I started research in high school, experimenting on immunological tolerance to transplantation antigens. This led to studies of the thymus as the site of maturation of T cells, which led to the discovery, isolation, and clinical transplantation of purified hematopoietic stem cells (HSCs). The induction of immune tolerance with HSCs has led to isolation of other tissue-specific stem cells for regenerative medicine. Our studies of circulating competing germline stem cells in colonial protochordates led us to document competing HSCs. In human acute myelogenous leukemia we showed that all preleukemic mutations occur in HSCs, and determined their order; the final mutations occur in a multipotent progenitor derived from the preleukemic HSC clone. With these, we discovered that CD47 is an upregulated gene in all human cancers and is a “don't eat me” signal; blocking it with antibodies leads to cancer cell phagocytosis. CD47 is the first known gene common to all cancers and is a target for cancer immunotherapy.

Keyword(s): Autobiographystem cell

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. de Kruif P. 1.  1926. Microbe Hunters New York: Harcourt Brace
  2. Billingham RE, Lampkin GH, Medawar PB, Williams HLL. 2.  1952. Tolerance to homografts, twin diagnosis, and the freemartin condition in cattle. Heredity 6:201–12 [Google Scholar]
  3. Billingham RE, Brent L, Medawar PB. 3.  1953. Actively acquired tolerance of foreign cells. Nature 172:603–6 [Google Scholar]
  4. Eichwald EJ, Weissman I. 4.  1957. Bibliography of tumor transplantation. Addendum No. 2. Transplant. Bull. 4:88–100 [Google Scholar]
  5. Eichwald EJ, Silmser CR, Weissman I. 5.  1958. Sex-linked rejection of normal and neoplastic tissue. I. Distribution and specificity. J. Natl. Cancer Inst. 20:563–75 [Google Scholar]
  6. Eichwald EJ, Lustgraaf EC, Weissman I, Strainer M. 6.  1958. Attempts to demonstrate sex-linked histocompatibility genes. Transplant. Bull. 5:387–88 [Google Scholar]
  7. Eichwald EJ, Lustgraaf EC, Fuson RB, Weissman I. 7.  1961. Parabiotic anemia-polycythemia. Proc. Soc. Exp. Biol. Med. 106:441–43 [Google Scholar]
  8. Weissman IL, Lustgraaf EC. 8.  1961. Antibody formation and repressor systems. Transplant. Bull. 28:134–35 [Google Scholar]
  9. Weissman IL. 9.  1977. The demise of the five-year plan. Stanford Med. 16:6–13 [Google Scholar]
  10. Weissman I. 10.  2010. Lymphocytes, Jim Gowans and in vivo veritas. Nat. Immunol. 11:1073–75 [Google Scholar]
  11. Weissman IL. 11.  1966. Studies on the mechanism of split tolerance in mice. Transplantation 4:565–71 [Google Scholar]
  12. Weissman IL. 12.  1973. Transfer of tolerance. Transplantation 15:265–69 [Google Scholar]
  13. Weissman IL, Jerabek L, Greenspan S. 13.  1984. Tolerance and the H-Y antigen: Requirement for male T cells, but not B cells, to induce tolerance in neonatal female mice. Transplantation 37:3–6 [Google Scholar]
  14. Gandy KL, Weissman IL. 14.  1998. Tolerance of allogeneic heart grafts in mice simultaneously reconstituted with purified allogeneic hematopoietic stem cells. Transplantation 65:295–304 [Google Scholar]
  15. Shizuru JA, Weissman IL, Kernoff R, Masek M, Scheffold YC. 15.  2000. Purified hematopoietic stem cell grafts induce tolerance to alloantigens and can mediate positive and negative T cell selection. PNAS 97:9555–60 [Google Scholar]
  16. Jerabek L, Greenspan S, Okada C, Weissman IL. 16.  1989. Tolerance, the thymus, and H-Y. Realm of Tolerance P Ivanyi, M Hašek 50–59 New York: Springer-Verlag [Google Scholar]
  17. Baum CM, Weissman IL, Tsukamoto AS, Buckle AM, Peault B. 17.  1992. Isolation of a candidate human hematopoietic stem-cell population. PNAS 89:2804–8 [Google Scholar]
  18. Beilhack GF, Scheffold YC, Weissman IL, Taylor C, Jerabek L. 18.  et al. 2003. Purified allogeneic hematopoietic stem cell transplantation blocks diabetes pathogenesis in NOD mice. Diabetes 52:59–68 [Google Scholar]
  19. Beilhack GF, Landa RR, Masek MA, Shizuru JA. 19.  2005. Prevention of type 1 diabetes with major histocompatibility complex-compatible and nonmarrow ablative hematopoietic stem cell transplants. Diabetes 54:1770–79 [Google Scholar]
  20. Smith-Berdan S, Gille D, Weissman IL, Christensen JL. 20.  2007. Reversal of autoimmune disease in lupus-prone New Zealand black/New Zealand white mice by nonmyeloablative transplantation of purified allogeneic hematopoietic stem cells. Blood 110:1370–78 [Google Scholar]
  21. Miller JFAP. 21.  1962. Role of the thymus in transplantation immunity. Ann. N.Y. Acad. Sci. 99:340–54 [Google Scholar]
  22. Martinez C, Kersey J, Papermaster BW, Good RA. 22.  1962. Skin homograft survival in thymectomized mice. Proc. Soc. Exp. Biol. Med. 109:193–96 [Google Scholar]
  23. Weissman IL, Barclay TJ, Kaplan HS. 23.  1964. Age effect on thymus graft regeneration and immunologic restoration of thymectomized hosts. The Thymus: A Symposium Held at the Wistar Institute of Anatomy and Biology, April 29, 1964 V Defendi, D Metcalf 102–4 Philadelphia: Wistar Inst. Press
  24. Barclay TJ, Weissman IL. 24.  1964. The effect of millipore filter pore size on immunological restoration of thymectomized hosts. The Thymus: A Symposium Held at the Wistar Institute of Anatomy and Biology, April 29, 1964 V Defendi, D Metcalf 117–20 Philadelphia: Wistar Inst. Press [Google Scholar]
  25. Weissman IL. 25.  1967. Thymus cell migration. J. Exp. Med. 126:291–304 [Google Scholar]
  26. Parrott DV, De Sousa MA, East J. 26.  1966. Thymus-dependent areas in the lymphoid organs of neonatally thymectomized mice. J. Exp. Med. 123:191–204 [Google Scholar]
  27. Weissman IL. 27.  1970. The role of the thymus and extrathymic factors in the development of immune competence. Developmental Aspects of Antibody Formation and Structure I J Šterzl, I Řiha 55–67 Academic: New York [Google Scholar]
  28. Gutman GA, Weissman IL. 28.  1973. Homing properties of thymus-independent follicular lymphocytes. Transplantation 16:621–29 [Google Scholar]
  29. Greenspan JS, Gutman GA, Weissman IL, Talal N. 29.  1974. Thymus-antigen- and immunoglobulin-positive lymphocytes in tissue infiltrates of NZB/NZW mice. Clin. Immunol. Immunopathol. 3:16–31 [Google Scholar]
  30. Butcher EC, Scollay RG, Weissman IL. 30.  1980. Organ specificity of lymphocyte migration: mediation by highly selective lymphocyte interaction with organ-specific determinants on high endothelial venules. Eur. J. Immunol. 10:556–61 [Google Scholar]
  31. Gutman GA, Weissman IL. 31.  1972. Lymphoid tissue architecture: experimental analysis of the origin and distribution of T-cells and B-cells. Immunology 23:465–79 [Google Scholar]
  32. Friedberg SH, Weissman IL. 32.  1974. Lymphoid tissue architecture. II. Ontogeny of peripheral T and B cells in mice: evidence against Peyer's patches as the site of generation of B cells. J. Immunol. 113:1477–92 [Google Scholar]
  33. Weissman IL, Gutman GA, Friedberg SH. 33.  1974. Tissue localization of lymphoid cells. Ser. Haematol. 7:482–504 [Google Scholar]
  34. Weissman IL, Gutman GA, Friedberg SH, Jerabek L. 34.  1976. Lymphoid tissue architecture. III. Germinal centers, T cells, and thymus-dependent versus thymus-independent antigens. Adv. Exp. Med. Biol. 66:229–37 [Google Scholar]
  35. Fathman CG, Small M, Herzenberg LA, Weissman IL. 35.  1975. Thymus cell maturation. II. Differentiation of three “mature” subclasses in vivo. Cell Immunol. 15:109–28 [Google Scholar]
  36. Weissman IL. 36.  1975. Development and distribution of immunoglobulin-bearing cells in mice. Transplant. Rev. 24:159–76 [Google Scholar]
  37. Rouse RV, Ledbetter JA, Weissman IL. 37.  1982. Mouse lymph node germinal centers contain a selected subset of T cells—the helper phenotype. J. Immunol. 128:2243–46 [Google Scholar]
