1932

Abstract

Abstract

Insights into inflammatory bowel disease (IBD) are advancing rapidly owing to immunologic investigations of a plethora of animal models of intestinal inflammation, ground-breaking advances in the interrogation of diseases that are inherited as complex genetic traits, and the development of culture-independent methods to define the composition of the intestinal microbiota. These advances are bringing a deeper understanding to the genetically determined interplay between the commensal microbiota, intestinal epithelial cells, and the immune system and the manner in which this interplay might be modified by relevant environmental factors in the pathogenesis of IBD. This review examines these interactions and, where possible, potential lessons from IBD-directed, biologic therapies that may allow for elucidation of pathways that are central to disease pathogenesis in humans.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-030409-101225
2009-04-23
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/immunol/28/1/annurev-immunol-030409-101225.html?itemId=/content/journals/10.1146/annurev-immunol-030409-101225&mimeType=html&fmt=ahah

Literature Cited

  1. Halme L, Paavola-Sakki P, Turunen U, Lappalainen M, Farkkila M, Kontula K. 1.  2006. Family and twin studies in inflammatory bowel disease. World J. Gastroenterol. 12:3668–72 [Google Scholar]
  2. Tsironi E, Feakins RM, Probert CS, Rampton DS, Phil D. 2.  2004. Incidence of inflammatory bowel disease is rising and abdominal tuberculosis is falling in Bangladeshis in East London, United Kingdom. Am. J. Gastroenterol. 99:1749–55 [Google Scholar]
  3. Thia KT, Loftus EV Jr, Sandborn WJ, Yang SK. 3.  2008. An update on the epidemiology of inflammatory bowel disease in Asia. Am. J. Gastroenterol. 103:3167–82 [Google Scholar]
  4. Sadlack B, Merz H, Schorle H, Schimpl A, Feller AC, Horak I. 4.  1993. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 75:253–61 [Google Scholar]
  5. Kühn R, Löhler J, Rennick D, Rajewsky K, Müller W. 5.  1993. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75:263–74 [Google Scholar]
  6. Mombaerts P, Mizoguchi E, Grusby MJ, Glimcher LH, Bhan AK, Tonegawa S. 6.  1993. Spontaneous development of inflammatory bowel disease in T cell receptor mutant mice. Cell 75:274–82 [Google Scholar]
  7. Strober W, Fuss IJ, Blumberg RS. 7.  2002. The immunology of mucosal models of inflammation. Annu. Rev. Immunol. 20:495–549 [Google Scholar]
  8. Baumgart DC, Sandborn WJ. 8.  2007. Inflammatory bowel disease: clinical aspects and established and evolving therapies. Lancet 369:1641–57 [Google Scholar]
  9. Gregersen PK, Olsson LM. 9.  2009. Recent advances in the genetics of autoimmune disease. Annu. Rev. Immunol. 27:363–91 [Google Scholar]
  10. Peterson DA, Frank DN, Pace NR, Gordon JI. 10.  2008. Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases. Cell Host Microbe 3:417–27 [Google Scholar]
  11. Van Limbergen J, Wilson DC, Satsangi J. 11.  2009. The genetics of Crohn's disease. Annu. Rev. Genomics Hum. Genet. 10:89–116 [Google Scholar]
  12. Cho JH. 12.  2008. The genetics and immunopathogenesis of inflammatory bowel disease. Nat. Rev. Immunol. 8:458–66 [Google Scholar]
  13. Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS. 13.  et al. 2006. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314:1461–63 [Google Scholar]
  14. Hampe J, Franke A, Rosenstiel P, Till A, Teuber M. 14.  et al. 2007. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat. Genet. 39:207–11 [Google Scholar]
  15. Zhernakova A, van Diemen CC, Wijmenga C. 15.  2009. Detecting shared pathogenesis from the shared genetics of immune-related diseases. Nat. Rev. Genet. 10:43–55 [Google Scholar]
  16. Budarf ML, Labbe C, David G, Rioux JD. 16.  2009. GWA studies: rewriting the story of IBD. Trends Genet. 25:137–46 [Google Scholar]
  17. Zielenski J. 17.  2000. Genotype and phenotype in cystic fibrosis. Respiration 67:117–33 [Google Scholar]
  18. Targan SR, Karp LC. 18.  2005. Defects in mucosal immunity leading to ulcerative colitis. Immunol. Rev. 206:296–305 [Google Scholar]
  19. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP. 19.  et al. 2009. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. USA 106:9362–67 [Google Scholar]
  20. Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH. 20.  et al. 2008. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat. Genet. 40:955–62 [Google Scholar]
  21. Goldstein DB. 21.  2009. Common genetic variation and human traits. N. Engl. J. Med. 360:1696–98 [Google Scholar]
  22. Casanova JL, Abel L. 22.  2009. Revisiting Crohn's disease as a primary immunodeficiency of macrophages. J. Exp. Med. 206:1839–43 [Google Scholar]
  23. Glocker EO, Kotlarz D, Boztug K, Gertz EM, Schäffer AA. 23.  et al. 2009. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N. Engl. J. Med. 361:2033–45 [Google Scholar]
  24. Lopez-Cubero SO, Sullivan KM, McDonald GB. 24.  1998. Course of Crohn's disease after allogeneic marrow transplantation. Gastroenterology 114:433–40 [Google Scholar]
  25. Spencer SD, Di Marco F, Hooley J, Pitts-Meek S, Bauer M. 25.  et al. 1998. The orphan receptor CRF2–4 is an essential subunit of the interleukin 10 receptor. J. Exp. Med. 187:571–78 [Google Scholar]
  26. Takeda K, Clausen BE, Kaisho T, Tsujimura T, Terada N. 26.  et al. 1999. Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity 10:39–49 [Google Scholar]
  27. Sugimoto K, Ogawa A, Mizoguchi E, Shimomura Y, Andoh A. 27.  et al. 2008. IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J. Clin. Invest. 118:534–44 [Google Scholar]
  28. Round JL, Mazmanian SK. 28.  2009. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9:313–23 [Google Scholar]
  29. Sartor RB. 29.  2008. Microbial influences in inflammatory bowel diseases. Gastroenterology 134:577–94 [Google Scholar]
  30. Taurog JD, Richardson JA, Croft JT, Simmons WA, Zhou M. 30.  et al. 1994. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J. Exp. Med. 180:2359–64 [Google Scholar]
  31. Iqbal N, Oliver JR, Wagner FH, Lazenby AS, Elson CO, Weaver CT. 31.  2002. T helper 1 and T helper 2 cells are pathogenic in an antigen-specific model of colitis. J. Exp. Med. 195:71–84 [Google Scholar]
  32. Cong Y, Brandwein SL, McCabe RP, Lazenby A, Birkenmeier EH. 32.  et al. 1998. CD4+ T cells reactive to enteric bacterial antigens in spontaneously colitic C3H/HeJBir mice: increased T helper cell type 1 response and ability to transfer disease. J. Exp. Med. 187:855–64 [Google Scholar]
  33. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ. 33.  et al. 2006. Metagenomic analysis of the human distal gut microbiome. Science 312:1355–59 [Google Scholar]
  34. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A. 34.  et al. 2009. A core gut microbiome in obese and lean twins. Nature 457:480–84 [Google Scholar]
  35. Ley RE, Peterson DA, Gordon JI. 35.  2006. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–48 [Google Scholar]
  36. Vaishnava S, Behrendt CL, Ismail AS, Eckmann L, Hooper LV. 36.  2008. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc. Natl. Acad. Sci. USA 105:20858–63 [Google Scholar]
  37. Umesaki Y, Setoyama H, Matsumoto S, Okada Y. 37.  1993. Expansion of αβ T-cell receptor-bearing intestinal intraepithelial lymphocytes after microbial colonization in germ-free mice and its independence from thymus. Immunology 79:32–37 [Google Scholar]
  38. Mazmanian SK, Round JL, Kasper DL. 38.  2008. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453:620–25 [Google Scholar]
  39. Ivanov II, Frutos Rde L, Manel N, Yoshinaga K, Rifkin DB. 39.  et al. 2008. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4:337–49 [Google Scholar]
  40. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T. 40.  et al. 2009. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139:485–98 [Google Scholar]
  41. Gaboriau-Routhiau V, Rakotobe S, Lécuyer E, Mulder I, Lan A. 41.  et al. 2009. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31:677–89 [Google Scholar]
  42. Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L. 42.  et al. 2008. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 455:1109–13 [Google Scholar]
  43. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F. 43.  et al. 2009. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461:1282–86 [Google Scholar]
  44. Nieuwenhuis EE, Matsumoto T, Lindenbergh D, Willemsen R, Kaser A. 44.  et al. 2009. Cd1d-dependent regulation of bacterial colonization in the intestine of mice. J. Clin. Invest. 119:1241–50 [Google Scholar]
  45. Cadwell K, Liu JY, Brown SL, Miyoshi H, Loh J. 45.  et al. 2008. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456:259–63 [Google Scholar]
  46. Kaser A, Lee AH, Franke A, Glickman JN, Zeissig S. 46.  et al. 2008. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134:743–56 [Google Scholar]
  47. Kobayashi KS, Chamaillard M, Ogura Y, Henegariu O, Inohara N. 47.  et al. 2005. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307:731–34 [Google Scholar]
