1932

Abstract

Recent advances in genetic sequencing are transforming our approach to rare-disease care. Initially identified in cancer, gain-of-function mutations of the gene are also detected in malformation mosaic diseases categorized as -related disorders (PRDs). Over the past decade, new approaches have enabled researchers to elucidate the pathophysiology of PRDs and uncover novel therapeutic options. In just a few years, owing to vigorous global research efforts, PRDs have been transformed from incurable diseases to chronic disorders accessible to targeted therapy. However, new challenges for both medical practitioners and researchers have emerged. Areas of uncertainty remain in our comprehension of PRDs, especially regarding the relationship between genotype and phenotype, the mechanisms underlying mosaicism, and the processes involved in intercellular communication. As the clinical and biological landscape of PRDs is constantly evolving, this review aims to summarize current knowledge regarding and its role in nonmalignant human disease, from molecular mechanisms to evidence-based treatments.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-121222-114518
2024-08-27
2024-10-04
Loading full text...

Full text loading...

/deliver/fulltext/genom/25/1/annurev-genom-121222-114518.html?itemId=/content/journals/10.1146/annurev-genom-121222-114518&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adams DM, Trenor CC, Hammill AM, Vinks AA, Patel MN, et al. 2016.. Efficacy and safety of sirolimus in the treatment of complicated vascular anomalies. . Pediatrics 137:(2):e20153257
    [Crossref] [Google Scholar]
  2. 2.
    Al-Olabi L, Polubothu S, Dowsett K, Andrews KA, Stadnik P, et al. 2018.. Mosaic RAS/MAPK variants cause sporadic vascular malformations which respond to targeted therapy. . J. Clin. Investig. 128:(4):1496508
    [Crossref] [Google Scholar]
  3. 3.
    André F, Ciruelos E, Rubovszky G, Campone M, Loibl S, et al. 2019.. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. . N. Engl. J. Med. 380:(20):192940
    [Crossref] [Google Scholar]
  4. 4.
    Bachman KE, Argani P, Samuels Y, Silliman N, Ptak J, et al. 2004.. The PIK3CA gene is mutated with high frequency in human breast cancers. . Cancer Biol. Ther. 3:(8):77275
    [Crossref] [Google Scholar]
  5. 5.
    Bader AG, Kang S, Vogt PK. 2006.. Cancer-specific mutations in PIK3CA are oncogenic in vivo. . PNAS 103:(5):147579
    [Crossref] [Google Scholar]
  6. 6.
    Bayard C, Segna E, Taverne M, Fraissenon A, Hennocq Q, et al. 2023.. Hemifacial myohyperplasia is due to somatic muscular PIK3CA gain-of-function mutations and responds to pharmacological inhibition. . J. Exp. Med. 220:(11):e20230926
    [Crossref] [Google Scholar]
  7. 7.
    Bianchi DW, Chiu RWK. 2018.. Sequencing of circulating cell-free DNA during pregnancy. . N. Engl. J. Med. 379:(5):46473
    [Crossref] [Google Scholar]
  8. 8.
    Bissler JJ, McCormack FX, Young LR, Elwing JM, Chuck G, et al. 2008.. Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. . N. Engl. J. Med. 358:(2):14051
    [Crossref] [Google Scholar]
  9. 9.
    Blei F, Finger M, Klepper L, Iacobas I. 2019.. Survey of adult patients with vascular malformations reveals acute need of adult hematologists to enter the field. . Blood 134:(Suppl. 1):5785
    [Crossref] [Google Scholar]
  10. 10.
    Boscolo E, Limaye N, Huang L, Kang K-T, Soblet J, et al. 2015.. Rapamycin improves TIE2-mutated venous malformation in murine model and human subjects. . J. Clin. Investig. 125:(9):3491504
    [Crossref] [Google Scholar]
  11. 11.
    Brouillard P, Schlögel MJ, Homayun Sepehr N, Helaers R, Queisser A, et al. 2021.. Non-hotspot PIK3CA mutations are more frequent in CLOVES than in common or combined lymphatic malformations. . Orphanet J. Rare Dis. 16:(1):267
    [Crossref] [Google Scholar]
  12. 12.
    Campbell IG, Russell SE, Choong DYH, Montgomery KG, Ciavarella ML, et al. 2004.. Mutation of the PIK3CA gene in ovarian and breast cancer. . Cancer Res. 64:(21):767881
    [Crossref] [Google Scholar]
  13. 13.
    Canaud G, Hammill AM, Adams D, Vikkula M, Keppler-Noreuil KM. 2021.. A review of mechanisms of disease across PIK3CA-related disorders with vascular manifestations. . Orphanet J. Rare Dis. 16:(1):306
    [Crossref] [Google Scholar]
  14. 14.
    Canaud G, Lopez Gutierrez JC, Irvine AD, Vabres P, Hansford JR, et al. 2023.. Alpelisib for treatment of patients with PIK3CA-related overgrowth spectrum (PROS). . Genet. Med. 25:(12):100969
    [Crossref] [Google Scholar]
  15. 15.