  38. Hood LE, Weissman IL, Wood BW, Wilson JH. 38.  1984. Immunology Menlo Park, CA: Benjamin/Cummings. Ch 7.
  39. Hood LE, Weissman IL, Wood BW, Wilson JH. 39.  1984. Immunology Menlo Park, CA: Benjamin/Cummings.
  40. Butcher EC, Rouse RV, Coffman RL, Nottenburg CN, Hardy RR, Weissman IL. 40.  1982. Surface phenotype of Peyer's patch germinal center cells: implications for the role of germinal centers in B cell differentiation. J. Immunol. 129:2698–707 [Google Scholar]
  41. Gutman GA, Weissman IL. 41.  1971. The bone marrow origin of lymphoid primary follicle small lymphocytes. Morphological and Functional Aspects of Immunity K Lindahl-Kiessling, G Alm, MG Hanna 595–602 New York: Plenum [Google Scholar]
  42. Weissman IL. 42.  1973. Thymus cell maturation. Studies on the origin of cortisone-resistant thymic lymphocytes. J. Exp. Med. 137:504–10 [Google Scholar]
  43. Greenspan JS, Gutman GA, Talal N, Weissman IL, Sugai S. 43.  1974. Thymus-antigen- and immunoglobulin-positive cells in lymph-nodes, thymus, and malignant lymphomas of NZB/NZW mice. Clin. Immunol. Immunopathol. 3:32–51 [Google Scholar]
  44. Weissman IL, Warnke R, Butcher EC, Rouse R, Levy R. 44.  1978. The lymphoid system: its normal architecture and the potential for understanding the system through the study of lymphoproliferative diseases. Hum. Pathol. 9:25–45 [Google Scholar]
  45. Alpert S, Kang HI, Weissman I, Fox RI. 45.  1994. Expression of granzyme A in salivary gland biopsies from patients with primary Sjogren's syndrome. Arthritis Rheum. 37:1046–54 [Google Scholar]
  46. Weissman IL, Masuda T, Olive C, Friedberg SH. 46.  1975. Differentiation of migration of T lymphocytes. Isr. J. Med. Sci. 11:1267–77 [Google Scholar]
  47. Trowbridge IS, Weissman IL, Bevan MJ. 47.  1975. Mouse T-cell surface glycoprotein recognised by heterologous anti-thymocyte sera and its relationship to Thy-1 antigen. Nature 256:652–54 [Google Scholar]
  48. Cantor H, Weissman I. 48.  1976. Development and function of subpopulations of thymocytes and T lymphocytes. Prog. Allergy 20:1–64 [Google Scholar]
  49. Weissman IL. 49.  1976. T cell maturation and the ontogeny of splenic lymphoid architecture. Immuno-Aspects of the Spleen JR Battisto, JW Steilein 77–87 Amsterdam: Elsevier/North Holl. Biomed. [Google Scholar]
  50. Weissman IL, Baird S, Gardner RL, Papaioannou VE, Raschke W. 50.  1977. Normal and neoplastic maturation of T-lineage lymphocytes. Cold Spring Harb. Symp. Quant. Biol. 41:9–21 [Google Scholar]
  51. Kraft DL, Weissman IL, Waller EK. 51.  1993. Differentiation of CD3-4-8- human fetal thymocytes in vivo: characterization of a CD34+8 intermediate. J. Exp. Med. 178:265–77 [Google Scholar]
  52. Akashi K, Kondo M, von Freeden-Jeffry U, Murray R, Weissman IL. 52.  1997. Bcl-2 rescues T lymphopoiesis in interleukin-7 receptor-deficient mice. Cell 89:1033–41 [Google Scholar]
  53. Guidos CJ, Danska JS, Fathman CG, Weissman IL. 53.  1990. T cell receptor-mediated negative selection of autoreactive T lymphocyte precursors occurs after commitment to the CD4 or CD8 lineages. J. Exp. Med. 172:835–45 [Google Scholar]
  54. Akashi K, Weissman IL. 54.  1996. The c-kit+ maturation pathway in mouse thymic T cell development: lineages and selection. Immunity 5:147–61 [Google Scholar]
  55. Akashi K, Kondo M, Weissman IL. 55.  1998. Two distinct pathways of positive selection for thymocytes. PNAS 95:2486–91 [Google Scholar]
  56. Weissman IL, Levy R. 56.  1975. In vitro cortisone sensitivity of in vivo cortisone-resistant thymocytes. Isr. J. Med. Sci. 11:884–88 [Google Scholar]
  57. Fink PJ, Gallatin WM, Reichert RA, Butcher EC, Weissman IL. 57.  1985. Homing receptor-bearing thymocytes, an immunocompetent cortical subpopulation. Nature 313:233–35 [Google Scholar]
  58. Gallatin WM, Weissman IL, Butcher EC. 58.  1983. A cell-surface molecule involved in organ-specific homing of lymphocytes. Nature 304:30–34 [Google Scholar]
  59. Berlin C, Berg EL, Briskin MJ, Andrew DP, Kilshaw PJ. 59.  et al. 1993. α4β7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell 74:185–95 [Google Scholar]
  60. Holzmann B, Weissman IL. 60.  1989. Integrin molecules involved in lymphocyte homing to Peyer's patches. Immunol. Rev. 108:45–61 [Google Scholar]
  61. Holzmann B, McIntyre BW, Weissman IL. 61.  1989. Identification of a murine Peyer's patch–specific lymphocyte homing receptor as an integrin molecule with an alpha chain homologous to human VLA-4 alpha. Cell 56:37–46 [Google Scholar]
  62. Siegelman MH, Cheng IC, Weissman IL, Wakeland EK. 62.  1990. The mouse lymph node homing receptor is identical with the lymphocyte cell surface marker Ly-22: role of the EGF domain in endothelial binding. Cell 61:611–22 [Google Scholar]
  63. Neuhaus H, Hu MC, Hemler ME, Takada Y, Holzmann B, Weissman IL. 63.  1991. Cloning and expression of cDNAs for the alpha subunit of the murine lymphocyte-Peyer's patch adhesion molecule. J. Cell Biol. 115:1149–58 [Google Scholar]
  64. Crowe DT, Chiu H, Fong S, Weissman IL. 64.  1994. Regulation of the avidity of integrin α4β7 by the β7 cytoplasmic domain. J. Biol. Chem. 269:14411–18 [Google Scholar]
  65. Reichert RA, Weissman IL, Butcher EC. 65.  1986. Phenotypic analysis of thymocytes that express homing receptors for peripheral lymph nodes. J. Immunol. 136:3521–28 [Google Scholar]
  66. Gallatin M, St John TP, Siegelman M, Reichert R, Butcher EC, Weissman IL. 66.  1986. Lymphocyte homing receptors. Cell 44:673–80 [Google Scholar]
  67. Kraal G, Weissman IL, Butcher EC. 67.  1988. Memory B cells express a phenotype consistent with migratory competence after secondary but not short-term primary immunization. Cell Immunol. 115:78–87 [Google Scholar]
  68. Nottenburg C, Weissman IL. 68.  1981. Cmu gene rearrangement of mouse immunoglobulin genes in normal B cells occurs on both the expressed and nonexpressed chromosomes. PNAS 78:484–88 [Google Scholar]
  69. Joho R, Weissman IL. 69.  1980. V-J joining of immunoglobulin kappa genes only occurs on one homologous chromosome. Nature 284:179–81 [Google Scholar]
  70. Tsukamoto A, Weissman IL, Hunt SV. 70.  1984. Allelic exclusion in rat kappa immunoglobulin chains: extent of Jk rearrangement in normal B lymphocytes. EMBO J. 3:975–81 [Google Scholar]