  48. Linden SK, Sutton P, Karlsson NG, Korolik V, McGuckin MA. 48.  2008. Mucins in the mucosal barrier to infection. Mucosal Immunol. 1:183–97 [Google Scholar]
  49. Sonnenburg JL, Xu J, Leip DD, Chen CH, Westover BP. 49.  et al. 2005. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307:1955–59 [Google Scholar]
  50. Barnich N, Carvalho FA, Glasser AL, Darcha C, Jantscheff P. 50.  et al. 2007. CEACAM6 acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa colonization in Crohn disease. J. Clin. Invest. 117:1566–74 [Google Scholar]
  51. Macpherson AJ, Uhr T. 51.  2004. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303:1662–65 [Google Scholar]
  52. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. 52.  2007. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. USA 104:13780–85 [Google Scholar]
  53. Wehkamp J, Salzman NH, Porter E, Nuding S, Weichenthal M. 53.  et al. 2005. Reduced Paneth cell alpha-defensins in ileal Crohn's disease. Proc. Natl. Acad. Sci. USA 102:18129–34 [Google Scholar]
  54. Petnicki-Ocwieja T, Hrncir T, Liu Y-J, Biswas A, Hudcovic T. 54.  et al. 2009. Nod2 is required for the regulation of commensal microbiota in the intestine. Proc. Natl. Acad. Sci. USA 106:15813–18 [Google Scholar]
  55. Maeda S, Hsu LC, Liu H, Bankston LA, Iimura M. 55.  et al. 2005. Nod2 mutation in Crohn's disease potentiates NF-κB activity and IL-1β processing. Science 307:734–38 [Google Scholar]
  56. Pinedo PJ, Buergelt CD, Donovan GA, Melendez P, Morel L. 56.  et al. 2009. Association between CARD15/NOD2 gene polymorphisms and paratuberculosis infection in cattle. Vet. Microbiol. 134:346–52 [Google Scholar]
  57. Garrett WS, Lord GM, Punit S, Lugo-Villarino G, Mazmanian SK. 57.  et al. 2007. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell 131:33–45 [Google Scholar]
  58. Lupp C, Robertson ML, Wickham ME, Sekirov I, Champion OL. 58.  et al. 2007. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2:119–29 [Google Scholar]
  59. Targan SR, Landers CJ, Yang H, Lodes MJ, Cong Y. 59.  et al. 2005. Antibodies to CBir1 flagellin define a unique response that is associated independently with complicated Crohn's disease. Gastroenterology 128:2020–28 [Google Scholar]
  60. Ryu JH, Kim SH, Lee HY, Bai JY, Nam YD. 60.  et al. 2008. Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Science 319:777–82 [Google Scholar]
  61. Neish AS, Gewirtz AT, Zeng H, Young AN, Hobert ME. 61.  et al. 2000. Prokaryotic regulation of epithelial responses by inhibition of IκB-α ubiquitination. Science 289:1560–63 [Google Scholar]
  62. Kelly D, Campbell JI, King TP, Grant G, Jansson EA. 62.  et al. 2004. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-γ and RelA. Nat. Immunol. 5:104–12 [Google Scholar]
  63. Rioux JD, Xavier RJ, Taylor KD, Silverberg MS, Goyette P. 63.  et al. 2007. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat. Genet. 39:596–604 [Google Scholar]
  64. Ha EM, Oh CT, Bae YS, Lee WJ. 64.  2005. A direct role for dual oxidase in Drosophila gut immunity. Science 310:847–50 [Google Scholar]
  65. Ha EM, Lee KA, Seo YY, Kim SH, Lim JH. 65.  et al. 2009. Coordination of multiple dual oxidase-regulatory pathways in responses to commensal and infectious microbes in drosophila gut. Nat. Immunol. 10:949–57 [Google Scholar]
  66. Bernstein CN, Shanahan F. 66.  2008. Disorders of a modern lifestyle: reconciling the epidemiology of inflammatory bowel diseases. Gut 57:1185–91 [Google Scholar]
  67. Cahill RJ, Foltz CJ, Fox JG, Dangler CA, Powrie F, Schauer DB. 67.  1997. Inflammatory bowel disease: an immunity-mediated condition triggered by bacterial infection with Helicobacter hepaticus. Infect. Immun. 65:3126–31 [Google Scholar]
  68. Kullberg MC, Ward JM, Gorelick PL, Caspar P, Hieny S. 68.  et al. 1998. Helicobacter hepaticus triggers colitis in specific-pathogen-free interleukin-10 (IL-10)-deficient mice through an IL-12- and gamma interferon-dependent mechanism. Infect. Immun. 66:5157–66 [Google Scholar]
  69. Kullberg MC, Andersen JF, Gorelick PL, Caspar P, Suerbaum S. 69.  et al. 2003. Induction of colitis by a CD4+ T cell clone specific for a bacterial epitope. Proc. Natl. Acad. Sci. USA 100:15830–35 [Google Scholar]
  70. Powrie F, Leach MW, Mauze S, Caddle LB, Coffman RL. 70.  1993. Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice. Int. Immunol. 5:1461–71 [Google Scholar]
  71. Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermudez-Humaran LG. 71.  et al. 2008. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. USA 105:16731–36 [Google Scholar]
  72. Kaser A, Blumberg RS. 72.  2009. Endoplasmic reticulum stress in the intestinal epithelium and inflammatory bowel disease. Semin. Immunol. 21:156–63 [Google Scholar]
  73. Lodes MJ, Cong Y, Elson CO, Mohamath R, Landers CJ. 73.  et al. 2004. Bacterial flagellin is a dominant antigen in Crohn disease. J. Clin. Invest. 113:1296–306 [Google Scholar]
  74. Brandtzaeg P, Carlsen HS, Halstensen TS. 74.  2006. The B-cell system in inflammatory bowel disease. Adv. Exp. Med. Biol. 579:149–67 [Google Scholar]
  75. Kobayashi K, Qiao SW, Yoshida M, Baker K, Lencer WI, Blumberg RS. 75.  2009. An FcRn-dependent role for anti-flagellin immunoglobulin G in pathogenesis of colitis in mice. Gastroenterology 137:1746–56 [Google Scholar]
  76. Slack E, Hapfelmeier S, Stecher B, Velykoredko Y, Stoel M. 76.  et al. 2009. Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism. Science 325:617–20 [Google Scholar]
  77. Cong Y, Feng T, Fujihashi K, Schoeb TR, Elson CO. 77.  2009. A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota. Proc. Natl. Acad. Sci. USA 106:19256–61 [Google Scholar]
  78. Vijay-Kumar M, Sanders CJ, Taylor RT, Kumar A, Aitken JD. 78.  et al. 2007. Deletion of TLR5 results in spontaneous colitis in mice. J. Clin. Invest. 117:3909–21 [Google Scholar]
  79. Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF. 79.  et al. 2001. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411:603–6 [Google Scholar]
  80. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP. 80.  et al. 2001. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411:599–603 [Google Scholar]
  81. Hampe J, Cuthbert A, Croucher PJ, Mirza MM, Mascheretti S. 81.  et al. 2001. Association between insertion mutation in NOD2 gene and Crohn's disease in German and British populations. Lancet 357:1925–28 [Google Scholar]
  82. Miceli-Richard C, Lesage S, Rybojad M, Prieur AM, Manouvrier-Hanu S. 82.  et al. 2001. CARD15 mutations in Blau syndrome. Nat. Genet. 29:19–20 [Google Scholar]
  83. Meylan E, Tschopp J, Karin M. 83.  2006. Intracellular pattern recognition receptors in the host response. Nature 442:39–44 [Google Scholar]
  84. Lesage S, Zouali H, Cezard JP, Colombel JF, Belaiche J. 84.  et al. 2002. CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. Am. J. Hum. Genet. 70:845–57 [Google Scholar]
  85. Coulombe F, Divangahi M, Veyrier F, de Leseleuc L, Gleason JL. 85.  et al. 2009. Increased NOD2-mediated recognition of N-glycolyl muramyl dipeptide. J. Exp. Med. 206:1709–16 [Google Scholar]
  86. Sabbah A, Chang TH, Harnack R, Frohlich V, Tominaga K. 86.  et al. 2009. Activation of innate immune antiviral responses by Nod2. Nat. Immunol. 10:1073–80 [Google Scholar]
  87. Gutierrez O, Pipaon C, Inohara N, Fontalba A, Ogura Y. 87.  et al. 2002. Induction of Nod2 in myelomonocytic and intestinal epithelial cells via nuclear factor-κB activation. J. Biol. Chem. 277:41701–5 [Google Scholar]
  88. Hisamatsu T, Suzuki M, Reinecker HC, Nadeau WJ, McCormick BA, Podolsky DK. 88.  2003. CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells. Gastroenterology 124:993–1000 [Google Scholar]
  89. Shaw MH, Reimer T, Sánchez-Valdepeñas C, Warner N, Kim YG. 89.  et al. 2009. T cell-intrinsic role of Nod2 in promoting type 1 immunity to Toxoplasma gondii. Nat. Immunol. 10:1267–74 [Google Scholar]
  90. Abbott DW, Wilkins A, Asara JM, Cantley LC. 90.  2004. The Crohn's disease protein, NOD2, requires RIP2 in order to induce ubiquitinylation of a novel site on NEMO. Curr. Biol. 14:2217–27 [Google Scholar]
  91. Ogura Y, Inohara N, Benito A, Chen FF, Yamaoka S, Nunez G. 91.  2001. Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-κB. J. Biol. Chem. 276:4812–18 [Google Scholar]
  92. Abbott DW, Yang Y, Hutti JE, Madhavarapu S, Kelliher MA, Cantley LC. 92.  2007. Coordinated regulation of Toll-like receptor and NOD2 signaling by K63-linked polyubiquitin chains. Mol. Cell. Biol. 27:6012–25 [Google Scholar]
  93. Inohara N, Ogura Y, Fontalba A, Gutierrez O, Pons F. 93.  et al. 2003. Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn's disease. J. Biol. Chem. 278:5509–12 [Google Scholar]
  94. van Heel DA, Ghosh S, Butler M, Hunt KA, Lundberg AM. 94.  et al. 2005. Muramyl dipeptide and Toll-like receptor sensitivity in NOD2-associated Crohn's disease. Lancet 365:1794–96 [Google Scholar]