    Castel P, Carmona FJ, Grego-Bessa J, Berger MF, Viale A, et al. 2016.. Somatic PIK3CA mutations as a driver of sporadic venous malformations. . Sci. Transl. Med. 8:(332):332ra42
    [Crossref] [Google Scholar]
  16. 16.
    Castillo SD, Tzouanacou E, Zaw-Thin M, Berenjeno IM, Parker VER, et al. 2016.. Somatic activating mutations in Pik3ca cause sporadic venous malformations in mice and humans. . Sci. Transl. Med. 8:(332):332ra43
    [Crossref] [Google Scholar]
  17. 17.
    Chen W-L, Pao E, Owens J, Glass I, Pritchard C, et al. 2022.. The utility of cerebrospinal fluid–derived cell-free DNA in molecular diagnostics for the PIK3CA-related megalencephaly-capillary malformation (MCAP) syndrome: a case report. . Cold Spring Harb. Mol. Case Stud. 8:(3):a006188
    [Google Scholar]
  18. 18.
    Colmenero I, Knöpfel N. 2021.. Venous malformations in childhood: clinical, histopathological and genetics update. . Dermatopathology 8:(4):47793
    [Crossref] [Google Scholar]
  19. 19.
    Couto JA, Huang AY, Konczyk DJ, Goss JA, Fishman SJ, et al. 2017.. Somatic MAP2K1 mutations are associated with extracranial arteriovenous malformation. . Am. J. Hum. Genet. 100:(3):54654
    [Crossref] [Google Scholar]
  20. 20.
    Delestre F, Venot Q, Bayard C, Fraissenon A, Ladraa S, et al. 2021.. Alpelisib administration reduced lymphatic malformations in a mouse model and in patients. . Sci. Transl. Med. 13:(614):eabg0809
    [Crossref] [Google Scholar]
  21. 21.
    D'Gama AM, Woodworth MB, Hossain AA, Bizzotto S, Hatem NE, et al. 2017.. Somatic mutations activating the mTOR pathway in dorsal telencephalic progenitors cause a continuum of cortical dysplasias. . Cell Rep. 21:(13):375466
    [Crossref] [Google Scholar]
  22. 22.
    di Blasio L, Puliafito A, Gagliardi PA, Comunanza V, Somale D, et al. 2018.. PI3K/mTOR inhibition promotes the regression of experimental vascular malformations driven by PIK3CA-activating mutations. . Cell Death Dis. 9:(2):45
    [Crossref] [Google Scholar]
  23. 23.
    Dompmartin A, Acher A, Thibon P, Tourbach S, Hermans C, et al. 2008.. Association of localized intravascular coagulopathy with venous malformations. . Arch. Dermatol. 144:(7):87377
    [Crossref] [Google Scholar]
  24. 24.
    Dompmartin A, Blaizot X, Théron J, Hammer F, Chene Y, et al. 2011.. Radio-opaque ethylcellulose-ethanol is a safe and efficient sclerosing agent for venous malformations. . Eur. Radiol. 21:(12):264756
    [Crossref] [Google Scholar]
  25. 25.
    Dompmartin A, Vikkula M, Boon LM. 2010.. Venous malformation: update on aetiopathogenesis, diagnosis and management. . Phlebology 25:(5):22435
    [Crossref] [Google Scholar]
  26. 26.
    Fernández Oliveira C, Martínez Roca C, Gómez Tellado M, Salvador Garrido MP, Outeda Macías M, Martín Herranz I. 2023.. Treatment with oral or topical sirolimus in complex vascular anomalies in pediatrics. Experience in a third-level hospital. . Cir. Pediatr. 36:(2):6066
    [Google Scholar]
  27. 27.
    Fraissenon A, Cabet S, Fichez A, Abel C, Canaud G, Guibaud L. 2020.. Prenatal imaging diagnosis of PIK3CA-related overgrowth spectrum disorders in first trimester with emphasis on extremities. . Ultrasound Obstetr. Gynecol. 56:(5):78081
    [Crossref] [Google Scholar]
  28. 28.
    Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT. 2017.. The PI3K pathway in human disease. . Cell 170:(4):60535
    [Crossref] [Google Scholar]
  29. 29.
    Furet P, Guagnano V, Fairhurst RA, Imbach-Weese P, Bruce I, et al. 2013.. Discovery of NVP-BYL719 a potent and selective phosphatidylinositol-3 kinase alpha inhibitor selected for clinical evaluation. . Bioorg. Med. Chem. Lett. 23:(13):374148
    [Crossref] [Google Scholar]
  30. 30.
    García-Romero MT, Parkin P, Lara-Corrales I. 2016.. Mosaic neurofibromatosis type 1: a systematic review. . Pediatr. Dermatol. 33:(1):917
    [Crossref] [Google Scholar]
  31. 31.
    Garde A, Guibaud L, Goldenberg A, Petit F, Dard R, et al. 2021.. Clinical and neuroimaging findings in 33 patients with MCAP syndrome: a survey to evaluate relevant endpoints for future clinical trials. . Clin. Genet. 99:(5):65061
    [Crossref] [Google Scholar]
  32. 32.