  71. Coffman RL, Weissman IL. 71.  1983. Immunoglobulin gene rearrangement during pre-B cell differentiation. J. Mol. Cell Immunol. 1:31–41 [Google Scholar]
  72. Butcher E, Weissman IL. 72.  1984. Lymphoid tissues and organs. Fundamental Immunology WE Paul 109–27 New York: Raven [Google Scholar]
  73. Davis MM, Calame K, Early PW, Livant DL, Joho R. 73.  et al. 1980. An immunoglobulin heavy-chain gene is formed by at least two recombinational events. Nature 283:733–39 [Google Scholar]
  74. Moore KW, Rogers J, Hunkapiller T, Early P, Nottenburg C. 74.  et al. 1981. Expression of IgD may use both DNA rearrangement and RNA splicing mechanisms. PNAS 78:1800–4 [Google Scholar]
  75. Barth RK, Kim BS, Lan NC, Hunkapiller T, Sobieck N. 75.  et al. 1985. The murine T-cell receptor uses a limited repertoire of expressed V beta gene segments. Nature 316:517–23 [Google Scholar]
  76. Muller-Sieburg CE, Whitlock CA, Weissman IL. 76.  1986. Isolation of two early B lymphocyte progenitors from mouse marrow: a committed pre-pre-B cell and a clonogenic Thy-1-lo hematopoietic stem cell. Cell 44:653–62 [Google Scholar]
  77. Ezine S, Weissman IL, Rouse RV. 77.  1984. Bone marrow cells give rise to distinct cell clones within the thymus. Nature 309:629–31 [Google Scholar]
  78. Kondo M, Weissman IL, Akashi K. 78.  1997. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91:661–72 [Google Scholar]
  79. Mebius RE, Streeter PR, Michie S, Butcher EC, Weissman IL. 79.  1996. A developmental switch in lymphocyte homing receptor and endothelial vascular addressin expression regulates lymphocyte homing and permits CD4+ CD3 cells to colonize lymph nodes. PNAS 93:11019–24 [Google Scholar]
  80. Mebius RE, Rennert P, Weissman IL. 80.  1997. Developing lymph nodes collect CD4+CD3 LTβ+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity 7:493–504 [Google Scholar]
  81. Mebius RE, Schadee-Eestermans IL, Weissman IL. 81.  1998. MAdCAM-1 dependent colonization of developing lymph nodes involves a unique subset of CD4+CD3 hematolymphoid cells. Cell Adhes. Commun. 6:97–103 [Google Scholar]
  82. Mebius RE, van Tuijl S, Weissman IL, Randall TD. 82.  1998. Transfer of primitive stem/progenitor bone marrow cells from LTα−/− donors to wild-type hosts: implications for the generation of architectural events in lymphoid B cell domains. J. Immunol. 161:3836–43 [Google Scholar]
  83. Weissman IL. 83.  1971. Tumor immunology. Calif. Med. 114:76–78 [Google Scholar]
  84. Weissman IL, Nord S, Baird S. 84.  1972. Immunotherapy and immunodiagnosis of metastatic neoplasms: prospects and progress. Front. Radiat. Ther. Oncol. 7:161–78 [Google Scholar]
  85. Weissman IL. 85.  1973. Tumor immunity in vivo: evidence that immune destruction of tumor leaves “bystander” cells intact. J. Natl. Cancer Inst. 51:443–48 [Google Scholar]
  86. Nord S, Weissman IL. 86.  1974. Radiolabeled antitumor antibodies. I. Antibody-specific and immunoglobulin-specific binding sites on Moloney lymphoma cells (LSTRA). J. Natl. Cancer Inst. 53:117–24 [Google Scholar]
  87. Nord S, Weissman IL. 87.  1974. Radiolabeled antitumor antibodies. II. Quantitative analysis of Moloney tumor antigens on Moloney lymphoma cells (LSTRA). J. Natl. Cancer Inst. 53:125–30 [Google Scholar]
  88. Nord S, Weissman IL. 88.  1974. Radiolabeled antitumor antibodies. III. Highly iodinated and highly radioiodinated antibodies. J. Natl. Cancer Inst. 53:959–65 [Google Scholar]
  89. Weissman IL, Nord S, Ellis RL. 89.  1974. Radiolabeled antibodies: Their potential as quantitative tools for in vitro and in vivo tumor diagnosis. Presented at Interact. Radiat. Host Immune Def. Mech. Malig., White Sulphur Springs, WV
  90. Witte ON, Weissman IL, Kaplan HS. 90.  1973. Structural characteristics of some murine RNA tumor viruses studied by lactoperoxidase iodination. PNAS 70:36–40 [Google Scholar]
  91. Witte ON, Weissman IL. 91.  1974. Polypeptides of Moloney sarcoma-leukemia virions: their resolution and incorporation into extracellular virions. Virology 61:575–87 [Google Scholar]
  92. Witte ON, Weissman IL. 92.  1974. Membrane proteins of MSV-MLV: their role in virion-virion interactions in vitro. Virology 61:588–93 [Google Scholar]
  93. Witte ON, Weissman IL. 93.  1976. Oncornavirus budding: kinetics of formation and utilization of viral membrane glycoprotein. Virology 69:464–73 [Google Scholar]
  94. Witte ON, Tsukamoto-Adey A, Weissman IL. 94.  1977. Cellular maturation of oncornavirus glycoproteins: Topological arrangement of precursor and product forms in cellular membranes. Virology 76:539–53 [Google Scholar]
  95. McGrath M, Witte O, Pincus T, Weissman IL. 95.  1978. Retrovirus purification: method that conserves envelope glycoprotein and maximizes infectivity. J. Virol. 25:923–27 [Google Scholar]
  96. Humphrey D, Tsukamoto-Adey A, Witte OM, Fox R, Jerabek L, Weissman IL. 96.  1979. A serologic comparison of Moloney lymphoma cell surface and Moloney oncornavirus antigens. J. Immunol. 123:412–18 [Google Scholar]
  97. Fox RI, Weissman IL. 97.  1979. Moloney virus-induced cell surface antigens and histocompatibility antigens are located on distinct molecules. J. Immunol. 122:1697–704 [Google Scholar]
  98. Baird S, Raschke W, Weissman IL. 98.  1977. Evidence that MuLV-induced thymic lymphoma cells possess specific cell membrane binding sites for MuLV. Int. J. Cancer 19:403–13 [Google Scholar]
  99. Weissman IL, Baird S. 99.  1977. Oncornavirus leukemogenesis as a model for selective neoplastic transformation Presented at Life Sci. Res. Rep. 7, Neoplast. Transform.: Mechan. Conseq., Berlin
  100. McGrath M, Weissman IL, Baird S, Raschke W, Decleve A. 100.  et al. 1978. Each T-cell lymphoma induced by a particular murine leukemia virus bears surface receptors specific for that virus. Birth Defects Orig. Artic. Ser. 14:349–61 [Google Scholar]
  101. Weissman IL, McGrath M, Tamura G. 101.  1985. The receptor-mediated leukemogenesis hypothesis: a model of retroviral oncogenesis by viral stimulation of cell-surface receptors. Leukemia. Dahlem Konferenzen, November 13–15, 1985 IL Weissman 235–49 New York: Verlag [Google Scholar]
  102. O’Neill HC, McGrath MS, Allison JP, Weissman IL. 102.  1987. A subset of T cell receptors associated with L3T4 molecules mediates C6VL leukemia cell binding of its cognate retrovirus. Cell 49:143–51 [Google Scholar]