  95. Hedl M, Li J, Cho JH, Abraham C. 95.  2007. Chronic stimulation of Nod2 mediates tolerance to bacterial products. Proc. Natl. Acad. Sci. USA 104:19440–45 [Google Scholar]
  96. Watanabe T, Kitani A, Murray PJ, Strober W. 96.  2004. NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses. Nat. Immunol. 5:800–8 [Google Scholar]
  97. Watanabe T, Kitani A, Murray PJ, Wakatsuki Y, Fuss IJ, Strober W. 97.  2006. Nucleotide binding oligomerization domain 2 deficiency leads to dysregulated TLR2 signaling and induction of antigen-specific colitis. Immunity 25:473–85 [Google Scholar]
  98. Noguchi E, Homma Y, Kang X, Netea MG, Ma X. 98.  2009. A Crohn's disease-associated NOD2 mutation suppresses transcription of human IL10 by inhibiting activity of the nuclear ribonucleoprotein hnRNP-A1. Nat. Immunol. 10:471–79 [Google Scholar]
  99. Netea MG, Kullberg BJ, de Jong DJ, Franke B, Sprong T. 99.  et al. 2004. NOD2 mediates anti-inflammatory signals induced by TLR2 ligands: implications for Crohn's disease. Eur. J. Immunol. 34:2052–59 [Google Scholar]
  100. Simms LA, Doecke JD, Walsh MD, Huang N, Fowler EV, Radford-Smith GL. 100.  2008. Reduced alpha-defensin expression is associated with inflammation and not NOD2 mutation status in ileal Crohn's disease. Gut 57:903–10 [Google Scholar]
  101. Barnich N, Aguirre JE, Reinecker HC, Xavier R, Podolsky DK. 101.  2005. Membrane recruitment of NOD2 in intestinal epithelial cells is essential for nuclear factor-κB activation in muramyl dipeptide recognition. J. Cell Biol. 170:21–26 [Google Scholar]
  102. Travassos LH, Carneiro LA, Ramjeet M, Hussey S, Kim YG. 102.  et al. 2009. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol. doi:10.1038/ni.1823 [Google Scholar]
  103. Cooney R, Baker J, Brain O, Danis B, Pichulik T. 103.  et al. 2009. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat. Med. doi:10.1038/nm.2069 [Google Scholar]
  104. Swidsinski A, Ladhoff A, Pernthaler A, Swidsinski S, Loening-Baucke V. 104.  et al. 2002. Mucosal flora in inflammatory bowel disease. Gastroenterology 122:44–54 [Google Scholar]
  105. Vallabhapurapu S, Karin M. 105.  2009. Regulation and function of NF-κB transcription factors in the immune system. Annu. Rev. Immunol. 27:693–733 [Google Scholar]
  106. Neurath MF, Pettersson S, Meyer zum Buschenfelde KH, Strober W. 106.  1996. Local administration of antisense phosphorothioate oligonucleotides to the p65 subunit of NF-κB abrogates established experimental colitis in mice. Nat. Med. 2:998–1004 [Google Scholar]
  107. Rogler G, Brand K, Vogl D, Page S, Hofmeister R. 107.  et al. 1998. Nuclear factor κB is activated in macrophages and epithelial cells of inflamed intestinal mucosa. Gastroenterology 115:357–69 [Google Scholar]
  108. MacMaster JF, Dambach DM, Lee DB, Berry KK, Qiu Y. 108.  et al. 2003. An inhibitor of IκB kinase, BMS-345541, blocks endothelial cell adhesion molecule expression and reduces the severity of dextran sulfate sodium-induced colitis in mice. Inflamm. Res. 52:508–11 [Google Scholar]
  109. Eckmann L, Nebelsiek T, Fingerle AA, Dann SM, Mages J. 109.  et al. 2008. Opposing functions of IKKβ during acute and chronic intestinal inflammation. Proc. Natl. Acad. Sci. USA 105:15058–63 [Google Scholar]
  110. Greten FR, Eckmann L, Greten TF, Park JM, Li ZW. 110.  et al. 2004. IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118:285–96 [Google Scholar]
  111. Tanaka K, Namba T, Arai Y, Fujimoto M, Adachi H. 111.  et al. 2007. Genetic evidence for a protective role for heat shock factor 1 and heat shock protein 70 against colitis. J. Biol. Chem. 282:23240–52 [Google Scholar]
  112. Ungaro R, Fukata M, Hsu D, Hernandez Y, Breglio K. 112.  et al. 2009. A novel Toll-like receptor 4 antagonist antibody ameliorates inflammation but impairs mucosal healing in murine colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 296:G1167–79 [Google Scholar]
  113. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. 113.  2004. Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell 118:229–41 [Google Scholar]
  114. Artis D. 114.  2008. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat. Rev. Immunol. 8:411–20 [Google Scholar]
  115. Allakhverdi Z, Comeau MR, Jessup HK, Yoon BR, Brewer A. 115.  et al. 2007. Thymic stromal lymphopoietin is released by human epithelial cells in response to microbes, trauma, or inflammation and potently activates mast cells. J. Exp. Med. 204:253–58 [Google Scholar]
  116. Zaph C, Troy AE, Taylor BC, Berman-Booty LD, Guild KJ. 116.  et al. 2007. Epithelial-cell-intrinsic IKK-β expression regulates intestinal immune homeostasis. Nature 446:552–56 [Google Scholar]
  117. Rimoldi M, Chieppa M, Salucci V, Avogadri F, Sonzogni A. 117.  et al. 2005. Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells. Nat. Immunol. 6:507–14 [Google Scholar]
  118. Taylor BC, Zaph C, Troy AE, Du Y, Guild KJ. 118.  et al. 2009. TSLP regulates intestinal immunity and inflammation in mouse models of helminth infection and colitis. J. Exp. Med. 206:655–67 [Google Scholar]
  119. Nenci A, Becker C, Wullaert A, Gareus R, van Loo G. 119.  et al. 2007. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 446:557–61 [Google Scholar]
  120. Wertz IE, O'Rourke KM, Zhou H, Eby M, Aravind L. 120.  et al. 2004. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signaling. Nature 430:694–99 [Google Scholar]
  121. Boone DL, Turer EE, Lee EG, Ahmad RC, Wheeler MT. 121.  et al. 2004. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat. Immunol. 5:1052–60 [Google Scholar]
  122. Turer EE, Tavares RM, Mortier E, Hitotsumatsu O, Advincula R. 122.  et al. 2008. Homeostatic MyD88-dependent signals cause lethal inflammation in the absence of A20. J. Exp. Med. 205:451–64 [Google Scholar]
  123. Hitotsumatsu O, Ahmad RC, Tavares R, Wang M, Philpott D. 123.  et al. 2008. The ubiquitin-editing enzyme A20 restricts nucleotide-binding oligomerization domain containing 2-triggered signals. Immunity 28:381–90 [Google Scholar]
  124. Lee EG, Boone DL, Chai S, Libby SL, Chien M. 124.  et al. 2000. Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice. Science 289:2350–54 [Google Scholar]
  125. 125. Wellcome Trust Case Control Consort 2007. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–78 [Google Scholar]
  126. Ron D, Walter P. 126.  2007. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8:519–29 [Google Scholar]
  127. Todd DJ, Lee AH, Glimcher LH. 127.  2008. The endoplasmic reticulum stress response in immunity and autoimmunity. Nat. Rev. Immunol. 8:663–74 [Google Scholar]
  128. Bertolotti A, Wang X, Novoa I, Jungreis R, Schlessinger K. 128.  et al. 2001. Increased sensitivity to dextran sodium sulfate colitis in IRE1β-deficient mice. J. Clin. Invest. 107:585–93 [Google Scholar]
  129. Heazlewood CK, Cook MC, Eri R, Price GR, Tauro SB. 129.  et al. 2008. Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLoS Med. 5:e54 [Google Scholar]
  130. Brandl K, Rutschmann S, Li X, Du X, Xiao N. 130.  et al. 2009. Enhanced sensitivity to DSS colitis caused by a hypomorphic Mbtps1 mutation disrupting the ATF6-driven unfolded protein response. Proc. Natl. Acad. Sci. USA 106:3300–5 [Google Scholar]
  131. Turner MJ, Sowders DP, DeLay ML, Mohapatra R, Bai S. 131.  et al. 2005. HLA-B27 misfolding in transgenic rats is associated with activation of the unfolded protein response. J. Immunol. 175:2438–48 [Google Scholar]
  132. Shkoda A, Ruiz PA, Daniel H, Kim SC, Rogler G. 132.  et al. 2007. Interleukin-10 blocked endoplasmic reticulum stress in intestinal epithelial cells: impact on chronic inflammation. Gastroenterology 132:190–207 [Google Scholar]
  133. Kaser A, Blumberg RS. 133.  2010. Endoplasmic reticulum stress and intestinal inflammation. Mucosal Immunol. 3:11–6 [Google Scholar]
  134. Levine B, Kroemer G. 134.  2008. Autophagy in the pathogenesis of disease. Cell 132:27–42 [Google Scholar]
  135. He C, Klionsky DJ. 135.  2009. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43:67–93 [Google Scholar]
  136. Saitoh T, Fujita N, Jang MH, Uematsu S, Yang BG. 136.  et al. 2008. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production. Nature 456:264–68 [Google Scholar]
  137. Kuballa P, Huett A, Rioux JD, Daly MJ, Xavier RJ. 137.  2008. Impaired autophagy of an intracellular pathogen induced by a Crohn's disease associated ATG16L1 variant. PLoS ONE 3:e3391 [Google Scholar]
  138. McCarroll SA, Huett A, Kuballa P, Chilewski SD, Landry A. 138.  et al. 2008. Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn's disease. Nat. Genet. 40:1107–12 [Google Scholar]
  139. Parkes M, Barrett JC, Prescott NJ, Tremelling M, Anderson CA. 139.  et al. 2007. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility. Nat. Genet. 39:830–32 [Google Scholar]
  140. Taylor GA, Feng CG, Sher A. 140.  2004. p47 GTPases: regulators of immunity to intracellular pathogens. Nat. Rev. Immunol. 4:100–9 [Google Scholar]
  141. Singh SB, Davis AS, Taylor GA, Deretic V. 141.  2006. Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 313:1438–41 [Google Scholar]