    Garneau AP, Haydock L, Tremblay LE, Isenring P. 2021.. Somatic non-cancerous PIK3CA-related overgrowth syndrome treated with alpelisib in North America. . J. Mol. Med. 99:(3):31113
    [Crossref] [Google Scholar]
  33. 33.
    Goines J, Li X, Cai Y, Mobberley-Schuman P, Metcalf M, et al. 2018.. A xenograft model for venous malformation. . Angiogenesis 21:(4):72535
    [Crossref] [Google Scholar]
  34. 34.
    Goodwin S, McPherson JD, McCombie WR. 2016.. Coming of age: ten years of next-generation sequencing technologies. . Nat. Rev. Genet. 17:(6):33351
    [Crossref] [Google Scholar]
  35. 35.
    Hafner C, Groesser L. 2013.. Mosaic RASopathies. . Cell Cycle 12:(1):4350
    [Crossref] [Google Scholar]
  36. 36.
    Hafner C, López-Knowles E, Luis NM, Toll A, Baselga E, et al. 2007.. Oncogenic PIK3CA mutations occur in epidermal nevi and seborrheic keratoses with a characteristic mutation pattern. . PNAS 104:(33):1345054
    [Crossref] [Google Scholar]
  37. 37.
    Hafner C, Toll A, Fernández-Casado A, Earl J, Marqués M, et al. 2010.. Multiple oncogenic mutations and clonal relationship in spatially distinct benign human epidermal tumors. . PNAS 107:(48):2078085
    [Crossref] [Google Scholar]
  38. 38.
    Hammill AM, Wentzel M, Gupta A, Nelson S, Lucky A, et al. 2011.. Sirolimus for the treatment of complicated vascular anomalies in children. . Pediatr. Blood Cancer 57:(6):101824
    [Crossref] [Google Scholar]
  39. 39.
    Hao Y, Samuels Y, Li Q, Krokowski D, Guan B-J, et al. 2016.. Oncogenic PIK3CA mutations reprogram glutamine metabolism in colorectal cancer. . Nat. Commun. 7::11971
    [Crossref] [Google Scholar]
  40. 40.
    Happle R. 2016.. The categories of cutaneous mosaicism: a proposed classification. . Am. J. Med. Genet. A 170A:(2):45259
    [Crossref] [Google Scholar]
  41. 41.
    Hare LM, Schwarz Q, Wiszniak S, Gurung R, Montgomery KG, et al. 2015.. Heterozygous expression of the oncogenic Pik3caH1047R mutation during murine development results in fatal embryonic and extraembryonic defects. . Dev. Biol. 404:(1):1426
    [Crossref] [Google Scholar]
  42. 42.
    Heitman J, Movva NR, Hall MN. 1991.. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. . Science 253:(5022):9059
    [Crossref] [Google Scholar]
  43. 43.
    Hennig M, Fiedler S, Jux C, Thierfelder L, Drenckhahn J. 2017.. Prenatal mechanistic target of rapamycin complex 1 (m TORC1) inhibition by rapamycin treatment of pregnant mice causes intrauterine growth restriction and alters postnatal cardiac growth, morphology, and function. . J. Am. Heart Assoc. 6:(8):e005506
    [Crossref] [Google Scholar]
  44. 44.
    Heyne TF, Neri G, Lin AE. 2021.. The earliest depictions of a PIK3CA-related overgrowth spectrum disorder: 17th-18th century prints of women with severe limb overgrowth. . Am. J. Med. Genet. C 187:(2):16872
    [Crossref] [Google Scholar]
  45. 45.
    Holy EW, Jakob P, Eickner T, Camici GG, Beer JH, et al. 2014.. PI3K/p110α inhibition selectively interferes with arterial thrombosis and neointima formation, but not re-endothelialization: potential implications for drug-eluting stent design. . Eur. Heart J. 35:(12):80820
    [Crossref] [Google Scholar]
  46. 46.
    Huang C-H, Mandelker D, Schmidt-Kittler O, Samuels Y, Velculescu VE, et al. 2007.. The structure of a human p110α/p85α complex elucidates the effects of oncogenic PI3Kα mutations. . Science 318:(5857):174448
    [Crossref] [Google Scholar]
  47. 47.
    Huang X, Dai Z, Cai L, Sun K, Cho J, et al. 2016.. Endothelial p110γPI3K mediates endothelial regeneration and vascular repair following inflammatory vascular injury. . Circulation 133:(11):1093103
    [Crossref] [Google Scholar]
  48. 48.
    Jacob AG, Driscoll DJ, Shaughnessy WJ, Stanson AW, Clay RP, Gloviczki P. 1998.. Klippel-Trénaunay syndrome: spectrum and management. . Mayo Clin. Proc. 73:(1):2836
    [Crossref] [Google Scholar]
  49. 49.
    James A, Blumenstein L, Glaenzel U, Jin Y, Demailly A, et al. 2015.. Absorption, distribution, metabolism, and excretion of [14C]BYL719 (alpelisib) in healthy male volunteers. . Cancer Chemother. Pharmacol. 76:(4):75160
    [Crossref] [Google Scholar]
  50. 50.