  103. McGrath MS, Pillemer E, Weissman IL. 103.  1980. Murine leukaemogenesis: Monoclonal antibodies to T-cell determinants arrest T-lymphoma cell proliferation. Nature 285:259–61 [Google Scholar]
  104. McGrath MS, Decleve A, Lieberman M, Kaplan HS, Weissman IL. 104.  1978. Specificity of cell surface virus receptors on radiation leukemia virus and radiation-induced thymic lymphomas. J. Virol. 28:819–27 [Google Scholar]
  105. McGrath MS, Weissman IL. 105.  1979. AKR leukemogenesis: identification and biological significance of thymic lymphoma receptors for AKR retroviruses. Cell 17:65–75 [Google Scholar]
  106. McGrath MS, Weissman IL. 106.  1984. Receptor-mediated leukemogenesis: analysis of avian and human lymphomas for retrovirus-binding specificities. Human T-Cell Leukemia Lymphoma Virus: The Family of Human T-Lymphotropic Retroviruses; Their Role in Malignancies and Association with AIDS RC Gallo, M Essex, L Gross 205–16 Cold Spring Harbor, NY: Cold Spring Harb. Lab. [Google Scholar]
  107. McGrath MS, Pillemer E, Kooistra D, Weissman IL. 107.  1980. The role of MuLV receptors on T-lymphoma cells in lymphoma cell proliferation. Contemp. Top. Immunobiol. 11:157–84 [Google Scholar]
  108. McGrath MS, Tamura G, Weissman IL. 108.  1987. Receptor mediated leukemogenesis: Murine leukemia virus interacts with BCL1 lymphoma cell surface IgM. J. Mol. Cell Immunol. 3:227–42 [Google Scholar]
  109. Sachen KL, Strohman MJ, Singletary J, Alizadeh AA, Kattah NH. 109.  et al. 2012. Self-antigen recognition by follicular lymphoma B-cell receptors. Blood 120:4182–90 [Google Scholar]
  110. Avalos AM, Meyer-Wentrup F, Ploegh HL. 110.  2014. B-cell receptor signaling in lymphoid malignancies and autoimmunity. Adv. Immunol. 123:1–49 [Google Scholar]
  111. Niemann CU, Wiestner A. 111.  2013. B-cell receptor signaling as a driver of lymphoma development and evolution. Semin. Cancer Biol. 23:410–21 [Google Scholar]
  112. Serwold T, Hochedlinger K, Swindle J, Hedgpeth J, Jaenisch R, Weissman IL. 112.  2010. T-cell receptor-driven lymphomagenesis in mice derived from a reprogrammed T cell. PNAS 107:18939–43 [Google Scholar]
  113. Moore MA, Metcalf D. 113.  1970. Ontogeny of the haemopoietic system: yolk sac origin of in vivo and in vitro colony forming cells in the developing mouse embryo. Br. J. Haematol. 18:279–96 [Google Scholar]
  114. Micklem HS, Ford CE, Evans EP, Ogden DA, Papworth DS. 114.  1972. Competitive in vivo proliferation of foetal and adult haematopoietic cells in lethally irradiated mice. J. Cell Physiol. 79:293–98 [Google Scholar]
  115. Becker A, McCulloch E, Till J. 115.  1963. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 197:452–54 [Google Scholar]
  116. Weissman I, Papaioannou V, Gardner R. 116.  1978. Fetal hematopoietic origins of the adult hematolymphoid system. Cold Spring Harbor Conferences on Cell Proliferation 5 Differentiation of Normal and Neoplastic Hematopoietic Cells B Clarkson, PA Marks, JE Till 33–47 Cold Spring Harbor, NY: Cold Spring Harb. Lab.
  117. Ueno H, Weissman IL. 117.  2010. The origin and fate of yolk sac hematopoiesis: Application of chimera analyses to developmental studies. Int. J. Dev. Biol. 54:1019–31 [Google Scholar]
  118. Owen RD. 118.  1945. Immunogenetic consequences of vascular anastomoses between bovine twins. Science 102:400–1 [Google Scholar]
  119. Dexter TM, Lajtha LG. 119.  1974. Proliferation of haemopoietic stem cells in vitro. Br. J. Haematol. 28:525–30 [Google Scholar]
  120. Whitlock CA, Witte ON. 120.  1982. Long-term culture of B lymphocytes and their precursors from murine bone marrow. PNAS 79:3608–12 [Google Scholar]
  121. Whitlock CA, Tidmarsh GF, Muller-Sieburg C, Weissman IL. 121.  1987. Bone marrow stromal cell lines with lymphopoietic activity express high levels of a pre-B neoplasia-associated molecule. Cell 48:1009–21 [Google Scholar]
  122. Denis KA, Treiman LJ, St Claire JI, Witte ON. 122.  1984. Long-term cultures of murine fetal liver retain very early B lymphoid phenotype. J. Exp. Med. 160:1087–101 [Google Scholar]
  123. Coffman RL, Weissman IL. 123.  1981. B220: A B cell-specific member of the T200 glycoprotein family. Nature 289:681–83 [Google Scholar]
  124. Chan CK, Lindau P, Jiang W, Chen JY, Zhang LF. 124.  et al. 2013. Clonal precursor of bone, cartilage, and hematopoietic niche stromal cells. PNAS 110:12643–48 [Google Scholar]
  125. Chan CK, Chen CC, Luppen CA, Kim JB, Deboer AT. 125.  et al. 2008. Endochondral ossification is required for haematopoietic stem-cell niche formation. Nature 457:490–94 [Google Scholar]
  126. Reinisch A, Etchart N, Thomas D, Hofmann NA, Fruehwirth M. 126.  et al. 2014. Epigenetic and in vivo comparison of diverse MSC sources reveals an endochondral signature for human hematopoietic niche formation. Blood 125:249–60 [Google Scholar]
  127. Chan CK, Seo EY, Chen JY, Lo D, McArdle A. 127.  et al. 2015. Identification and specification of the mouse skeletal stem cell. Cell 160:285–98 [Google Scholar]
  128. Spangrude GJ, Heimfeld S, Weissman IL. 128.  1988. Purification and characterization of mouse hematopoietic stem cells. Science 241:58–62 [Google Scholar]
  129. Spangrude GJ, Weissman IL. 129.  1988. Mature T cells generated from single thymic clones are phenotypically and functionally heterogeneous. J. Immunol. 141:1877–90 [Google Scholar]
  130. Spangrude GJ, Aihara Y, Weissman IL, Klein J. 130.  1988. The stem cell antigens Sca-1 and Sca-2 subdivide thymic and peripheral T lymphocytes into unique subsets. J. Immunol. 141:3697–707 [Google Scholar]
  131. Spangrude GJ, Klein J, Heimfeld S, Aihara Y, Weissman IL. 131.  1989. Two monoclonal antibodies identify thymic-repopulating cells in mouse bone marrow. J. Immunol. 142:425–30 [Google Scholar]
  132. Quesenberry PJ. 132.  1991. The blueness of stem cells. Exp. Hematol. 19:725–28 [Google Scholar]
  133. Morrison SJ, Weissman IL. 133.  1994. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1:661–73 [Google Scholar]
  134. Morrison SJ, Wandycz AM, Hemmati HD, Wright DE, Weissman IL. 134.  1997. Identification of a lineage of multipotent hematopoietic progenitors. Development 124:1929–39 [Google Scholar]
  135. Akashi K, Traver D, Miyamoto T, Weissman IL. 135.  2000. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404:193–97 [Google Scholar]