  142. MacMicking JD, Taylor GA, McKinney JD. 142.  2003. Immune control of tuberculosis by IFN-γ-inducible LRG-47. Science 302:654–59 [Google Scholar]
  143. Garabedian EM, Roberts LJ, McNevin MS, Gordon JI. 143.  1997. Examining the role of Paneth cells in the small intestine by lineage ablation in transgenic mice. J. Biol. Chem. 272:23729–40 [Google Scholar]
  144. Wilson CL, Ouellette AJ, Satchell DP, Ayabe T, Lopez-Boado YS. 144.  et al. 1999. Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286:113–17 [Google Scholar]
  145. Lee AH, Scapa EF, Cohen DE, Glimcher LH. 145.  2008. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science 320:1492–96 [Google Scholar]
  146. Singh R, Kaushik S, Wang Y, Xiang Y, Novak I. 146.  et al. 2009. Autophagy regulates lipid metabolism. Nature 458:1131–35 [Google Scholar]
  147. Ouyang Q, Tandon R, Goh KL, Ooi CJ, Ogata H, Fiocchi C. 147.  2005. The emergence of inflammatory bowel disease in the Asian Pacific region. Curr. Opin. Gastroenterol. 21:408–13 [Google Scholar]
  148. Peltekova VD, Wintle RF, Rubin LA, Amos CI, Huang Q. 148.  et al. 2004. Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nat. Genet. 36:471–75 [Google Scholar]
  149. Koepsell H, Lips K, Volk C. 149.  2007. Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm. Res. 24:1227–51 [Google Scholar]
  150. Rinaldo P, Matern D, Bennett MJ. 150.  2002. Fatty acid oxidation disorders. Annu. Rev. Physiol. 64:477–502 [Google Scholar]
  151. Shekhawat PS, Srinivas SR, Matern D, Bennett MJ, Boriack R. 151.  et al. 2007. Spontaneous development of intestinal and colonic atrophy and inflammation in the carnitine-deficient jvs (OCTN2−/−) mice. Mol. Genet. Metab. 92:315–24 [Google Scholar]
  152. Roediger WE, Nance S. 152.  1986. Metabolic induction of experimental ulcerative colitis by inhibition of fatty acid oxidation. Br. J. Exp. Pathol. 67:773–82 [Google Scholar]
  153. Tupin E, Kinjo Y, Kronenberg M. 153.  2007. The unique role of natural killer T cells in the response to microorganisms. Nat. Rev. Microbiol. 5:405–17 [Google Scholar]
  154. Fuss IJ, Heller F, Boirivant M, Leon F, Yoshida M. 154.  et al. 2004. Nonclassical CD1d-restricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis. J. Clin. Invest. 113:1490–97 [Google Scholar]
  155. Heller F, Fuss IJ, Nieuwenhuis EE, Blumberg RS, Strober W. 155.  2002. Oxazolone colitis, a Th2 colitis model resembling ulcerative colitis, is mediated by IL-13-producing NK-T cells. Immunity 17:629–38 [Google Scholar]
  156. Dougan SK, Kaser A, Blumberg RS. 156.  2007. CD1 expression on antigen-presenting cells. Curr. Top. Microbiol. Immunol. 314:113–41 [Google Scholar]
  157. Spehlmann ME, Eckmann L. 157.  2009. Nuclear factor-κ B in intestinal protection and destruction. Curr. Opin. Gastroenterol. 25:92–99 [Google Scholar]
  158. Brozovic S, Nagaishi T, Yoshida M, Betz S, Salas A. 158.  et al. 2004. CD1d function is regulated by microsomal triglyceride transfer protein. Nat. Med. 10:535–39 [Google Scholar]
  159. Perera L, Shao L, Patel A, Evans K, Meresse B. 159.  et al. 2007. Expression of nonclassical class I molecules by intestinal epithelial cells. Inflamm. Bowel Dis. 13:298–307 [Google Scholar]
  160. Page MJ, Poritz LS, Tilberg AF, Zhang WJ, Chorney MJ, Koltun WA. 160.  2000. Cd1d-restricted cellular lysis by peripheral blood lymphocytes: relevance to the inflammatory bowel diseases. J. Surg. Res. 92:214–21 [Google Scholar]
  161. Rachitskaya AV, Hansen AM, Horai R, Li Z, Villasmil R. 161.  et al. 2008. Cutting edge: NKT cells constitutively express IL-23 receptor and RORγt and rapidly produce IL-17 upon receptor ligation in an IL-6-independent fashion. J. Immunol. 180:5167–71 [Google Scholar]
  162. Akbari O, Stock P, Meyer E, Kronenberg M, Sidobre S. 162.  et al. 2003. Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity. Nat. Med. 9:582–88 [Google Scholar]
  163. Fernando MM, Stevens CR, Walsh EC, De Jager PL, Goyette P. 163.  et al. 2008. Defining the role of the MHC in autoimmunity: a review and pooled analysis. PLoS Genet. 4:e1000024 [Google Scholar]
  164. Ware CF. 164.  2005. Network communications: lymphotoxins, LIGHT, and TNF. Annu. Rev. Immunol. 23:787–819 [Google Scholar]
  165. Kontoyiannis D, Pasparakis M, Pizarro TT, Cominelli F, Kollias G. 165.  1999. Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity 10:387–98 [Google Scholar]
  166. Armaka M, Apostolaki M, Jacques P, Kontoyiannis DL, Elewaut D, Kollias G. 166.  2008. Mesenchymal cell targeting by TNF as a common pathogenic principle in chronic inflammatory joint and intestinal diseases. J. Exp. Med. 205:331–37 [Google Scholar]
  167. Kontoyiannis D, Boulougouris G, Manoloukos M, Armaka M, Apostolaki M. 167.  et al. 2002. Genetic dissection of the cellular pathways and signaling mechanisms in modeled tumor necrosis factor-induced Crohn's-like inflammatory bowel disease. J. Exp. Med. 196:1563–74 [Google Scholar]
  168. Pender SL, MacDonald TT. 168.  2004. Matrix metalloproteinases and the gut—new roles for old enzymes. Curr. Opin. Pharmacol. 4:546–50 [Google Scholar]
  169. Jung HC, Eckmann L, Yang SK, Panja A, Fierer J. 169.  et al. 1995. A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion. J. Clin. Invest. 95:55–65 [Google Scholar]
  170. Zeissig S, Bojarski C, Buergel N, Mankertz J, Zeitz M. 170.  et al. 2004. Downregulation of epithelial apoptosis and barrier repair in active Crohn's disease by tumor necrosis factor α antibody treatment. Gut 53:1295–302 [Google Scholar]
  171. Marini M, Bamias G, Rivera-Nieves J, Moskaluk CA, Hoang SB. 171.  et al. 2003. TNF-α neutralization ameliorates the severity of murine Crohn's-like ileitis by abrogation of intestinal epithelial cell apoptosis. Proc. Natl. Acad. Sci. USA 100:8366–71 [Google Scholar]
  172. Nancey S, Holvoet S, Graber I, Joubert G, Philippe D. 172.  et al. 2006. CD8+ cytotoxic T cells induce relapsing colitis in normal mice. Gastroenterology 131:485–96 [Google Scholar]
  173. Desreumaux P, Ernst O, Geboes K, Gambiez L, Berrebi D. 173.  et al. 1999. Inflammatory alterations in mesenteric adipose tissue in Crohn's disease. Gastroenterology 117:73–81 [Google Scholar]
  174. Neurath MF, Fuss I, Pasparakis M, Alexopoulou L, Haralambous S. 174.  et al. 1997. Predominant pathogenic role of tumor necrosis factor in experimental colitis in mice. Eur. J. Immunol. 27:1743–50 [Google Scholar]
  175. Gratz R, Becker S, Sokolowski N, Schumann M, Bass D, Malnick SD. 175.  2002. Murine monoclonal anti-TNF antibody administration has a beneficial effect on inflammatory bowel disease that develops in IL-10 knockout mice. Dig. Dis. Sci. 47:1723–27 [Google Scholar]
  176. Watkins PE, Warren BF, Stephens S, Ward P, Foulkes R. 176.  1997. Treatment of ulcerative colitis in the cottontop tamarin using antibody to tumor necrosis factor α. Gut 40:628–33 [Google Scholar]
  177. Corazza N, Eichenberger S, Eugster HP, Mueller C. 177.  1999. Nonlymphocyte-derived tumor necrosis factor is required for induction of colitis in recombination activating gene (RAG)2−/ mice upon transfer of CD4+CD45RBhi T cells. J. Exp. Med. 190:1479–92 [Google Scholar]
  178. Powrie F, Leach MW, Mauze S, Menon S, Caddle LB, Coffman RL. 178.  1994. Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells. Immunity 1:553–62 [Google Scholar]
  179. Corazza N, Brunner T, Buri C, Rihs S, Imboden MA. 179.  et al. 2004. Transmembrane tumor necrosis factor is a potent inducer of colitis even in the absence of its secreted form. Gastroenterology 127:816–25 [Google Scholar]
  180. Murch SH, Braegger CP, Walker-Smith JA, MacDonald TT. 180.  1993. Location of tumor necrosis factor α by immunohistochemistry in chronic inflammatory bowel disease. Gut 34:1705–9 [Google Scholar]
  181. Lugering A, Lebiedz P, Koch S, Kucharzik T. 181.  2006. Apoptosis as a therapeutic tool in IBD?. Ann. NY Acad. Sci. 1072:62–77 [Google Scholar]
  182. Iijima H, Neurath MF, Nagaishi T, Glickman JN, Nieuwenhuis EE. 182.  et al. 2004. Specific regulation of T helper cell 1-mediated murine colitis by CEACAM1. J. Exp. Med. 199:471–82 [Google Scholar]
  183. Fichtner-Feigl S, Strober W, Kawakami K, Puri RK, Kitani A. 183.  2006. IL-13 signaling through the IL-13α2 receptor is involved in induction of TGF-β1 production and fibrosis. Nat. Med. 12:99–106 [Google Scholar]
  184. Boirivant M, Fuss IJ, Chu A, Strober W. 184.  1998. Oxazolone colitis: A murine model of T helper cell type 2 colitis treatable with antibodies to interleukin 4. J. Exp. Med. 188:1929–39 [Google Scholar]
  185. Yamazaki K, McGovern D, Ragoussis J, Paolucci M, Butler H. 185.  et al. 2005. Single nucleotide polymorphisms in TNFSF15 confer susceptibility to Crohn's disease. Hum. Mol. Genet. 14:3499–506 [Google Scholar]
  186. Yang SK, Lim J, Chang HS, Lee I, Li Y. 186.  et al. 2008. Association of TNFSF15 with Crohn's disease in Koreans. Am. J. Gastroenterol. 103:1437–42 [Google Scholar]