    Janardhan HP, Meng X, Dresser K, Hutchinson L, Trivedi CM. 2020.. KRAS or BRAF mutations cause hepatic vascular cavernomas treatable with MAP2K–MAPK1 inhibition. . J. Exp. Med. 217:(7):e20192205
    [Crossref] [Google Scholar]
  51. 51.
    Jansen LA, Mirzaa GM, Ishak GE, O'Roak BJ, Hiatt JB, et al. 2015.. PI3K/AKT pathway mutations cause a spectrum of brain malformations from megalencephaly to focal cortical dysplasia. . Brain 138:(6):161328
    [Crossref] [Google Scholar]
  52. 52.
    Keppler-Noreuil KM, Sapp JC, Lindhurst MJ, Parker VE, Blumhorst C, et al. 2014.. Clinical delineation and natural history of the PIK3CA-related overgrowth spectrum. . Am. J. Med. Genet. A 164:(7):171333
    [Crossref] [Google Scholar]
  53. 53.
    Kessler D, Gmachl M, Mantoulidis A, Martin LJ, Zoephel A, et al. 2019.. Drugging an undruggable pocket on KRAS. . PNAS 116:(32):1582329
    [Crossref] [Google Scholar]
  54. 54.
    Kinross KM, Montgomery KG, Mangiafico SP, Hare LM, Kleinschmidt M, et al. 2015.. Ubiquitous expression of the Pik3caH1047R mutation promotes hypoglycemia, hypoinsulinemia, and organomegaly. . FASEB J. 29:(4):142634
    [Crossref] [Google Scholar]
  55. 55.
    Kinsler VA, Thomas AC, Ishida M, Bulstrode NW, Loughlin S, et al. 2013.. Multiple congenital melanocytic nevi and neurocutaneous melanosis are caused by postzygotic mutations in codon 61 of NRAS. . J. Investig. Dermatol. 133:(9):222936
    [Crossref] [Google Scholar]
  56. 56.
    Klippel A, Wang R, Puca L, Faber AL, Shen W, et al. 2021.. Abstract P142: preclinical characterization of LOX-22783, a highly potent, mutant-selective and brain-penetrant allosteric PI3Kα H1047R inhibitor. . Mol. Cancer Ther. 20:(12 Suppl.):P142
    [Crossref] [Google Scholar]
  57. 57.
    Kobialka P, Sabata H, Vilalta O, Gouveia L, Angulo-Urarte A, et al. 2022.. The onset of PI3K-related vascular malformations occurs during angiogenesis and is prevented by the AKT inhibitor miransertib. . EMBO Mol. Med. 14:(7):e15619
    [Crossref] [Google Scholar]
  58. 58.
    Korhonen EA, Murtomäki A, Jha SK, Anisimov A, Pink A, et al. 2022.. Lymphangiogenesis requires Ang2/Tie/PI3K signaling for VEGFR3 cell-surface expression. . J. Clin. Investig. 132:(15):e155478
    [Crossref] [Google Scholar]
  59. 59.
    Kostecka A, Nowikiewicz T, Olszewski P, Koczkowska M, Horbacz M, et al. 2022.. High prevalence of somatic PIK3CA and TP53 pathogenic variants in the normal mammary gland tissue of sporadic breast cancer patients revealed by duplex sequencing. . npj Breast Cancer 8:(1):76
    [Crossref] [Google Scholar]
  60. 60.
    Kuentz P, St-Onge J, Duffourd Y, Courcet J-B, Carmignac V, et al. 2017.. Molecular diagnosis of PIK3CA-related overgrowth spectrum (PROS) in 162 patients and recommendations for genetic testing. . Genet. Med. 19:(9):98997
    [Crossref] [Google Scholar]
  61. 61.
    Kurek KC, Luks VL, Ayturk UM, Alomari AI, Fishman SJ, et al. 2012.. Domatic mosaic activating mutations in PIK3CA cause CLOVES syndrome. . Am. J. Hum. Genet. 90:(6):110815
    [Crossref] [Google Scholar]
  62. 62.
    Ladraa S, Zerbib L, Bayard C, Fraissenon A, Venot Q, et al. 2022.. PIK3CA gain-of-function mutation in adipose tissue induces metabolic reprogramming with Warburg-like effect and severe endocrine disruption. . Sci. Adv. 8:(49):eade7823
    [Crossref] [Google Scholar]
  63. 63.
    Le Guyader G, Do B, Rietveld IB, Coric P, Bouaziz S, et al. 2022.. Mixed polymeric micelles for rapamycin skin delivery. . Pharmaceutics 14:(3):569
    [Crossref] [Google Scholar]
  64. 64.
    Leducq S, Vrignaud S, Lorette G, Herbreteau D, Dubee V, et al. 2019.. Topical rapamycin (sirolimus) for treatment of cutaneous microcystic lymphatic malformation of the gluteal area. . Eur. J. Dermatol. 29:(1):8283
    [Crossref] [Google Scholar]
  65. 65.