  136. Manz MG, Miyamoto T, Akashi K, Weissman IL. 136.  2002. Prospective isolation of human clonogenic common myeloid progenitors. PNAS 99:11872–77 [Google Scholar]
  137. Mori Y, Chen JY, Pluvinage JV, Seita J, Weissman IL. 137.  2015. Prospective isolation of human erythroid lineage-committed progenitors. PNAS 112:9638–43 [Google Scholar]
  138. Majeti R, Park CY, Weissman IL. 138.  2007. Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood. Cell Stem Cell 1:635–45 [Google Scholar]
  139. Weissman IL. 139.  2015. Hematopoietic stem cells, regenerative medicine, and leukemogenesis. Thomas’ Hematopoietic Cell Transplantation SJ Forman, RS Negrin, J Antin, FR Appelbaum 25–57 London: Wiley [Google Scholar]
  140. McCune JM, Rabin LB, Feinberg MB, Lieberman M, Kosek JC. 140.  et al. 1988. Endoproteolytic cleavage of gp160 is required for the activation of human immunodeficiency virus. Cell 53:55–67 [Google Scholar]
  141. McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman IL. 141.  1988. The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science 241:1632–39 [Google Scholar]
  142. Weissman IL. 142.  1989. Developing ethical human models for experimental medicine. Stanford Medicine Winter 17–32
  143. Namikawa R, Kaneshima H, Lieberman M, Weissman IL, McCune JM. 143.  1988. Infection of the SCID-hu mouse by HIV-1. Science 242:1684–86 [Google Scholar]
  144. Baum C, Uchida N, Peault B, Weissman I. 144.  1994. Isolation and characterization of hematopoietic progenitor and stem cells. Bone Marrow Transplantation SJ Forman, KG Blume, ED Thomas 53–71 Boston: Blackwell Sci. [Google Scholar]
  145. Vose JM, Bierman PJ, Lynch JC, Atkinson K, Juttner C. 145.  et al. 2001. Transplantation of highly purified CD34+Thy-1+ hematopoietic stem cells in patients with recurrent indolent non-Hodgkin's lymphoma. Biol. Blood Marrow Transplant. 7:680–87 [Google Scholar]
  146. Michallet M, Philip T, Philip I, Godinot H, Sebban C. 146.  et al. 2000. Transplantation with selected autologous peripheral blood CD34+Thy1+ hematopoietic stem cells (HSCs) in multiple myeloma: impact of HSC dose on engraftment, safety, and immune reconstitution. Exp. Hematol. 28:858–70 [Google Scholar]
  147. Negrin RS, Atkinson K, Leemhuis T, Hanania E, Juttner C. 147.  et al. 2000. Transplantation of highly purified CD34+Thy-1+ hematopoietic stem cells in patients with metastatic breast cancer. Biol. Blood Marrow Transplant. 6:262–71 [Google Scholar]
  148. Muller AM, Kohrt HE, Cha S, Laport G, Klein J. 148.  et al. 2012. Long-term outcome of patients with metastatic breast cancer treated with high-dose chemotherapy and transplantation of purified autologous hematopoietic stem cells. Biol. Blood Marrow Transplant. 18:125–33 [Google Scholar]
  149. Weissman IL. 149.  2012. Stem cell therapies could change medicine…if they get the chance. Cell Stem Cell 10:663–65 [Google Scholar]
  150. Hood LE, Weissman IL, Wood BW. 150.  1978. Immunology Menlo Park, CA: Benjamin/Cummings
  151. Morrison SJ, Qian D, Jerabek L, Thiel BA, Park IK. 151.  et al. 2002. A genetic determinant that specifically regulates the frequency of hematopoietic stem cells. J. Immunol. 168:635–42 [Google Scholar]
  152. Traver D, Akashi K, Weissman IL, Lagasse E. 152.  1998. Mice defective in two apoptosis pathways in the myeloid lineage develop acute myeloblastic leukemia. Immunity 9:47–57 [Google Scholar]
  153. Miyamoto T, Weissman IL, Akashi K. 153.  2000. AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation. PNAS 97:7521–26 [Google Scholar]
  154. Bonnet D, Dick JE. 154.  1997. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3:730–37 [Google Scholar]
  155. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T. 155.  et al. 1994. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–48 [Google Scholar]
  156. Travis A, Amsterdam A, Belanger C, Grosschedl R. 156.  1991. LEF-1, a gene encoding a lymphoid-specific protein with an HMG domain, regulates T-cell receptor alpha enhancer function [corrected]. Genes Dev. 5:880–94 [Google Scholar]
  157. Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL. 157.  et al. 2003. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423:448–52 [Google Scholar]
  158. Reya T, Duncan AW, Ailles L, Domen J, Scherer DC. 158.  et al. 2003. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423:409–14 [Google Scholar]
  159. Nusse R, Varmus HE. 159.  1982. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31:99–109 [Google Scholar]
  160. Tsukamoto AS, Grosschedl R, Guzman RC, Parslow T, Varmus HE. 160.  1988. Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell 55:619–25 [Google Scholar]
  161. Reya T, Morrison SJ, Clarke MF, Weissman IL. 161.  2001. Stem cells, cancer, and cancer stem cells. Nature 414:105–11 [Google Scholar]
  162. Kondo M, Wagers AJ, Manz MG, Prohaska SS, Scherer DC. 162.  et al. 2003. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu. Rev. Immunol. 21:759–806 [Google Scholar]
  163. Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C. 163.  et al. 2004. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N. Engl. J. Med. 351:657–67 [Google Scholar]
  164. Berrill NJ. 164.  1941. Size and morphogenesis in the bud of Botryllus. Biol. Bull. 80:185–93 [Google Scholar]
  165. Rinkevich Y, Voskoboynik A, Rosner A, Rabinowitz C, Paz G. 165.  et al. 2013. Repeated, long-term cycling of putative stem cells between niches in a basal chordate. Dev. Cell 24:76–88 [Google Scholar]
  166. Laird DJ, De Tomaso AW, Weissman IL. 166.  2005. Stem cells are units of natural selection in a colonial ascidian. Cell 123:1351–60 [Google Scholar]
  167. Laird DJ, Chang WT, Weissman IL, Lauzon RJ. 167.  2005. Identification of a novel gene involved in asexual organogenesis in the budding ascidian Botryllus schlosseri. Dev. Dyn. 234:997–1005 [Google Scholar]
  168. Voskoboynik A, Weissman IL. 168.  2015. Botryllus schlosseri, an emerging model for the study of aging, stem cells, and mechanisms of regeneration. Invertebr. Reprod. Dev. 59:33–38 [Google Scholar]
  169. Rinkevich B, Weissman IL. 169.  1991. Interpopulational allogeneic reactions in the colonial protochordate Botryllus schlosseri. Int. Immunol. 3:1265–72 [Google Scholar]
