner TN, Coe BP, Dickel DE, Hoekzema K, Nelson BJ et al. 2017. Genomic patterns of de novo mutation in simplex autism. Cell 171:710–722.e12
    [Google Scholar]
  75. 74. 
    Turner TN, Eichler EE. 2019. The role of de novo noncoding regulatory mutations in neurodevelopmental disorders. Trends Neurosci 42:115–27
    [Google Scholar]
  76. 75. 
    Turner TN, Hormozdiari F, Duyzend MH, McClymont SA, Hook PW et al. 2016. Genome sequencing of autism-affected families reveals disruption of putative noncoding regulatory DNA. Am. J. Hum. Genet. 98:58–74
    [Google Scholar]
  77. 76. 
    Veenstra-VanderWeele J, Christian SL, Cook EH Jr 2004. Autism as a paradigmatic complex genetic disorder. Annu. Rev. Genom. Hum. Genet. 5:379–405
    [Google Scholar]
  78. 77. 
    Velmeshev D, Schirmer L, Jung D, Haeussler M, Perez Y et al. 2019. Single-cell genomics identifies cell type-specific molecular changes in autism. Science 364:685–89
    [Google Scholar]
  79. 78. 
    Vorstman JAS, Morcus MEJ, Duijff SN, Klaassen PWJ, Heineman-de Boer JA et al. 2006. The 22q11.2 deletion in children. J. Am. Acad. Child Adolesc. Psychiatry 45:1104–13
    [Google Scholar]
  80. 79. 
    Walters RG, Jacquemont S, Valsesia A, de Smith AJ, Martinet D et al. 2010. A new highly penetrant form of obesity due to deletions on chromosome 16p11.2. Nature 463:671–75
    [Google Scholar]
  81. 80. 
    Weiner DJ, Wigdor EM, Ripke S, Walters RK, Kosmicki JA et al. 2017. Polygenic transmission disequilibrium confirms that common and rare variation act additively to create risk for autism spectrum disorders. Nat. Genet. 49:978–85
    [Google Scholar]
  82. 81. 
    Werling DM, Brand H, An J-Y, Stone MR, Zhu L et al. 2018. An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder. Nat. Genet. 50:727–36
    [Google Scholar]
  83. 82. 
    Williams SM, An JY, Edson J, Watts M, Murigneux V et al. 2019. An integrative analysis of non-coding regulatory DNA variations associated with autism spectrum disorder. Mol. Psychiatry 24:1707–19
    [Google Scholar]
  84. 83. 
    Yu TW, Chahrour MH, Coulter ME, Jiralerspong S, Okamura-Ikeda K et al. 2013. Using whole-exome sequencing to identify inherited causes of autism. Neuron 77:259–73
    [Google Scholar]
  85. 84. 
    Zhou J, Park CY, Theesfeld CL, Wong AK, Yuan Y et al. 2019. Whole-genome deep-learning analysis identifies contribution of noncoding mutations to autism risk. Nat. Genet. 51:973–80
    [Google Scholar]
/content/journals/10.1146/annurev-genom-121219-082309
Loading
/content/journals/10.1146/annurev-genom-121219-082309
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error