    Lee JH, Huynh M, Silhavy JL, Kim S, Dixon-Salazar T, et al. 2012.. De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly. . Nat. Genet. 44:(8):94145
    [Crossref] [Google Scholar]
  66. 66.
    Li D, Sheppard SE, March ME, Battig MR, Surrey LF, et al. 2023.. Genomic profiling informs diagnoses and treatment in vascular anomalies. . Nat. Med. 29:(6):153039
    [Crossref] [Google Scholar]
  67. 67.
    Limaye N, Kangas J, Mendola A, Godfraind C, Schlögel MJ, et al. 2015.. Somatic activating PIK3CA mutations cause venous malformation. . Am. J. Hum. Genet. 97:(6):91421
    [Crossref] [Google Scholar]
  68. 68.
    Limaye N, Wouters V, Uebelhoer M, Tuominen M, Wirkkala R, et al. 2009.. Somatic mutations in angiopoietin receptor gene TEK cause solitary and multiple sporadic venous malformations. . Nat. Genet. 41:(1):11824
    [Crossref] [Google Scholar]
  69. 69.
    Lindhurst MJ, Parker VER, Payne F, Sapp JC, Rudge S, et al. 2012.. Mosaic overgrowth with fibroadipose hyperplasia is caused by somatic activating mutations in PIK3CA. . Nat. Genet. 44:(8):92833
    [Crossref] [Google Scholar]
  70. 70.
    Lindhurst MJ, Sapp JC, Teer JK, Johnston JJ, Finn EM, et al. 2011.. A mosaic activating mutation in AKT1 associated with the proteus syndrome. . N. Engl. J. Med. 365:(7):61119
    [Crossref] [Google Scholar]
  71. 71.
    Loconte DC, Grossi V, Bozzao C, Forte G, Bagnulo R, et al. 2015.. Molecular and functional characterization of three different postzygotic mutations in PIK3CA-related overgrowth spectrum (PROS) patients: effects on PI3K/AKT/mTOR signaling and sensitivity to PIK3 inhibitors. . PLOS ONE 10:(4):e0123092
    [Crossref] [Google Scholar]
  72. 72.
    Madsen RR, Vanhaesebroeck B, Semple RK. 2018.. Cancer-associated PIK3CA mutations in overgrowth disorders. . Trends Mol. Med. 24:(10):85670
    [Crossref] [Google Scholar]
  73. 73.
    Manning BD, Toker A. 2017.. AKT/PKB signaling: navigating the network. . Cell 169:(3):381405
    [Crossref] [Google Scholar]
  74. 74.
    Marchand A, Caille A, Gissot V, Giraudeau B, Lengelle C, et al. 2022.. Topical sirolimus solution for lingual microcystic lymphatic malformations in children and adults (TOPGUN): study protocol for a multicenter, randomized, assessor-blinded, controlled, stepped-wedge clinical trial. . Trials 23::557
    [Crossref] [Google Scholar]
  75. 75.
    Martinez-Corral I, Zhang Y, Petkova M, Ortsäter H, Sjöberg S, et al. 2020.. Blockade of VEGF-C signaling inhibits lymphatic malformations driven by oncogenic PIK3CA mutation. . Nat. Commun. 11::2869
    [Crossref] [Google Scholar]
  76. 76.
    Maruani A, Tavernier E, Boccara O, Mazereeuw-Hautier J, Leducq S, et al. 2021.. Sirolimus (rapamycin) for slow-flow malformations in children: the observational-phase randomized clinical PERFORMUS trial. . JAMA Dermatol. 157:(11):128998
    [Crossref] [Google Scholar]
  77. 77.
    Mazoyer E, Enjolras O, Laurian C, Houdart E, Drouet L. 2002.. Coagulation abnormalities associated with extensive venous malformations of the limbs: differentiation from Kasabach–Merritt syndrome. . Clin. Lab. Haematol. 24:(4):24351
    [Crossref] [Google Scholar]
  78. 78.
    McDonough SJ, Bhagwate A, Sun Z, Wang C, Zschunke M, et al. 2019.. Use of FFPE-derived DNA in next generation sequencing: DNA extraction methods. . PLOS ONE 14:(4):e0211400
    [Crossref] [Google Scholar]
  79. 79.
    Mirzaa G, Graham JM, Keppler-Noreuil K. 2023.. PIK3CA-related overgrowth spectrum. . In GeneReviews, ed. MP Adam, HH Ardinger, RA Pagon, SE Wallace, LJH Bean , et al. Seattle:: Univ. Wash. https://www.ncbi.nlm.nih.gov/books/NBK153722
    [Google Scholar]
  80. 80.
    Mirzaa GM, Poduri A. 2014.. Megalencephaly and hemimegalencephaly: breakthroughs in molecular etiology. . Am. J. Med. Genet. C 166:(2):15672
    [Crossref] [Google Scholar]
  81. 81.
    Morin G, Degrugillier-Chopinet C, Vincent M, Fraissenon A, Aubert H, et al. 2022.. Treatment of two infants with PIK3CA-related overgrowth spectrum by alpelisib. . J. Exp. Med. 219:(3):e20212148
    [Crossref] [Google Scholar]
  82. 82.