  170. Rinkevich B, Shapira M, Weissman IL, Saito Y. 170.  1992. Allogeneic responses between three remote populations of the cosmopolitan ascidian Botryllus schlosseri. Zool. Sci. 9:989–94 [Google Scholar]
  171. Schlumpberger JM, Weissman IL, Scofield VL. 171.  1984. Monoclonal antibodies developed against Botryllus blood cell antigens bind to cells of distinct lineages during embryonic development. J. Exp. Zool. 229:205–13 [Google Scholar]
  172. Schlumpberger JM, Weissman IL, Scofield VL. 172.  1984. Separation and labeling of specific subpopulations of Botryllus blood cells. J. Exp. Zool. 229:401–11 [Google Scholar]
  173. Oka H, Watanabe H. 173.  1957. Colony specificity in compound ascidians as tested by fusion experiments (a preliminary report). Proc. Jpn. Acad. 33:657–59 [Google Scholar]
  174. Scofield VL, Weissman IL. 174.  1981. Allorecognition in biological systems. Dev. Comp. Immunol. 5:23–28 [Google Scholar]
  175. Scofield VL, Schlumpberger JM, Weissman IL. 175.  1982. Colony specificity in the colonial tunicate Botryllus and the origins of vertebrate immunity. Am. Zool. 22:783–94 [Google Scholar]
  176. Harp JA, Tsuchida CB, Weissman IL, Scofield VL. 176.  1988. Autoreactive blood cells and programmed cell death in growth and development of protochordates. J. Exp. Zool. 247:257–62 [Google Scholar]
  177. Scofield VL, Schlumpberger JM, West LA, Weissman IL. 177.  1982. Protochordate allorecognition is controlled by a MHC-like gene system. Nature 295:499–502 [Google Scholar]
  178. Voskoboynik A, Newman AM, Corey DM, Sahoo D, Pushkarev D. 178.  et al. 2013. Identification of a colonial chordate histocompatibility gene. Science 341:384–87 [Google Scholar]
  179. De Tomaso AW, Nyholm SV, Palmeri KJ, Ishizuka KJ, Ludington WB. 179.  et al. 2005. Isolation and characterization of a protochordate histocompatibility locus. Nature 438:454–59 [Google Scholar]
  180. De Tomaso AW, Weissman IL. 180.  2004. Evolution of a protochordate allorecognition locus. Science 303:977 [Google Scholar]
  181. Stoner DS, Rinkevich B, Weissman IL. 181.  1999. Heritable germ and somatic cell lineage competitions in chimeric colonial protochordates. PNAS 96:9148–53 [Google Scholar]
  182. Stoner DS, Weissman IL. 182.  1996. Somatic and germ cell parasitism in a colonial ascidian: possible role for a highly polymorphic allorecognition system. PNAS 93:15254–59 [Google Scholar]
  183. Weissman I. 183.  2005. Stem cell research: paths to cancer therapies and regenerative medicine. JAMA 294:1359–66 [Google Scholar]
  184. Magor BG, De Tomaso A, Rinkevich B, Weissman IL. 184.  1999. Allorecognition in colonial tunicates: protection against predatory cell lineages?. Immunol. Rev. 167:69–79 [Google Scholar]
  185. Voskoboynik A, Neff NF, Sahoo D, Newman AM, Pushkarev D. 185.  et al. 2013. The genome sequence of the colonial chordate, Botryllus schlosseri. eLife 2:e00569 [Google Scholar]
  186. Bartl S, Baish M, Weissman IL, Diaz M. 186.  2003. Did the molecules of adaptive immunity evolve from the innate immune system?. Integr. Comp. Biol. 43:338–46 [Google Scholar]
  187. Bartl S, Baltimore D, Weissman IL. 187.  1994. Molecular evolution of the vertebrate immune system. PNAS 91:10769–70 [Google Scholar]
  188. Rinkevich B, Lauzon RJ, Brown BW, Weissman IL. 188.  1992. Evidence for a programmed life span in a colonial protochordate. PNAS 89:3546–50 [Google Scholar]
  189. Fagan MB, Weissman IL. 189.  1997. HSP70 genes and historecognition in Botryllus schlosseri: Implications for MHC evolution. Hereditas 127:25–35 [Google Scholar]
  190. Stoner DS, Ben-Shlomo R, Rinkevich B, Weissman IL. 190.  2002. Genetic variability of Botryllus schlosseri invasions to the east and west coasts of the USA. Mar. Ecol. Prog. Ser. 243:93–100 [Google Scholar]
  191. Weissman IL. 191.  2000. Stem cells: units of development, units of regeneration, and units in evolution. Cell 100:157–68 [Google Scholar]
  192. Ueno H, Turnbull BB, Weissman IL. 192.  2009. Two-step oligoclonal development of male germ cells. PNAS 106:175–80 [Google Scholar]
  193. Weissman IL. 193.  2015. Stem cells are units of natural selection for tissue formation, for germline development, and in cancer development. PNAS 112:8922–28 [Google Scholar]
  194. Rossi DJ, Bryder D, Zahn JM, Ahlenius H, Sonu R. 194.  et al. 2005. Cell intrinsic alterations underlie hematopoietic stem cell aging. PNAS 102:9194–99 [Google Scholar]
  195. Rossi DJ, Bryder D, Seita J, Nussenzweig A, Hoeijmakers J, Weissman IL. 195.  2007. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447:725–29 [Google Scholar]
  196. Rossi DJ, Jamieson CH, Weissman IL. 196.  2008. Stems cells and the pathways to aging and cancer. Cell 132:681–96 [Google Scholar]
  197. Beerman I, Bhattacharya D, Zandi S, Sigvardsson M, Weissman IL. 197.  et al. 2010. Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion. PNAS 107:5465–70 [Google Scholar]
  198. Beerman I, Seita J, Inlay MA, Weissman IL, Rossi DJ. 198.  2014. Quiescent hematopoietic stem cells accumulate DNA damage during aging that is repaired upon entry into cell cycle. Cell Stem Cell 15:37–50 [Google Scholar]
  199. Pang WW, Price EA, Sahoo D, Beerman I, Maloney WJ. 199.  et al. 2011. Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. PNAS 108:20012–17 [Google Scholar]
  200. Abrahamsson AE, Geron I, Gotlib J, Dao KH, Barroga CF. 200.  et al. 2009. Glycogen synthase kinase 3β missplicing contributes to leukemia stem cell generation. PNAS 106:3925–29 [Google Scholar]
  201. Jaiswal S, Traver D, Miyamoto T, Akashi K, Lagasse E, Weissman IL. 201.  2003. Expression of BCR/ABL and BCL-2 in myeloid progenitors leads to myeloid leukemias. PNAS 100:10002–7 [Google Scholar]
  202. Jamieson CH, Gotlib J, Durocher JA, Chao MP, Mariappan MR. 202.  et al. 2006. The JAK2 V617F mutation occurs in hematopoietic stem cells in polycythemia vera and predisposes toward erythroid differentiation. PNAS 103:6224–29 [Google Scholar]
  203. Weissman IL. 203.  2002. The road ended up at stem cells. Immunol. Rev. 185:159–74 [Google Scholar]
  204. Jan M, Snyder TM, Corces-Zimmerman MR, Vyas P, Weissman IL. 204.  et al. 2012. Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia. Sci. Transl. Med. 4:149ra18 [Google Scholar]
  205. Corces-Zimmerman MR, Hong WJ, Weissman IL, Medeiros BC, Majeti R. 205.  2014. Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. PNAS 111:2548–53 [Google Scholar]