  187. Papadakis KA, Prehn JL, Landers C, Han Q, Luo X. 187.  et al. 2004. TL1A synergizes with IL-12 and IL-18 to enhance IFN-γ production in human T cells and NK cells. J. Immunol. 172:7002–7 [Google Scholar]
  188. Bamias G, Mishina M, Nyce M, Ross WG, Kollias G. 188.  et al. 2006. Role of TL1A and its receptor DR3 in two models of chronic murine ileitis. Proc. Natl. Acad. Sci. USA 103:8441–46 [Google Scholar]
  189. Takedatsu H, Michelsen KS, Wei B, Landers CJ, Thomas LS. 189.  et al. 2008. TL1A (TNFSF15) regulates the development of chronic colitis by modulating both T-helper 1 and T-helper 17 activation. Gastroenterology 135:552–67 [Google Scholar]
  190. Kishimoto T. 190.  2005. Interleukin-6: from basic science to medicine—40 years in immunology. Annu. Rev. Immunol. 23:1–21 [Google Scholar]
  191. Atreya R, Mudter J, Finotto S, Mullberg J, Jostock T. 191.  et al. 2000. Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in Crohn disease and experimental colitis in vivo. Nat. Med. 6:583–88 [Google Scholar]
  192. Yamamoto M, Yoshizaki K, Kishimoto T, Ito H. 192.  2000. IL-6 is required for the development of Th1 cell-mediated murine colitis. J. Immunol. 164:4878–82 [Google Scholar]
  193. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB. 193.  et al. 2006. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–38 [Google Scholar]
  194. Lee YK, Turner H, Maynard CL, Oliver JR, Chen D. 194.  et al. 2009. Late developmental plasticity in the T helper 17 lineage. Immunity 30:92–107 [Google Scholar]
  195. Zhou L, Chong MM, Littman DR. 195.  2009. Plasticity of CD4+ T cell lineage differentiation. Immunity 30:646–55 [Google Scholar]
  196. Franke A, Balschun T, Karlsen TH, Hedderich J, May S. 196.  et al. 2008. Replication of signals from recent studies of Crohn's disease identifies previously unknown disease loci for ulcerative colitis. Nat. Genet. 40:713–15 [Google Scholar]
  197. Anderson CA, Massey DC, Barrett JC, Prescott NJ, Tremelling M. 197.  et al. 2009. Investigation of Crohn's disease risk loci in ulcerative colitis further defines their molecular relationship. Gastroenterology 136:523–29 [Google Scholar]
  198. Ernst M, Inglese M, Waring P, Campbell IK, Bao S. 198.  et al. 2001. Defective gp130-mediated signal transducer and activator of transcription (STAT) signaling results in degenerative joint disease, gastrointestinal ulceration, and failure of uterine implantation. J. Exp. Med. 194:189–203 [Google Scholar]
  199. Tebbutt NC, Giraud AS, Inglese M, Jenkins B, Waring P. 199.  et al. 2002. Reciprocal regulation of gastrointestinal homeostasis by SHP2 and STAT-mediated trefoil gene activation in gp130 mutant mice. Nat. Med. 8:1089–97 [Google Scholar]
  200. Wang L, Walia B, Evans J, Gewirtz AT, Merlin D, Sitaraman SV. 200.  2003. IL-6 induces NF-κB activation in the intestinal epithelia. J. Immunol. 171:3194–201 [Google Scholar]
  201. Becker C, Fantini MC, Schramm C, Lehr HA, Wirtz S. 201.  et al. 2004. TGF-β suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. Immunity 21:491–501 [Google Scholar]
  202. Bollrath J, Phesse TJ, von Burstin VA, Putoczki T, Bennecke M. 202.  et al. 2009. gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell 15:91–102 [Google Scholar]
  203. Mashimo H, Wu DC, Podolsky DK, Fishman MC. 203.  1996. Impaired defense of intestinal mucosa in mice lacking intestinal trefoil factor. Science 274:262–65 [Google Scholar]
  204. Welte T, Zhang SS, Wang T, Zhang Z, Hesslein DG. 204.  et al. 2003. STAT3 deletion during hematopoiesis causes Crohn's disease-like pathogenesis and lethality: a critical role of STAT3 in innate immunity. Proc. Natl. Acad. Sci. USA 100:1879–84 [Google Scholar]
  205. Kobayashi M, Kweon MN, Kuwata H, Schreiber RD, Kiyono H. 205.  et al. 2003. Toll-like receptor-dependent production of IL-12p40 causes chronic enterocolitis in myeloid cell-specific Stat3-deficient mice. J. Clin. Invest. 111:1297–308 [Google Scholar]
  206. Dinarello CA. 206.  2009. Immunological and inflammatory functions of the interleukin-1 family. Annu. Rev. Immunol. 27:519–50 [Google Scholar]
  207. Martinon F, Mayor A, Tschopp J. 207.  2009. The inflammasomes: guardians of the body. Annu. Rev. Immunol. 27:229–65 [Google Scholar]
  208. Villani AC, Lemire M, Fortin G, Louis E, Silverberg MS. 208.  et al. 2009. Common variants in the NLRP3 region contribute to Crohn's disease susceptibility. Nat. Genet. 41:71–76 [Google Scholar]
  209. Zhernakova A, Festen EM, Franke L, Trynka G, van Diemen CC. 209.  et al. 2008. Genetic analysis of innate immunity in Crohn's disease and ulcerative colitis identifies two susceptibility loci harboring CARD9 and IL18RAP. Am. J. Hum. Genet. 82:1202–10 [Google Scholar]
  210. Li J, Moran T, Swanson E, Julian C, Harris J. 210.  et al. 2004. Regulation of IL-8 and IL-1β expression in Crohn's disease associated NOD2/CARD15 mutations. Hum. Mol. Genet. 13:1715–25 [Google Scholar]
  211. van Beelen AJ, Zelinkova Z, Taanman-Kueter EW, Muller FJ, Hommes DW. 211.  et al. 2007. Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells. Immunity 27:660–69 [Google Scholar]
  212. Casini-Raggi V, Kam L, Chong YJ, Fiocchi C, Pizarro TT, Cominelli F. 212.  1995. Mucosal imbalance of IL-1 and IL-1 receptor antagonist in inflammatory bowel disease. A novel mechanism of chronic intestinal inflammation. J. Immunol. 154:2434–40 [Google Scholar]
  213. Cominelli F, Nast CC, Llerena R, Dinarello CA, Zipser RD. 213.  1990. Interleukin 1 suppresses inflammation in rabbit colitis. Mediation by endogenous prostaglandins. J. Clin. Invest. 85:582–86 [Google Scholar]
  214. Cominelli F, Nast CC, Clark BD, Schindler R, Lierena R. 214.  et al. 1990. Interleukin 1 (IL-1) gene expression, synthesis, and effect of specific IL-1 receptor blockade in rabbit immune complex colitis. J. Clin. Invest. 86:972–80 [Google Scholar]
  215. Ferretti M, Casini-Raggi V, Pizarro TT, Eisenberg SP, Nast CC, Cominelli F. 215.  1994. Neutralization of endogenous IL-1 receptor antagonist exacerbates and prolongs inflammation in rabbit immune colitis. J. Clin. Invest. 94:449–53 [Google Scholar]
  216. Monteleone G, Trapasso F, Parrello T, Biancone L, Stella A. 216.  et al. 1999. Bioactive IL-18 expression is up-regulated in Crohn's disease. J. Immunol. 163:143–47 [Google Scholar]
  217. Pizarro TT, Michie MH, Bentz M, Woraratanadharm J, Smith MF Jr. 217.  et al. 1999. IL-18, a novel immunoregulatory cytokine, is up-regulated in Crohn's disease: expression and localization in intestinal mucosal cells. J. Immunol. 162:6829–35 [Google Scholar]
  218. Siegmund B, Fantuzzi G, Rieder F, Gamboni-Robertson F, Lehr HA. 218.  et al. 2001. Neutralization of interleukin-18 reduces severity in murine colitis and intestinal IFN-γ and TNF-α production. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281:R1264–73 [Google Scholar]
  219. Sivakumar PV, Westrich GM, Kanaly S, Garka K, Born TL. 219.  et al. 2002. Interleukin 18 is a primary mediator of the inflammation associated with dextran sulphate sodium induced colitis: blocking interleukin 18 attenuates intestinal damage. Gut 50:812–20 [Google Scholar]
  220. Kanai T, Watanabe M, Okazawa A, Sato T, Yamazaki M. 220.  et al. 2001. Macrophage-derived IL-18-mediated intestinal inflammation in the murine model of Crohn's disease. Gastroenterology 121:875–88 [Google Scholar]
  221. Ten Hove T, Corbaz A, Amitai H, Aloni S, Belzer I. 221.  et al. 2001. Blockade of endogenous IL-18 ameliorates TNBS-induced colitis by decreasing local TNF-α production in mice. Gastroenterology 121:1372–79 [Google Scholar]
  222. Wirtz S, Becker C, Blumberg R, Galle PR, Neurath MF. 222.  2002. Treatment of T cell-dependent experimental colitis in SCID mice by local administration of an adenovirus expressing IL-18 antisense mRNA. J. Immunol. 168:411–20 [Google Scholar]
  223. Siegmund B, Lehr HA, Fantuzzi G, Dinarello CA. 223.  2001. IL-1β-converting enzyme (caspase-1) in intestinal inflammation. Proc. Natl. Acad. Sci. USA 98:13249–54 [Google Scholar]
  224. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. 224.  2006. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24:179–89 [Google Scholar]
  225. Chung Y, Chang SH, Martinez GJ, Yang XO, Nurieva R. 225.  et al. 2009. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity 30:576–87 [Google Scholar]
  226. Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM. 226.  et al. 2007. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat. Immunol. 8:950–57 [Google Scholar]
  227. Shi J, Aono S, Lu W, Ouellette AJ, Hu X. 227.  et al. 2007. A novel role for defensins in intestinal homeostasis: regulation of IL-1β secretion. J. Immunol. 179:1245–53 [Google Scholar]
  228. Izcue A, Coombes JL, Powrie F. 228.  2009. Regulatory lymphocytes and intestinal inflammation. Annu. Rev. Immunol. 27:313–38 [Google Scholar]
  229. Langrish CL, McKenzie BS, Wilson NJ, de Waal Malefyt R, Kastelein RA, Cua DJ. 229.  2004. IL-12 and IL-23: master regulators of innate and adaptive immunity. Immunol. Rev. 202:96–105 [Google Scholar]
