CD1- and MHC-related molecule-1 (MR1)-restricted T lymphocytes recognize nonpeptidic antigens, such as lipids and small metabolites, and account for a major fraction of circulating and tissue-resident T cells. They represent a readily activated, long-lasting population of effector cells and contribute to the early phases of immune response, orchestrating the function of other cells. This review addresses the main aspects of their immunological functions, including antigen and T cell receptor repertoires, mechanisms of nonpeptidic antigen presentation, and the current evidence for their participation in human and experimental diseases.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Tilloy F, Treiner E, Park SH, Garcia C, Lemonnier F. 1.  et al. 1999. An invariant T cell receptor α chain defines a novel TAP-independent major histocompatibility complex class Ib–restricted α/β T cell subpopulation in mammals. J. Exp. Med. 189:1907–21 [Google Scholar]
  2. Kawachi I, Maldonado J, Strader C, Gilfillan S. 2.  2006. MR1-restricted Vα19i mucosal-associated invariant T cells are innate T cells in the gut lamina propria that provide a rapid and diverse cytokine response. J. Immunol. 176:1618–27 [Google Scholar]
  3. Brennan PJ, Brigl M, Brenner MB. 3.  2013. Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nat. Rev. Immunol. 13:101–17 [Google Scholar]
  4. Le Bourhis L, Dusseaux M, Bohineust A, Bessoles S, Martin E. 4.  et al. 2013. MAIT cells detect and efficiently lyse bacterially-infected epithelial cells. PLOS Pathog. 9:e1003681 [Google Scholar]
  5. Brigl M, Tatituri RV, Watts GF, Bhowruth V, Leadbetter EA. 5.  et al. 2011. Innate and cytokine-driven signals, rather than microbial antigens, dominate in natural killer T cell activation during microbial infection. J. Exp. Med. 208:1163–77 [Google Scholar]
  6. Ussher JE, Bilton M, Attwod E, Shadwell J, Richardson R. 6.  et al. 2014. CD161++CD8+ T cells, including the MAIT cell subset, are specifically activated by IL-12+IL-18 in a TCR-independent manner. Eur. J. Immunol. 44:195–203 [Google Scholar]
  7. Le Bourhis L, Mburu YK, Lantz O. 7.  2013. MAIT cells, surveyors of a new class of antigen: development and functions. Curr. Opin. Immunol. 25:174–80 [Google Scholar]
  8. Bendelac A. 8.  1995. Positive selection of mouse NK1+ T cells by CD1-expressing cortical thymocytes. J. Exp. Med. 182:2091–96 [Google Scholar]
  9. Seach N, Guerri L, Le Bourhis L, Mburu Y, Cui Y. 9.  et al. 2013. Double-positive thymocytes select mucosal-associated invariant T cells. J. Immunol. 191:6002–9 [Google Scholar]
  10. Constantinides MG, Bendelac A. 10.  2013. Transcriptional regulation of the NKT cell lineage. Curr. Opin. Immunol. 25:161–67 [Google Scholar]
  11. Salio M, Silk JD, Jones EY, Cerundolo V. 11.  2014. Biology of CD1- and MR1-restricted T cells. Annu. Rev. Immunol. 32:323–66 [Google Scholar]
  12. Chandra S, Kronenberg M. 12.  2015. Activation and function of iNKT and MAIT cells. Adv. Immunol. 127:145–201 [Google Scholar]
  13. Kumar V, Delovitch TL. 13.  2014. Different subsets of natural killer T cells may vary in their roles in health and disease. Immunology 142:321–36 [Google Scholar]
  14. Dusseaux M, Martin E, Serriari N, Peguillet I, Premel V. 14.  et al. 2011. Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17–secreting T cells. Blood 117:1250–59 [Google Scholar]
  15. Lepore M, Kalinichenko A, Colone A, Paleja B, Singhal A. 15.  et al. 2014. Parallel T-cell cloning and deep sequencing of human MAIT cells reveal stable oligoclonal TCRβ repertoire. Nat. Commun. 5:3866 [Google Scholar]
  16. de Lalla C, Lepore M, Piccolo FM, Rinaldi A, Scelfo A. 16.  et al. 2011. High-frequency and adaptive-like dynamics of human CD1 self-reactive T cells. Eur. J. Immunol. 41:602–10 [Google Scholar]
  17. Lepore M, de Lalla C, Gundimeda SR, Gsellinger H, Consonni M. 17.  et al. 2014. A novel self-lipid antigen targets human T cells against CD1c+ leukemias. J. Exp. Med. 211:1363–77 [Google Scholar]