    Nadal M, Giraudeau B, Tavernier E, Jonville-Bera A-P, Lorette G, Maruani A. 2016.. Efficacy and safety of mammalian target of rapamycin inhibitors in vascular anomalies: a systematic review. . Acta Derm. Venereol. 96:(4):44852
    [Crossref] [Google Scholar]
  83. 83.
    Nikolaev SI, Vetiska S, Bonilla X, Boudreau E, Jauhiainen S, et al. 2018.. Somatic activating KRAS mutations in arteriovenous malformations of the brain. . N. Engl. J. Med. 378:(3):25061
    [Crossref] [Google Scholar]
  84. 84.
    Osborn AJ, Dickie P, Neilson DE, Glaser K, Lynch KA, et al. 2015.. Activating PIK3CA alleles and lymphangiogenic phenotype of lymphatic endothelial cells isolated from lymphatic malformations. . Hum. Mol. Genet. 24:(4):92638
    [Crossref] [Google Scholar]
  85. 85.
    Ours CA, Sapp JC, Hodges MB, de Moya AJ, Biesecker LG. 2021.. Case report: five-year experience of AKT inhibition with miransertib (MK-7075) in an individual with Proteus syndrome. . Cold Spring Harb. Mol. Case Stud. 7:(6):a006134
    [Crossref] [Google Scholar]
  86. 86.
    Palmieri M, Pinto AM, di Blasio L, Currò A, Monica V, et al. 2021.. A pilot study of next generation sequencing–liquid biopsy on cell-free DNA as a novel non-invasive diagnostic tool for Klippel–Trenaunay syndrome. . Vascular 29:(1):8591
    [Crossref] [Google Scholar]
  87. 87.
    Parker VER, Keppler-Noreuil KM, Faivre L, Luu M, Oden NL, et al. 2019.. Safety and efficacy of low-dose sirolimus in the PIK3CA-related overgrowth spectrum. . Genet. Med. 21:(5):118998
    [Crossref] [Google Scholar]
  88. 88.
    Petkova M, Kraft M, Stritt S, Martinez-Corral I, Ortsäter H, et al. 2023.. Immune-interacting lymphatic endothelial subtype at capillary terminals drives lymphatic malformation. . J. Exp. Med. 220:(4):e20220741
    [Crossref] [Google Scholar]
  89. 89.
    Peyre M, Miyagishima D, Bielle F, Chapon F, Sierant M, et al. 2021.. Somatic PIK3CA mutations in sporadic cerebral cavernous malformations. . N. Engl. J. Med. 385:(11):9961004
    [Crossref] [Google Scholar]
  90. 90.
    Pirozzi F, Berkseth M, Shear R, Gonzalez L, Timms AE, et al. 2022.. Profiling PI3K-AKT-MTOR variants in focal brain malformations reveals new insights for diagnostic care. . Brain 145:(3):92538
    [Crossref] [Google Scholar]
  91. 91.
    Pritchard CC, Smith C, Marushchak T, Koehler K, Holmes H, et al. 2013.. A mosaic PTEN mutation causing Cowden syndrome identified by deep sequencing. . Genet. Med. 15:(12):10047
    [Crossref] [Google Scholar]
  92. 92.
    Quartier J, Lapteva M, Boulaguiem Y, Guerrier S, Kalia YN. 2021.. Polymeric micelle formulations for the cutaneous delivery of sirolimus: a new approach for the treatment of facial angiofibromas in tuberous sclerosis complex. . Int. J. Pharm. 604::120736
    [Crossref] [Google Scholar]
  93. 93.
    Quinlan-Jones E, Williams D, Bell C, Miller C, Gokhale C, Kilby MD. 2017.. Prenatal detection of PIK3CA-related overgrowth spectrum in cultured amniocytes using long-range PCR and next-generation sequencing. . Pediatr. Dev. Pathol. 20:(1):5457
    [Crossref] [Google Scholar]
  94. 94.
    Rancan F, Rajes K, Sidiropoulou P, Hadam S, Guo X, et al. 2023.. Efficacy of topically applied rapamycin-loaded redox-sensitive nanocarriers in a human skin/T cell co-culture model. . Int. Immunopharmacol. 117::109903
    [Crossref] [Google Scholar]
  95. 95.
    Ren AA, Snellings DA, Su SY, Hong CC, Castro M, et al. 2021.. PIK3CA and CCM mutations fuel cavernomas through a cancer-like mechanism. . Nature 594:(7862):27176
    [Crossref] [Google Scholar]
  96. 96.
    Revencu N, Fastre E, Ravoet M, Helaers R, Brouillard P, et al. 2020.. RASA1 mosaic mutations in patients with capillary malformation-arteriovenous malformation. . J. Med. Genet. 57:(1):4852
    [Crossref] [Google Scholar]
  97. 97.
    Reynolds G, Cardaropoli S, Carli D, Luca M, Gazzin A, et al. 2023.. Epidemiology of the disorders of the PIK3CA-related overgrowth spectrum (PROS). . Eur. J. Hum. Genet. 31:(11):133336
    [Crossref] [Google Scholar]
  98. 98.