  206. Majeti R, Becker MW, Tian Q, Lee TL, Yan X. 206.  et al. 2009. Dysregulated gene expression networks in human acute myelogenous leukemia stem cells. PNAS 106:3396–401 [Google Scholar]
  207. Jan M, Chao MP, Cha AC, Alizadeh AA, Gentles AJ. 207.  et al. 2011. Prospective separation of normal and leukemic stem cells based on differential expression of TIM3, a human acute myeloid leukemia stem cell marker. PNAS 108:5009–14 [Google Scholar]
  208. Lagasse E, Weissman IL. 208.  1992. Mouse MRP8 and MRP14, two intracellular calcium-binding proteins associated with the development of the myeloid lineage. Blood 79:1907–15 [Google Scholar]
  209. Lagasse E, Weissman IL. 209.  1994. bcl-2 inhibits apoptosis of neutrophils but not their engulfment by macrophages. J. Exp. Med. 179:1047–52 [Google Scholar]
  210. Vaux DL, Cory S, Adams JM. 210.  1988. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335:440–42 [Google Scholar]
  211. Adams JM, Harris AW, Vaux DL, Alexander WS, Rosenbaum H. 211.  et al. 1989. The transgenic window on lymphoid malignancy. Princess Takamatsu Symp. 20:297–309 [Google Scholar]
  212. Vaux DL, Aguila HL, Weissman IL. 212.  1992. Bcl-2 prevents death of factor-deprived cells but fails to prevent apoptosis in targets of cell mediated killing. Int. Immunol. 4:821–24 [Google Scholar]
  213. Vaux DL, Weissman IL, Kim SK. 213.  1992. Prevention of programmed cell death in Caenorhabditis elegans by human bcl-2. Science 258:1955–57 [Google Scholar]
  214. Lagasse E, Weissman IL. 214.  1997. Enforced expression of Bcl-2 in monocytes rescues macrophages and partially reverses osteopetrosis in op/op mice. Cell 89:1021–31 [Google Scholar]
  215. Kondo M, Akashi K, Domen J, Sugamura K, Weissman IL. 215.  1997. Bcl-2 rescues T lymphopoiesis, but not B or NK cell development, in common γ chain–deficient mice. Immunity 7:155–62 [Google Scholar]
  216. Domen J, Gandy KL, Weissman IL. 216.  1998. Systemic overexpression of BCL-2 in the hematopoietic system protects transgenic mice from the consequences of lethal irradiation. Blood 91:2272–82 [Google Scholar]
  217. Domen J, Cheshier SH, Weissman IL. 217.  2000. The role of apoptosis in the regulation of hematopoietic stem cells: Overexpression of BCL-2 increases both their number and repopulation potential. J. Exp. Med. 191:253–64 [Google Scholar]
  218. Domen J, Weissman IL. 218.  2000. Hematopoietic stem cells need two signals to prevent apoptosis; BCL-2 can provide one of these, Kitl/c-Kit signaling the other. J. Exp. Med. 192:1707–18 [Google Scholar]
  219. Kogan SC, Brown DE, Shultz DB, Truong BT, Lallemand-Breitenbach V. 219.  et al. 2001. BCL-2 cooperates with promyelocytic leukemia retinoic acid receptor alpha chimeric protein (PMLRARalpha) to block neutrophil differentiation and initiate acute leukemia. J. Exp. Med. 193:531–43 [Google Scholar]
  220. Allsopp RC, Morin GB, DePinho R, Harley CB, Weissman IL. 220.  2003. Telomerase is required to slow telomere shortening and extend replicative lifespan of HSCs during serial transplantation. Blood 102:517–20 [Google Scholar]
  221. Yamane T, Dylla SJ, Muijtjens M, Weissman IL. 221.  2005. Enforced Bcl-2 expression overrides serum and feeder cell requirements for mouse embryonic stem cell self-renewal. PNAS 102:3312–17 [Google Scholar]
  222. Ardehali R, Inlay MA, Ali SR, Tang C, Drukker M, Weissman IL. 222.  2011. Overexpression of BCL2 enhances survival of human embryonic stem cells during stress and obviates the requirement for serum factors. PNAS 108:3282–87 [Google Scholar]
  223. Ardehali R, Ali SR, Inlay MA, Abilez OJ, Chen MQ. 223.  et al. 2013. Prospective isolation of human embryonic stem cell-derived cardiovascular progenitors that integrate into human fetal heart tissue. PNAS 110:3405–10 [Google Scholar]
  224. Jaiswal S, Jamieson CH, Pang WW, Park CY, Chao MP. 224.  et al. 2009. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 138:271–85 [Google Scholar]
  225. Oldenborg PA, Zheleznyak A, Fang YF, Lagenaur CF, Gresham HD, Lindberg FP. 225.  2000. Role of CD47 as a marker of self on red blood cells. Science 288:2051–54 [Google Scholar]
  226. Chao MP, Majeti R, Weissman IL. 226.  2011. Programmed cell removal: a new obstacle in the road to developing cancer. Nat. Rev. Cancer 12:58–67 [Google Scholar]
  227. Wright DE, Bowman EP, Wagers AJ, Butcher EC, Weissman IL. 227.  2002. Hematopoietic stem cells are uniquely selective in their migratory response to chemokines. J. Exp. Med. 195:1145–54 [Google Scholar]
  228. Wagers AJ, Allsopp RC, Weissman IL. 228.  2002. Changes in integrin expression are associated with altered homing properties of Lin−/loThy1.1loSca-1+c-kit+ hematopoietic stem cells following mobilization by cyclophosphamide/granulocyte colony-stimulating factor. Exp. Hematol. 30:176–85 [Google Scholar]
  229. Christensen JL, Wright DE, Wagers AJ, Weissman IL. 229.  2004. Circulation and chemotaxis of fetal hematopoietic stem cells. PLOS Biol. 2:E75 [Google Scholar]
  230. Wagers AJ, Weissman IL. 230.  2006. Differential expression of α2 integrin separates long-term and short-term reconstituting Lin−/loThy1.1loc-kit+ Sca-1+ hematopoietic stem cells. Stem Cells 24:1087–94 [Google Scholar]
  231. Cao YA, Wagers AJ, Beilhack A, Dusich J, Bachmann MH. 231.  et al. 2004. Shifting foci of hematopoiesis during reconstitution from single stem cells. PNAS 101:221–26 [Google Scholar]
  232. Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S. 232.  et al. 2009. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 138:286–99 [Google Scholar]
  233. Chao MP, Jaiswal S, Weissman-Tsukamoto R, Alizadeh AA, Gentles AJ. 233.  et al. 2010. Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47. Sci. Transl. Med. 2:63ra94 [Google Scholar]
  234. Feng M, Chen JY, Weissman-Tsukamoto R, Volkmer JP, Ho PY. 234.  et al. 2015. Macrophages eat cancer cells using their own calreticulin as a guide: roles of TLR and Btk. PNAS 112:2145–50 [Google Scholar]
  235. Gardai SJ, McPhillips KA, Frasch SC, Janssen WJ, Starefeldt A. 235.  et al. 2005. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123:321–34 [Google Scholar]
  236. Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L. 236.  et al. 2007. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med. 13:54–61 [Google Scholar]