  18. de Jong A, Pena-Cruz V, Cheng TY, Clark RA, Van Rhijn I, Moody DB. 18.  2010. CD1a-autoreactive T cells are a normal component of the human αβ T cell repertoire. Nat. Immunol. 11:1102–9 [Google Scholar]
  19. Dascher CC, Brenner MB. 19.  2003. Evolutionary constraints on CD1 structure: insights from comparative genomic analysis. Trends Immunol. 24:412–18 [Google Scholar]
  20. Tourne S, Maitre B, Collmann A, Layre E, Mariotti S. 20.  et al. 2008. Cutting edge: a naturally occurring mutation in CD1e impairs lipid antigen presentation. J. Immunol. 180:3642–46 [Google Scholar]
  21. Geng Y, Laslo P, Barton K, Wang CR. 21.  2005. Transcriptional regulation of CD1D1 by Ets family transcription factors. J. Immunol. 175:1022–29 [Google Scholar]
  22. Sikder H, Zhao Y, Balato A, Chapoval A, Fishelevich R. 22.  et al. 2009. A central role for transcription factor C/EBP-β in regulating CD1d gene expression in human keratinocytes. J. Immunol. 183:1657–66 [Google Scholar]
  23. Chen QY, Zhang T, Pincus SH, Wu S, Ricks D. 23.  et al. 2010. Human CD1D gene expression is regulated by LEF-1 through distal promoter regulatory elements. J. Immunol. 184:5047–54 [Google Scholar]
  24. Chen Q, Ross AC. 24.  2007. Retinoic acid regulates CD1d gene expression at the transcriptional level in human and rodent monocytic cells. Exp. Biol. Med. 232:488–94 [Google Scholar]
  25. Szatmari I, Pap A, Ruhl R, Ma JX, Illarionov PA. 25.  et al. 2006. PPARγ controls CD1d expression by turning on retinoic acid synthesis in developing human dendritic cells. J. Exp. Med. 203:2351–62 [Google Scholar]
  26. Yang PM, Lin PJ, Chen CC. 26.  2012. CD1d induction in solid tumor cells by histone deacetylase inhibitors through inhibition of HDAC1/2 and activation of Sp1. Epigenetics 7:390–99 [Google Scholar]
  27. Rossjohn J, Gras S, Miles JJ, Turner SJ, Godfrey DI, McCluskey J. 27.  2015. T cell antigen receptor recognition of antigen-presenting molecules. Annu. Rev. Immunol. 33:169–200 [Google Scholar]
  28. De Libero G, Mori L. 28.  2012. Novel insights into lipid antigen presentation. Trends Immunol. 33:103–11 [Google Scholar]
  29. Birkinshaw RW, Pellicci DG, Cheng TY, Keller AN, Sandoval-Romero M. 29.  et al. 2015. αβ T cell antigen receptor recognition of CD1a presenting self lipid ligands. Nat. Immunol. 16:258–66 [Google Scholar]
  30. Riegert P, Wanner V, Bahram S. 30.  1998. Genomics, isoforms, expression, and phylogeny of the MHC class I–related MR1 gene. J. Immunol. 161:4066–77 [Google Scholar]
  31. Lopez-Sagaseta J, Dulberger CL, Crooks JE, Parks CD, Luoma AM. 31.  et al. 2013. The molecular basis for mucosal-associated invariant T cell recognition of MR1 proteins. PNAS 110:E1771–78 [Google Scholar]
  32. Patel O, Kjer-Nielsen L, Le Nours J, Eckle SB, Birkinshaw R. 32.  et al. 2013. Recognition of vitamin B metabolites by mucosal-associated invariant T cells. Nat. Commun. 4:2142 [Google Scholar]
  33. Corbett AJ, Eckle SB, Birkinshaw RW, Liu L, Patel O. 33.  et al. 2014. T-cell activation by transitory neo-antigens derived from distinct microbial pathways. Nature 509:361–65 [Google Scholar]
  34. Kjer-Nielsen L, Patel O, Corbett AJ, Le Nours J, Meehan B. 34.  et al. 2012. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491:717–23 [Google Scholar]
  35. Shamshiev A, Donda A, Carena I, Mori L, Kappos L, De Libero G. 35.  1999. Self glycolipids as T-cell autoantigens. Eur. J. Immunol. 29:1667–75 [Google Scholar]
  36. Shamshiev A, Donda A, Prigozy TI, Mori L, Chigorno V. 36.  et al. 2000. The αβ T cell response to self-glycolipids shows a novel mechanism of CD1b loading and a requirement for complex oligosaccharides. Immunity 13:255–64 [Google Scholar]
  37. Wu DY, Segal NH, Sidobre S, Kronenberg M, Chapman PB. 37.  2003. Cross-presentation of disialoganglioside GD3 to natural killer T cells. J. Exp. Med. 198:173–81 [Google Scholar]