    Ricci KW, Hammill AM, Mobberley-Schuman P, Nelson SC, Blatt J, et al. 2019.. Efficacy of systemic sirolimus in the treatment of generalized lymphatic anomaly and Gorham-Stout disease. . Pediatr. Blood Cancer 66:(5):e27614
    [Crossref] [Google Scholar]
  99. 99.
    Rios JJ, Paria N, Burns DK, Israel BA, Cornelia R, et al. 2013.. Somatic gain-of-function mutations in PIK3CA in patients with macrodactyly. . Hum. Mol. Genet. 22:(3):44451
    [Crossref] [Google Scholar]
  100. 100.
    Rivière J-B, Mirzaa GM, O'Roak BJ, Beddaoui M, Alcantara D, et al. 2012.. De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. . Nat. Genet. 44:(8):93440
    [Crossref] [Google Scholar]
  101. 101.
    Rodriguez-Laguna L, Agra N, Ibañez K, Oliva-Molina G, Gordo G, et al. 2019.. Somatic activating mutations in PIK3CA cause generalized lymphatic anomaly. . J. Exp. Med. 216:(2):40718
    [Crossref] [Google Scholar]
  102. 102.
    Rodríguez-Laguna L, Davis K, Finger M, Aubel D, Vlamis R, Johnson C. 2022.. Mapping the PIK3CA-related overgrowth spectrum (PROS) patient and caregiver journey using a patient-centered approach. . Orphanet J. Rare Dis. 17:(1):189
    [Crossref] [Google Scholar]
  103. 103.
    Rodriguez-Laguna L, Ibañez K, Gordo G, Garcia-Minaur S, Santos-Simarro F, et al. 2018.. CLAPO syndrome: identification of somatic activating PIK3CA mutations and delineation of the natural history and phenotype. . Genet. Med. 20:(8):88289
    [Crossref] [Google Scholar]
  104. 104.
    Roy A, Han VZ, Bard AM, Wehle DT, Smith SEP, et al. 2021.. Non-synaptic cell-autonomous mechanisms underlie neuronal hyperactivity in a genetic model of PIK3CA-driven intractable epilepsy. . Front. Mol. Neurosci. 14::772847
    [Crossref] [Google Scholar]
  105. 105.
    Roy A, Skibo J, Kalume F, Ni J, Rankin S, et al. 2015.. Mouse models of human PIK3CA-related brain overgrowth have acutely treatable epilepsy. . eLife 4::e12703
    [Crossref] [Google Scholar]
  106. 106.
    Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, et al. 2004.. High frequency of mutations of the PIK3CA gene in human cancers. . Science 304:(5670):554
    [Crossref] [Google Scholar]
  107. 107.
    Sapp JC, Turner JT, Van De Kamp JM, Van Dijk FS, Lowry RB, Biesecker LG. 2007.. Newly delineated syndrome of congenital lipomatous overgrowth, vascular malformations, and epidermal nevi (CLOVE syndrome) in seven patients. . Am. J. Med. Genet. A 143A:(24):294458
    [Crossref] [Google Scholar]
  108. 108.
    Schönewolf-Greulich B, Karstensen HG, Hjortshøj TD, Jørgensen FS, Harder KM, et al. 2022.. Early diagnosis enabling precision medicine treatment in a young boy with PIK3R1-related overgrowth. . Eur. J. Med. Genet. 65:(10):104590
    [Crossref] [Google Scholar]
  109. 109.
    Schumacher M, Dupuy P, Bartoli J-M, Ernemann U, Herbreteau D, et al. 2011.. Treatment of venous malformations: first experience with a new sclerosing agent—a multicenter study. . Eur. J. Radiol. 80:(3):e366372
    [Crossref] [Google Scholar]
  110. 110.
    Sehgal SN. 2003.. Sirolimus: its discovery, biological properties, and mechanism of action. . Transplant Proc. 35:(3 Suppl.):7S14S
    [Crossref] [Google Scholar]
  111. 111.
    Seront E, Biard JM, Van Damme A, Revencu N, Lengelé B, et al. 2023.. A case report of sirolimus use in early fetal management of lymphatic malformation. . Nat. Cardiovasc. Res. 2:(6):59599
    [Crossref] [Google Scholar]
  112. 112.
    Shirazi F, Cohen C, Fried L, Arbiser JL. 2007.. Mammalian target of rapamycin (mTOR) is activated in cutaneous vascular malformations in vivo. . Lymphat. Res. Biol. 5:(4):23336
    [Crossref] [Google Scholar]
  113. 113.
    Snellings DA, Girard R, Lightle R, Srinath A, Romanos S, et al. 2022.. Developmental venous anomalies are a genetic primer for cerebral cavernous malformations. . Nat. Cardiovasc. Res. 1::24652
    [Crossref] [Google Scholar]
  114. 114.
    Srinivasan L, Sasaki Y, Calado DP, Zhang B, Paik JH, et al. 2009.. PI3 kinase signals BCR-dependent mature B cell survival. . Cell 139:(3):57386
    [Crossref] [Google Scholar]
  115. 115.