  230. Neurath MF, Fuss I, Kelsall BL, Stuber E, Strober W. 230.  1995. Antibodies to interleukin 12 abrogate established experimental colitis in mice. J. Exp. Med. 182:1281–90 [Google Scholar]
  231. Ito H, Fathman CG. 231.  1997. CD45RBhigh CD.4+ T cells from IFN-γ knockout mice do not induce wasting disease. J. Autoimmun. 10:455–59 [Google Scholar]
  232. Neurath MF, Weigmann B, Finotto S, Glickman J, Nieuwenhuis E. 232.  et al. 2002. The transcription factor T-bet regulates mucosal T cell activation in experimental colitis and Crohn's disease. J. Exp. Med. 195:1129–43 [Google Scholar]
  233. Fuss IJ, Neurath M, Boirivant M, Klein JS, de la Motte C. 233.  et al. 1996. Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn's disease LP cells manifest increased secretion of IFN-γ, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J. Immunol. 157:1261–70 [Google Scholar]
  234. Loftus EV Jr. 234.  2004. Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology 126:1504–17 [Google Scholar]
  235. Kikuchi H, Itoh J, Fukuda S. 235.  2008. Chronic nicotine stimulation modulates the immune response of mucosal T cells to Th1-dominant pattern via nAChR by upregulation of Th1-specific transcriptional factor. Neurosci. Lett. 432:217–21 [Google Scholar]
  236. Xavier RJ, Rioux JD. 236.  2008. Genome-wide association studies: a new window into immune-mediated diseases. Nat. Rev. Immunol. 8:631–43 [Google Scholar]
  237. Fisher SA, Tremelling M, Anderson CA, Gwilliam R, Bumpstead S. 237.  et al. 2008. Genetic determinants of ulcerative colitis include the ECM1 locus and five loci implicated in Crohn's disease. Nat. Genet. 40:710–12 [Google Scholar]
  238. Oppmann B, Lesley R, Blom B, Timans JC, Xu Y. 238.  et al. 2000. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13:715–25 [Google Scholar]
  239. Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B. 239.  et al. 2003. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421:744–48 [Google Scholar]
  240. Murphy CA, Langrish CL, Chen Y, Blumenschein W, McClanahan T. 240.  et al. 2003. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J. Exp. Med. 198:1951–57 [Google Scholar]
  241. Kroenke MA, Carlson TJ, Andjelkovic AV, Segal BM. 241.  2008. IL-12- and IL-23-modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition. J. Exp. Med. 205:1535–41 [Google Scholar]
  242. Luger D, Silver PB, Tang J, Cua D, Chen Z. 242.  et al. 2008. Either a Th17 or a Th1 effector response can drive autoimmunity: conditions of disease induction affect dominant effector category. J. Exp. Med. 205:799–810 [Google Scholar]
  243. Uhlig HH, McKenzie BS, Hue S, Thompson C, Joyce-Shaikh B. 243.  et al. 2006. Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity 25:309–18 [Google Scholar]
  244. Hue S, Ahern P, Buonocore S, Kullberg MC, Cua DJ. 244.  et al. 2006. Interleukin-23 drives innate and T cell-mediated intestinal inflammation. J. Exp. Med. 203:2473–83 [Google Scholar]
  245. Kullberg MC, Jankovic D, Feng CG, Hue S, Gorelick PL. 245.  et al. 2006. IL-23 plays a key role in Helicobacter hepaticus-induced T cell-dependent colitis. J. Exp. Med. 203:2485–94 [Google Scholar]
  246. Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y. 246.  et al. 2007. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450:566–69 [Google Scholar]
  247. Yen D, Cheung J, Scheerens H, Poulet F, McClanahan T. 247.  et al. 2006. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J. Clin. Invest. 116:1310–16 [Google Scholar]
  248. Ouyang W, Kolls JK, Zheng Y. 248.  2008. The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 28:454–67 [Google Scholar]
  249. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL. 249. et al 2005. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6:1123–32 [Google Scholar]
  250. Park H, Li Z, Yang XO, Chang SH, Nurieva R. 250.  et al. 2005. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6:1133–41 [Google Scholar]
  251. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A. 251.  et al. 2006. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126:1121–33 [Google Scholar]
  252. Becker C, Wirtz S, Blessing M, Pirhonen J, Strand D. 252.  et al. 2003. Constitutive p40 promoter activation and IL-23 production in the terminal ileum mediated by dendritic cells. J. Clin. Invest. 112:693–706 [Google Scholar]
  253. Atarashi K, Nishimura J, Shima T, Umesaki Y, Yamamoto M. 253.  et al. 2008. ATP drives lamina propria T(H)17 cell differentiation. Nature 455:808–12 [Google Scholar]
  254. Manocha M, Svend R, Laouar A, Liao G, Bhan A. 254.  et al. 2009. Blocking CD27-CD70 costimulatory pathway suppresses experimental colitis. J. Immunol. 183:270–76 [Google Scholar]
  255. O'Connor W Jr, Kamanaka M, Booth CJ, Town T, Nakae S. 255.  et al. 2009. A protective function for interleukin 17A in T cell-mediated intestinal inflammation. Nat. Immunol. 10:603–9 [Google Scholar]
  256. Ogawa A, Andoh A, Araki Y, Bamba T, Fujiyama Y. 256.  2004. Neutralization of interleukin-17 aggravates dextran sulfate sodium-induced colitis in mice. Clin. Immunol. 110:55–62 [Google Scholar]
  257. Yang XO, Chang SH, Park H, Nurieva R, Shah B. 257.  et al. 2008. Regulation of inflammatory responses by IL-17F. J. Exp. Med. 205:1063–75 [Google Scholar]
  258. Zhang Z, Zheng M, Bindas J, Schwarzenberger P, Kolls JK. 258.  2006. Critical role of IL-17 receptor signaling in acute TNBS-induced colitis. Inflamm. Bowel Dis. 12:382–88 [Google Scholar]
  259. Leppkes M, Becker C, Ivanov II, Hirth S, Wirtz S. 259.  et al. 2009. RORγ-expressing Th17 cells induce murine chronic intestinal inflammation via redundant effects of IL-17A and IL-17F. Gastroenterology 136:257–67 [Google Scholar]
  260. Fujino S, Andoh A, Bamba S, Ogawa A, Hata K. 260.  et al. 2003. Increased expression of interleukin 17 in inflammatory bowel disease. Gut 52:65–70 [Google Scholar]
  261. Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F. 261.  et al. 2007. Phenotypic and functional features of human Th17 cells. J. Exp. Med. 204:1849–61 [Google Scholar]
  262. Weaver CT, Hatton RD, Mangan PR, Harrington LE. 262.  2007. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu. Rev. Immunol. 25:821–52 [Google Scholar]
  263. Izcue A, Hue S, Buonocore S, Arancibia-Carcamo CV, Ahern PP. 263.  et al. 2008. Interleukin-23 restrains regulatory T cell activity to drive T cell-dependent colitis. Immunity 28:559–70 [Google Scholar]
  264. Maloy KJ, Salaun L, Cahill R, Dougan G, Saunders NJ, Powrie F. 264.  2003. CD4+CD25+ T(R) cells suppress innate immune pathology through cytokine-dependent mechanisms. J. Exp. Med. 197:111–19 [Google Scholar]
  265. Powrie F, Mason D. 265.  1990. OX-22high CD4+ T cells induce wasting disease with multiple organ pathology: prevention by the OX-22low subset. J. Exp. Med. 172:1701–8 [Google Scholar]
  266. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. 266.  1995. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155:1151–64 [Google Scholar]
  267. Zhou L, Lopes JE, Chong MM, Ivanov II, Min R. 267.  et al. 2008. TGF-β-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORγt function. Nature 453:236–40 [Google Scholar]
  268. Mangan PR, Harrington LE, O'Quinn DB, Helms WS, Bullard DC. 268.  et al. 2006. Transforming growth factor-β induces development of the T(H)17 lineage. Nature 441:231–34 [Google Scholar]
  269. Nurieva R, Yang XO, Martinez G, Zhang Y, Panopoulos AD. 269.  et al. 2007. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448:480–83 [Google Scholar]
  270. Zhou L, Ivanov II, Spolski R, Min R, Shenderov K. 270.  et al. 2007. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat. Immunol. 8:967–74 [Google Scholar]
  271. Mucida D, Park Y, Kim G, Turovskaya O, Scott I. 271.  et al. 2007. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317:256–60 [Google Scholar]
  272. Sun CM, Hall JA, Blank RB, Bouladoux N, Oukka M. 272.  et al. 2007. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204:1775–85 [Google Scholar]
  273. Denning TL, Wang YC, Patel SR, Williams IR, Pulendran B. 273.  2007. Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat. Immunol. 8:1086–94 [Google Scholar]
  274. Park O, Grishina I, Leung PS, Gershwin ME, Prindiville T. 274.  2005. Analysis of the Foxp3/scurfin gene in Crohn's disease. Ann. NY Acad. Sci. 1051:218–28 [Google Scholar]
  275. Maul J, Loddenkemper C, Mundt P, Berg E, Giese T. 275.  et al. 2005. Peripheral and intestinal regulatory CD4+ CD25high T cells in inflammatory bowel disease. Gastroenterology 128:1868–78 [Google Scholar]
  276. Saruta M, Yu QT, Fleshner PR, Mantel PY, Schmidt-Weber CB. 276.  et al. 2007. Characterization of FOXP3+CD4+ regulatory T cells in Crohn's disease. Clin. Immunol. 125:281–90 [Google Scholar]
  277. Makita S, Kanai T, Oshima S, Uraushihara K, Totsuka T. 277.  et al. 2004. CD4+CD25bright T cells in human intestinal lamina propria as regulatory cells. J. Immunol. 173:3119–30 [Google Scholar]
  278. Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ. 278.  et al. 2001. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 27:20–21 [Google Scholar]