  237. Ogden CA, deCathelineau A, Hoffmann PR, Bratton D, Ghebrehiwet B. 237.  et al. 2001. C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J. Exp. Med. 194:781–95 [Google Scholar]
  238. Obeid M, Panaretakis T, Joza N, Tufi R, Tesniere A. 238.  et al. 2007. Calreticulin exposure is required for the immunogenicity of gamma-irradiation and UVC light-induced apoptosis. Cell Death Differ. 14:1848–50 [Google Scholar]
  239. Panaretakis T, Joza N, Modjtahedi N, Tesniere A, Vitale I. 239.  et al. 2008. The co-translocation of ERp57 and calreticulin determines the immunogenicity of cell death. Cell Death Differ. 15:1499–509 [Google Scholar]
  240. Pang WW, Pluvinage JV, Price EA, Sridhar K, Arber DA. 240.  et al. 2013. Hematopoietic stem cell and progenitor cell mechanisms in myelodysplastic syndromes. PNAS 110:3011–16 [Google Scholar]
  241. Chan KS, Espinosa I, Chao M, Wong D, Ailles L. 241.  et al. 2009. Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. PNAS 106:14016–21 [Google Scholar]
  242. Chao MP, Alizadeh AA, Tang C, Jan M, Weissman-Tsukamoto R. 242.  et al. 2011. Therapeutic antibody targeting of CD47 eliminates human acute lymphoblastic leukemia. Cancer Res. 71:1374–84 [Google Scholar]
  243. Chao MP, Tang C, Pachynski RK, Chin R, Majeti R, Weissman IL. 243.  2011. Extranodal dissemination of non-Hodgkin lymphoma requires CD47 and is inhibited by anti-CD47 antibody therapy. Blood 118:4890–901 [Google Scholar]
  244. Willingham SB, Volkmer JP, Gentles AJ, Sahoo D, Dalerba P. 244.  et al. 2012. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. PNAS 109:6662–67 [Google Scholar]
  245. Edris B, Weiskopf K, Volkmer AK, Volkmer JP, Willingham SB. 245.  et al. 2012. Antibody therapy targeting the CD47 protein is effective in a model of aggressive metastatic leiomyosarcoma. PNAS 109:6656–61 [Google Scholar]
  246. Kim D, Wang J, Willingham SB, Martin R, Wernig G, Weissman IL. 246.  2012. Anti-CD47 antibodies promote phagocytosis and inhibit the growth of human myeloma cells. Leukemia 26:2538–45 [Google Scholar]
  247. Tseng D, Volkmer JP, Willingham SB, Contreras-Trujillo H, Fathman JW. 247.  et al. 2013. Anti-CD47 antibody-mediated phagocytosis of cancer by macrophages primes an effective antitumor T-cell response. PNAS 110:11103–8 [Google Scholar]
  248. Pan Y, Volkmer JP, Mach KE, Rouse RV, Liu JJ. 248.  et al. 2014. Endoscopic molecular imaging of human bladder cancer using a CD47 antibody. Sci. Transl. Med. 6:260ra148 [Google Scholar]
  249. Weiskopf K, Ring AM, Ho CC, Volkmer JP, Levin AM. 249.  et al. 2013. Engineered SIRPα variants as immunotherapeutic adjuvants to anticancer antibodies. Science 341:88–91 [Google Scholar]
  250. McCracken MN, Cha AC, Weissman IL. 250.  2015. Molecular pathways: activating T cells after cancer cell phagocytosis from blockade of CD47 “don't eat me” signals. Clin. Cancer Res. 21:3597–601 [Google Scholar]
  251. Chao MP, Alizadeh AA, Tang C, Myklebust JH, Varghese B. 251.  et al. 2010. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell 142:699–713 [Google Scholar]
  252. Liu J, Wang L, Zhao F, Tseng S, Narayanan C. 252.  et al. 2015. Pre-clinical development of a humanized anti-CD47 antibody with anti-cancer therapeutic potential. PLOS ONE 10:e0137345 [Google Scholar]
  253. 253. Combined Anti-CD47 Clinical Trial Management Committee 2015. Anti-CD47 antibody therapy in relapsed/refractory AML. ISRCTN Registry London: BioMed Cent. doi: 10.1186/ISRCTN28039294 [Google Scholar]
  254. Uchida N, Buck DW, He D, Reitsma MJ, Masek M. 254.  et al. 2000. Direct isolation of human central nervous system stem cells. PNAS 97:14720–25 [Google Scholar]
  255. Rinkevich Y, Lindau P, Ueno H, Longaker MT, Weissman IL. 255.  2011. Germ-layer and lineage-restricted stem/progenitors regenerate the mouse digit tip. Nature 476:409–13 [Google Scholar]
  256. Rinkevich Y, Montoro DT, Contreras-Trujillo H, Harari-Steinberg O, Newman AM. 256.  et al. 2014. In vivo clonal analysis reveals lineage-restricted progenitor characteristics in mammalian kidney development, maintenance, and regeneration. Cell Rep. 7:1270–83 [Google Scholar]
  257. Rinkevich Y, Walmsley GG, Hu MS, Maan ZN, Newman AM. 257.  et al. 2015. Skin fibrosis: identification and isolation of a dermal lineage with intrinsic fibrogenic potential. Science 348:aaa2151 [Google Scholar]
  258. Marecic O, Tevlin R, McArdle A, Seo EY, Wearda T. 258.  et al. 2015. Identification and characterization of an injury-induced skeletal progenitor. PNAS 112:9920–25 [Google Scholar]
  259. Inlay MA, Serwold T, Mosley A, Fathman JW, Dimov IK. 259.  et al. 2014. Identification of multipotent progenitors that emerge prior to hematopoietic stem cells in embryonic development. Stem Cell Rep. 2:457–72 [Google Scholar]
  260. Loh KM, Ang LT, Zhang J, Kumar V, Ang J. 260.  et al. 2014. Efficient endoderm induction from human pluripotent stem cells by logically directing signals controlling lineage bifurcations. Cell Stem Cell 14:237–52 [Google Scholar]
  261. Rinkevich Y, Mori T, Sahoo D, Xu PX, Bermingham JR Jr, Weissman IL. 261.  2012. Identification and prospective isolation of a mesothelial precursor lineage giving rise to smooth muscle cells and fibroblasts for mammalian internal organs, and their vasculature. Nat. Cell Biol. 14:1251–60 [Google Scholar]
  262. Red-Horse K, Ueno H, Weissman IL, Krasnow MA. 262.  2010. Coronary arteries form by developmental reprogramming of venous cells. Nature 464:549–53 [Google Scholar]
  263. Kim D, Park CY, Medeiros BC, Weissman IL. 263.  2012. CD19CD45low/−CD38high/CD138+ plasma cells enrich for human tumorigenic myeloma cells. Leukemia 26:2530–37 [Google Scholar]
  264. Cozzio A, Passegue E, Ayton PM, Karsunky H, Cleary ML, Weissman IL. 264.  2003. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev. 17:3029–35 [Google Scholar]
  265. Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ. 265.  et al. 2007. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. PNAS 104:973–78 [Google Scholar]
  266. Boiko AD, Razorenova OV, van de Rijn M, Swetter SM, Johnson DL. 266.  et al. 2010. Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature 466:133–37 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error