    Sun B, Jiang Y, Cui H, Fang X, Han G, et al. 2020.. Activating PIK3CA mutation promotes adipogenesis of adipose-derived stem cells in macrodactyly via up-regulation of E2F1. . Cell Death Dis. 11:(7):600
    [Crossref] [Google Scholar]
  116. 116.
    Tsai PT, Green-Colozzi E, Goto J, Anderl S, Kwiatkowski D, Sahin M. 2013.. Prenatal rapamycin results in early and late behavioral abnormalities in wildtype C57Bl/6 mice. . Behav. Genet. 43:(1):5159
    [Crossref] [Google Scholar]
  117. 117.
    Tyburczy ME, Dies KA, Glass J, Camposano S, Chekaluk Y, et al. 2015.. Mosaic and intronic mutations in TSC1/TSC2 explain the majority of TSC patients with no mutation identified by conventional testing. . PLOS Genet. 11:(11):e1005637
    [Crossref] [Google Scholar]
  118. 118.
    US Food Drug Adm. 2019.. FDA approves alpelisib for metastatic breast cancer. . US Food and Drug Administration. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-alpelisib-metastatic-breast-cancer
    [Google Scholar]
  119. 119.
    US Food Drug Adm. 2022.. FDA approves alpelisib for PIK3CA-related overgrowth spectrum. . US Food and Drug Administration. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-alpelisib-pik3ca-related-overgrowth-spectrum
    [Google Scholar]
  120. 120.
    Vahidnezhad H, Youssefian L, Uitto J. 2016.. Klippel–Trenaunay syndrome belongs to the PIK3CA-related overgrowth spectrum (PROS). . Exp. Dermatol. 25:(1):1719
    [Crossref] [Google Scholar]
  121. 121.
    Varkaris A, Jhaveri K, Perez CA, Kim JS, Henry JT, et al. 2023.. Abstract CT017: pan-mutant and isoform selective PI3Kα inhibitor, RLY-2608, demonstrates selective targeting in a first-in-human study of PIK3CA-mutant solid tumor patients, ReDiscover trial. . Cancer Res. 83:(8 Suppl.):CT017
    [Crossref] [Google Scholar]
  122. 122.
    Venot Q, Blanc T, Rabia SH, Berteloot L, Ladraa S, et al. 2018.. Targeted therapy in patients with PIK3CA-related overgrowth syndrome. . Nature 558:(7711):54046
    [Crossref] [Google Scholar]
  123. 123.
    Wang S, Wang W, Zhang X, Gui J, Zhang J, et al. 2021.. A somatic mutation in PIK3CD unravels a novel candidate gene for lymphatic malformation. . Orphanet J. Rare Dis. 16:(1):208
    [Crossref] [Google Scholar]
  124. 124.
    World Health Organ. 1998.. Therapeutic patient education: continuing education programmes for health care providers in the field of prevention of chronic diseases. Rep. , World Health Organ., Geneva:
    [Google Scholar]
  125. 125.
    Xie S, Ni J, Guo H, Luu V, Wang Y, et al. 2021.. The role of the PIK3CA gene in the development and aging of the brain. . Sci. Rep. 11:(1):291
    [Crossref] [Google Scholar]
  126. 126.
    Yehia L, Eng C. 2021.. PTEN hamartoma tumor syndrome. . In GeneReviews, ed. MP Adam, HH Ardinger, RA Pagon, SE Wallace, LJH Bean , et al. Seattle:: Univ. Wash. https://www.ncbi.nlm.nih.gov/books/NBK1488
    [Google Scholar]
  127. 127.
    Ying Z, Sandoval M, Beronja S. 2018.. Oncogenic activation of PI3K induces progenitor cell differentiation to suppress epidermal growth. . Nat. Cell Biol. 20:(11):125666
    [Crossref] [Google Scholar]
  128. 128.
    Zenner K, Jensen DM, Cook TT, Dmyterko V, Bly RA, et al. 2021.. Cell-free DNA as a diagnostic analyte for molecular diagnosis of vascular malformations. . Genet. Med. 23:(1):12330
    [Crossref] [Google Scholar]
  129. 129.
    Zhai J, Xiao Z, Wang Y, Wang H. 2022.. Human embryonic development: from peri-implantation to gastrulation. . Trends Cell Biol. 32:(1):1829
    [Crossref] [Google Scholar]
  130. 130.
    Zhao L, Vogt PK. 2008.. Helical domain and kinase domain mutations in p110α of phosphatidylinositol 3-kinase induce gain of function by different mechanisms. . PNAS 105:(7):265257
    [Crossref] [Google Scholar]
  131. 131.
    Zhong L, Ow A, Yang W, Hu Y, Wang L, Zhang C. 2012.. Surgical management of solitary venous malformation in the midcheek region. . Oral. Surg. Oral Med. Oral Pathol. Oral Radiol. 114:(2):16066
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-genom-121222-114518
Loading
/content/journals/10.1146/annurev-genom-121222-114518
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error