  279. Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB. 279.  et al. 2001. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet. 27:68–73 [Google Scholar]
  280. Wildin RS, Ramsdell F, Peake J, Faravelli F, Casanova JL. 280.  et al. 2001. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat. Genet. 27:18–20 [Google Scholar]
  281. Maillard MH, Cotta-de-Almeida V, Takeshima F, Nguyen DD, Michetti P. 281.  et al. 2007. The Wiskott-Aldrich syndrome protein is required for the function of CD4+CD25+Foxp3+ regulatory T cells. J. Exp. Med. 204:381–91 [Google Scholar]
  282. Marangoni F, Trifari S, Scaramuzza S, Panaroni C, Martino S. 282.  et al. 2007. WASP regulates suppressor activity of human and murine CD4+CD25+FOXP3+ natural regulatory T cells. J. Exp. Med. 204:369–80 [Google Scholar]
  283. Franke A, Balschun T, Karlsen TH, Sventoraityte J, Nikolaus S. 283.  et al. 2008. Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility. Nat. Genet. 40:1319–23 [Google Scholar]
  284. Tao R, de Zoeten EF, Ozkaynak E, Chen C, Wang L. 284.  et al. 2007. Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat. Med. 13:1299–307 [Google Scholar]
  285. Monteleone G, Boirivant M, Pallone F, MacDonald TT. 285.  2008. TGF-β1 and Smad7 in the regulation of IBD. Mucosal Immunol. 1:Suppl. 1S50–53 [Google Scholar]
  286. Fantini MC, Rizzo A, Fina D, Caruso R, Sarra M. 286.  et al. 2009. Smad7 controls resistance of colitogenic T cells to regulatory T cell-mediated suppression. Gastroenterology 136:1308–16 [Google Scholar]
  287. Sellon RK, Tonkonogy S, Schultz M, Dieleman LA, Grenther W. 287.  et al. 1998. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect. Immun. 66:5224–31 [Google Scholar]
  288. Martins GA, Cimmino L, Shapiro-Shelef M, Szabolcs M, Herron A. 288.  et al. 2006. Transcriptional repressor Blimp-1 regulates T cell homeostasis and function. Nat. Immunol. 7:457–65 [Google Scholar]
  289. Maynard CL, Weaver CT. 289.  2008. Diversity in the contribution of interleukin-10 to T-cell-mediated immune regulation. Immunol. Rev. 226:219–33 [Google Scholar]
  290. Autschbach F, Braunstein J, Helmke B, Zuna I, Schurmann G. 290.  et al. 1998. In situ expression of interleukin-10 in noninflamed human gut and in inflammatory bowel disease. Am. J. Pathol. 153:121–30 [Google Scholar]
  291. Kamanaka M, Kim ST, Wan YY, Sutterwala FS, Lara-Tejero M. 291.  et al. 2006. Expression of interleukin-10 in intestinal lymphocytes detected by an interleukin-10 reporter knockin tiger mouse. Immunity 25:941–52 [Google Scholar]
  292. Roers A, Siewe L, Strittmatter E, Deckert M, Schluter D. 292.  et al. 2004. T cell-specific inactivation of the interleukin 10 gene in mice results in enhanced T cell responses but normal innate responses to lipopolysaccharide or skin irritation. J. Exp. Med. 200:1289–97 [Google Scholar]
  293. Rubtsov YP, Rasmussen JP, Chi EY, Fontenot J, Castelli L. 293.  et al. 2008. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity 28:546–58 [Google Scholar]
  294. Fontenot JD, Rudensky AY. 294.  2005. A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat. Immunol. 6:331–37 [Google Scholar]
  295. Kim JM, Rasmussen JP, Rudensky AY. 295.  2007. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat. Immunol. 8:191–97 [Google Scholar]
  296. Maynard CL, Harrington LE, Janowski KM, Oliver JR, Zindl CL. 296.  et al. 2007. Regulatory T cells expressing interleukin 10 develop from Foxp3+ and Foxp3 precursor cells in the absence of interleukin 10. Nat. Immunol. 8:931–41 [Google Scholar]
  297. Groux H, O'Garra A, Bigler M, Rouleau M, Antonenko S. 297.  et al. 1997. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389:737–42 [Google Scholar]
  298. Chaudhry A, Rudra D, Treuting P, Samstein RM, Liang Y. 298.  et al. 2009. CD4+ regulatory T cells control Th17 responses in a Stat3-dependent manner. Science 326:986–91 [Google Scholar]
  299. Steidler L, Hans W, Schotte L, Neirynck S, Obermeier F. 299.  et al. 2000. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289:1352–55 [Google Scholar]
  300. Luster AD, Alon R, von Andrian UH. 300.  2005. Immune cell migration in inflammation: present and future therapeutic targets. Nat. Immunol. 6:1182–90 [Google Scholar]
  301. Agace WW. 301.  2008. T-cell recruitment to the intestinal mucosa. Trends Immunol. 29:514–22 [Google Scholar]
  302. Mora JR, Bono MR, Manjunath N, Weninger W, Cavanagh LL. 302.  et al. 2003. Selective imprinting of gut-homing T cells by Peyer's patch dendritic cells. Nature 424:88–93 [Google Scholar]
  303. Johansson-Lindbom B, Svensson M, Wurbel MA, Malissen B, Marquez G, Agace W. 303.  2003. Selective generation of gut tropic T cells in gut-associated lymphoid tissue (GALT): requirement for GALT dendritic cells and adjuvant. J. Exp. Med. 198:963–69 [Google Scholar]
  304. Rivera-Nieves J, Burcin TL, Olson TS, Morris MA, McDuffie M. 304.  et al. 2006. Critical role of endothelial P-selectin glycoprotein ligand 1 in chronic murine ileitis. J. Exp. Med. 203:907–17 [Google Scholar]
  305. Kosiewicz MM, Nast CC, Krishnan A, Rivera-Nieves J, Moskaluk CA. 305.  et al. 2001. Th1-type responses mediate spontaneous ileitis in a novel murine model of Crohn's disease. J. Clin. Invest. 107:695–702 [Google Scholar]
  306. Rijcken EM, Laukoetter MG, Anthoni C, Meier S, Mennigen R. 306.  et al. 2004. Immunoblockade of PSGL-1 attenuates established experimental murine colitis by reduction of leukocyte rolling. Am. J. Physiol. Gastrointest. Liver Physiol. 287:G115–24 [Google Scholar]
  307. Kuhl AA, Kakirman H, Janotta M, Dreher S, Cremer P. 307.  et al. 2007. Aggravation of different types of experimental colitis by depletion or adhesion blockade of neutrophils. Gastroenterology 133:1882–92 [Google Scholar]
  308. Kwon JH, Keates S, Bassani L, Mayer LF, Keates AC. 308.  2002. Colonic epithelial cells are a major site of macrophage inflammatory protein 3α (MIP-3α) production in normal colon and inflammatory bowel disease. Gut 51:818–26 [Google Scholar]
  309. Lee JW, Wang P, Kattah MG, Youssef S, Steinman L. 309.  et al. 2008. Differential regulation of chemokines by IL-17 in colonic epithelial cells. J. Immunol. 181:6536–45 [Google Scholar]
  310. Kaser A, Ludwiczek O, Holzmann S, Moschen AR, Weiss G. 310.  et al. 2004. Increased expression of CCL20 in human inflammatory bowel disease. J. Clin. Immunol. 24:74–85 [Google Scholar]
  311. Acosta-Rodriguez EV, Rivino L, Geginat J, Jarrossay D, Gattorno M. 311.  et al. 2007. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat. Immunol. 8:639–46 [Google Scholar]
  312. Wang C, Kang SG, Lee J, Sun Z, Kim CH. 312.  2009. The roles of CCR6 in migration of Th17 cells and regulation of effector T-cell balance in the gut. Mucosal Immunol. 2:173–83 [Google Scholar]
  313. Varona R, Cadenas V, Flores J, Martinez-A C, Márquez G. 313.  2003. CCR6 has a nonredundant role in the development of inflammatory bowel disease. Eur. J. Immunol. 33:2937–46 [Google Scholar]
  314. Katchar K, Kelly CP, Keates S, O'Brien MJ, Keates AC. 314.  2007. MIP-3α neutralizing monoclonal antibody protects against TNBS-induced colonic injury and inflammation in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 292:G1263–71 [Google Scholar]
  315. Yamazaki T, Yang XO, Chung Y, Fukunaga A, Nurieva R. 315.  et al. 2008. CCR6 regulates the migration of inflammatory and regulatory T cells. J. Immunol. 181:8391–401 [Google Scholar]
  316. Williams IR. 316.  2006. CCR6 and CCL20: partners in intestinal immunity and lymphorganogenesis. Ann. NY Acad. Sci. 1072:52–61 [Google Scholar]
  317. Bouskra D, Brezillon C, Berard M, Werts C, Varona R. 317.  et al. 2008. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456:507–10 [Google Scholar]
  318. Xiao S, Jin H, Korn T, Liu SM, Oukka M. 318.  et al. 2008. Retinoic acid increases Foxp3+ regulatory T cells and inhibits development of Th17 cells by enhancing TGF-β-driven Smad3 signaling and inhibiting IL-6 and IL-23 receptor expression. J. Immunol. 181:2277–84 [Google Scholar]
  319. Mora JR, Iwata M, von Andrian UH. 319.  2008. Vitamin effects on the immune system: vitamins A and D take center stage. Nat. Rev. Immunol. 8:685–98 [Google Scholar]
  320. Podolsky DK, Lobb R, King N, Benjamin CD, Pepinsky B. 320.  et al. 1993. Attenuation of colitis in the cotton-top tamarin by antialpha 4 integrin monoclonal antibody. J. Clin. Invest. 92:372–80 [Google Scholar]
  321. Apostolaki M, Manoloukos M, Roulis M, Wurbel MA, Muller W. 321.  et al. 2008. Role of β7 integrin and the chemokine/chemokine receptor pair CCL25/CCR9 in modeled TNF-dependent Crohn's disease. Gastroenterology 134:2025–35 [Google Scholar]
  322. Wei Z, Ertl L, Baumgart T, Rubas W, Hor S-Y. 322.  et al. 2005. CC chemokine receptor 9 (CCR9) antagonist ameliorates experimental ileitis and colitis. Gastroenterology 128:A204 (Abstr.) [Google Scholar]
  323. Bensinger SJ, Tontonoz P. 323.  2008. Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature 454:470–77 [Google Scholar]
  324. Narumiya S, Sugimoto Y, Ushikubi F. 324.  1999. Prostanoid receptors: structures, properties, and functions. Physiol. Rev. 79:1193–226 [Google Scholar]
  325. Morteau O, Morham SG, Sellon R, Dieleman LA, Langenbach R. 325.  et al. 2000. Impaired mucosal defense to acute colonic injury in mice lacking cyclooxygenase-1 or cyclooxygenase-2. J. Clin. Invest. 105:469–78 [Google Scholar]
  326. Kabashima K, Saji T, Murata T, Nagamachi M, Matsuoka T. 326.  et al. 2002. The prostaglandin receptor EP4 suppresses colitis, mucosal damage and CD4 cell activation in the gut. J. Clin. Invest. 109:883–93 [Google Scholar]
  327. Cosme R, Lublin D, Takafuji V, Lynch K, Roche JK. 327.  2000. Prostanoids in human colonic mucosa: effects of inflammation on PGE(2) receptor expression. Hum. Immunol. 61:684–96 [Google Scholar]
  328. Takafuji V, Cosme R, Lublin D, Lynch K, Roche JK. 328.  2000. Prostanoid receptors in intestinal epithelium: selective expression, function, and change with inflammation. Prostaglandins Leukot. Essent. Fatty Acids 63:223–35 [Google Scholar]
  329. Colgan SP, Parkos CA, Delp C, Arnaout MA, Madara JL. 329.  1993. Neutrophil migration across cultured intestinal epithelial monolayers is modulated by epithelial exposure to IFN-γ in a highly polarized fashion. J. Cell Biol. 120:785–98 [Google Scholar]
  330. Takayama K, Garcia-Cardena G, Sukhova GK, Comander J, Gimbrone MA Jr, Libby P. 330.  2002. Prostaglandin E2 suppresses chemokine production in human macrophages through the EP4 receptor. J. Biol. Chem. 277:44147–54 [Google Scholar]
  331. Minami M, Shimizu K, Okamoto Y, Folco E, Ilasaca ML. 331.  et al. 2008. Prostaglandin E receptor type 4-associated protein interacts directly with NF-κB1 and attenuates macrophage activation. J. Biol. Chem. 283:9692–703 [Google Scholar]
  332. Yao C, Sakata D, Esaki Y, Li Y, Matsuoka T. 332.  et al. 2009. Prostaglandin E2-EP4 signaling promotes immune inflammation through Th1 cell differentiation and Th17 cell expansion. Nat. Med. 15:633–40 [Google Scholar]
  333. Boniface K, Bak-Jensen KS, Li Y, Blumenschein WM, McGeachy MJ. 333.  et al. 2009. Prostaglandin E2 regulates Th17 cell differentiation and function through cyclic AMP and EP2/EP4 receptor signaling. J. Exp. Med. 206:535–48 [Google Scholar]
  334. Libioulle C, Louis E, Hansoul S, Sandor C, Farnir F. 334.  et al. 2007. Novel Crohn disease locus identified by genome-wide association maps to a gene desert on 5p13.1 and modulates expression of PTGER4. PLoS Genet. 3:e58 [Google Scholar]
  335. Dubuquoy L, Rousseaux C, Thuru X, Peyrin-Biroulet L, Romano O. 335.  et al. 2006. PPARγ as a new therapeutic target in inflammatory bowel diseases. Gut 55:1341–49 [Google Scholar]
  336. Rousseaux C, Lefebvre B, Dubuquoy L, Lefebvre P, Romano O. 336.  et al. 2005. Intestinal antiinflammatory effect of 5-aminosalicylic acid is dependent on peroxisome proliferator-activated receptor-γ. J. Exp. Med. 201:1205–15 [Google Scholar]
  337. Dubuquoy L, Jansson EA, Deeb S, Rakotobe S, Karoui M. 337.  et al. 2003. Impaired expression of peroxisome proliferator-activated receptor gamma in ulcerative colitis. Gastroenterology 124:1265–76 [Google Scholar]
  338. Wachtershauser A, Loitsch SM, Stein J. 338.  2000. PPAR-γ is selectively upregulated in Caco-2 cells by butyrate. Biochem. Biophys. Res. Commun. 272:380–85 [Google Scholar]
  339. Su CG, Wen X, Bailey ST, Jiang W, Rangwala SM. 339.  et al. 1999. A novel therapy for colitis utilizing PPAR-γ ligands to inhibit the epithelial inflammatory response. J. Clin. Invest. 104:383–89 [Google Scholar]
  340. Bassaganya-Riera J, Reynolds K, Martino-Catt S, Cui Y, Hennighausen L. 340.  et al. 2004. Activation of PPAR γ and δ by conjugated linoleic acid mediates protection from experimental inflammatory bowel disease. Gastroenterology 127:777–91 [Google Scholar]
  341. Lewis JD, Lichtenstein GR, Deren JJ, Sands BE, Hanauer SB. 341.  et al. 2008. Rosiglitazone for active ulcerative colitis: a randomized placebo-controlled trial. Gastroenterology 134:688–95 [Google Scholar]
  342. Evans-Molina C, Robbins RD, Kono T, Tersey SA, Vestermark GL. 342.  et al. 2009. Peroxisome proliferator-activated receptor gamma activation restores islet function in diabetic mice through reduction of endoplasmic reticulum stress and maintenance of euchromatin structure. Mol. Cell. Biol. 29:2053–67 [Google Scholar]
  343. Rutkowski DT, Wu J, Back SH, Callaghan MU, Ferris SP. 343.  et al. 2008. UPR pathways combine to prevent hepatic steatosis caused by ER stress-mediated suppression of transcriptional master regulators. Dev. Cell 15:829–40 [Google Scholar]
  344. Serhan CN, Chiang N, Van Dyke TE. 344.  2008. Resolving inflammation: dual anti-inflammatory and proresolution lipid mediators. Nat. Rev. Immunol. 8:349–61 [Google Scholar]
  345. Levy BD, Clish CB, Schmidt B, Gronert K, Serhan CN. 345.  2001. Lipid mediator class switching during acute inflammation: signals in resolution. Nat. Immunol. 2:612–19 [Google Scholar]
  346. Mangino MJ, Brounts L, Harms B, Heise C. 346.  2006. Lipoxin biosynthesis in inflammatory bowel disease. Prostaglandins Other Lipid Mediat. 79:84–92 [Google Scholar]
  347. Arita M, Yoshida M, Hong S, Tjonahen E, Glickman JN. 347.  et al. 2005. Resolvin E1, an endogenous lipid mediator derived from omega-3 eicosapentaenoic acid, protects against 2,4,6-trinitrobenzene sulfonic acid-induced colitis. Proc. Natl. Acad. Sci. USA 102:7671–76 [Google Scholar]
  348. Hudert CA, Weylandt KH, Lu Y, Wang J, Hong S. 348.  et al. 2006. Transgenic mice rich in endogenous omega-3 fatty acids are protected from colitis. Proc. Natl. Acad. Sci. USA 103:11276–81 [Google Scholar]
  349. Belluzzi A, Brignola C, Campieri M, Pera A, Boschi S, Miglioli M. 349.  1996. Effect of an enteric-coated fish-oil preparation on relapses in Crohn's disease. N. Engl. J. Med. 334:1557–60 [Google Scholar]
  350. Fiorucci S, Wallace JL, Mencarelli A, Distrutti E, Rizzo G. 350.  et al. 2004. A beta-oxidation-resistant lipoxin A4 analog treats hapten-induced colitis by attenuating inflammation and immune dysfunction. Proc. Natl. Acad. Sci. USA 101:15736–41 [Google Scholar]
  351. Gewirtz AT, Collier-Hyams LS, Young AN, Kucharzik T, Guilford WJ. 351.  et al. 2002. Lipoxin a4 analogs attenuate induction of intestinal epithelial proinflammatory gene expression and reduce the severity of dextran sodium sulfate-induced colitis. J. Immunol. 168:5260–67 [Google Scholar]
  352. Baumgart M, Dogan B, Rishniw M, Weitzman G, Bosworth B. 352.  et al. 2007. Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn's disease involving the ileum. Isme J. 1:403–18 [Google Scholar]
  353. Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E. 353.  et al. 2006. Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut 55:205–11 [Google Scholar]
  354. Gophna U, Sommerfeld K, Gophna S, Doolittle WF, Veldhuyzen van Zanten SJ. 354.  2006. Differences between tissue-associated intestinal microfloras of patients with Crohn's disease and ulcerative colitis. J. Clin. Microbiol. 44:4136–41 [Google Scholar]
  355. Ott SJ, Musfeldt M, Wenderoth DF, Hampe J, Brant O. 355.  et al. 2004. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 53:685–93 [Google Scholar]
  356. Martinez-Medina M, Aldeguer X, Gonzalez-Huix F, Acero D, Garcia-Gil LJ. 356.  2006. Abnormal microbiota composition in the ileocolonic mucosa of Crohn's disease patients as revealed by polymerase chain reaction-denaturing gradient gel electrophoresis. Inflamm. Bowel Dis. 12:1136–45 [Google Scholar]
  357. Bibiloni R, Mangold M, Madsen KL, Fedorak RN, Tannock GW. 357.  2006. The bacteriology of biopsies differs between newly diagnosed, untreated, Crohn's disease and ulcerative colitis patients. J. Med. Microbiol. 55:1141–49 [Google Scholar]
  358. Conte MP, Schippa S, Zamboni I, Penta M, Chiarini F. 358.  et al. 2006. Gut-associated bacterial microbiota in paediatric patients with inflammatory bowel disease. Gut 55:1760–67 [Google Scholar]
  359. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. 359.  2006. Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–23 [Google Scholar]
  360. Tsang J, Brown R, Anderson G, Schmidt T, Tannock G. 360.  et al. 2004. Selective expansion of colitogenic commensal bacterial species in SPF IL-10−/ mice. Gastroenterology 126:A291 (Abstr.) [Google Scholar]
  361. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. 361.  2005. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA 102:11070–75 [Google Scholar]
  362. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. 362.  2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–31 [Google Scholar]
  363. Hildebrandt MA, Hoffman C, Sherrill-Mix SA, Keilbaugh SA, Hamady M. 363.  et al. 2009. High fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 137:1716–24 [Google Scholar]
/content/journals/10.1146/annurev-immunol-030409-101225
Loading
/content/journals/10.1146/annurev-immunol-030409-101225
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article