  38. Zhou D, Mattner J, Cantu C 3rd, Schrantz N, Yin N. 38.  et al. 2004. Lysosomal glycosphingolipid recognition by NKT cells. Science 306:1786–89 [Google Scholar]
  39. Shamshiev A, Gober HJ, Donda A, Mazorra Z, Mori L, De Libero G. 39.  2002. Presentation of the same glycolipid by different CD1 molecules. J. Exp. Med. 195:1013–21 [Google Scholar]
  40. Jahng A, Maricic I, Aguilera C, Cardell S, Halder RC, Kumar V. 40.  2004. Prevention of autoimmunity by targeting a distinct, noninvariant CD1d-reactive T cell population reactive to sulfatide. J. Exp. Med. 199:947–57 [Google Scholar]
  41. Blomqvist M, Rhost S, Teneberg S, Lofbom L, Osterbye T. 41.  et al. 2009. Multiple tissue-specific isoforms of sulfatide activate CD1d-restricted type II NKT cells. Eur. J. Immunol. 39:1726–35 [Google Scholar]
  42. Bai L, Picard D, Anderson B, Chaudhary V, Luoma A. 42.  et al. 2012. The majority of CD1d-sulfatide-specific T cells in human blood use a semiinvariant Vδ1 TCR. Eur. J. Immunol. 42:2505–10 [Google Scholar]
  43. Uldrich AP, Le Nours J, Pellicci DG, Gherardin NA, McPherson KG. 43.  et al. 2013. CD1d-lipid antigen recognition by the γδ TCR. Nat. Immunol. 14:1137–45 [Google Scholar]
  44. Gumperz JE, Roy C, Makowska A, Lum D, Sugita M. 44.  et al. 2000. Murine CD1d-restricted T cell recognition of cellular lipids. Immunity 12:211–21 [Google Scholar]
  45. Tatituri RV, Watts GF, Bhowruth V, Barton N, Rothchild A. 45.  et al. 2013. Recognition of microbial and mammalian phospholipid antigens by NKT cells with diverse TCRs. PNAS 110:1827–32 [Google Scholar]
  46. Van Rhijn I, van Berlo T, Hilmenyuk T, Cheng T-Y, Wolf BJ. 46.  et al. 2015. Human autoreactive T cells recognize CD1b and phospholipids. PNAS 113:380–85 [Google Scholar]
  47. Lands WE. 47.  1960. Metabolism of glycerolipids. II. The enzymatic acylation of lysolecithin. J. Biol. Chem. 235:2233–37 [Google Scholar]
  48. Cox D, Fox L, Tian R, Bardet W, Skaley M. 48.  et al. 2009. Determination of cellular lipids bound to human CD1d molecules. PLOS ONE 4:e5325 [Google Scholar]
  49. Yuan W, Kang SJ, Evans JE, Cresswell P. 49.  2009. Natural lipid ligands associated with human CD1d targeted to different subcellular compartments. J. Immunol. 182:4784–91 [Google Scholar]
  50. Fox LM, Cox DG, Lockridge JL, Wang X, Chen X. 50.  et al. 2009. Recognition of lyso-phospholipids by human natural killer T lymphocytes. PLOS Biol. 7:e1000228 [Google Scholar]
  51. Lopez-Sagaseta J, Sibener LV, Kung JE, Gumperz J, Adams EJ. 51.  2012. Lysophospholipid presentation by CD1d and recognition by a human natural killer T-cell receptor. EMBO J. 31:2047–59 [Google Scholar]
  52. de Jong A, Cheng TY, Huang S, Gras S, Birkinshaw RW. 52.  et al. 2014. CD1a-autoreactive T cells recognize natural skin oils that function as headless antigens. Nat. Immunol. 15:177–85 [Google Scholar]
  53. Facciotti F, Ramanjaneyulu GS, Lepore M, Sansano S, Cavallari M. 53.  et al. 2012. Peroxisome-derived lipids are self antigens that stimulate invariant natural killer T cells in the thymus. Nat. Immunol. 13:474–80 [Google Scholar]
  54. Kain L, Webb B, Anderson BL, Deng S, Holt M. 54.  et al. 2014. The identification of the endogenous ligands of natural killer T cells reveals the presence of mammalian α-linked glycosylceramides. Immunity 41:543–54 [Google Scholar]
  55. De Libero G, Moran AP, Gober HJ, Rossy E, Shamshiev A. 55.  et al. 2005. Bacterial infections promote T cell recognition of self-glycolipids. Immunity 22:763–72 [Google Scholar]
  56. Salio M, Speak AO, Shepherd D, Polzella P, Illarionov PA. 56.  et al. 2007. Modulation of human natural killer T cell ligands on TLR-mediated antigen-presenting cell activation. PNAS 104:20490–95 [Google Scholar]
  57. Paget C, Mallevaey T, Speak AO, Torres D, Fontaine J. 57.  et al. 2007. Activation of invariant NKT cells by Toll-like receptor 9–stimulated dendritic cells requires type I interferon and charged glycosphingolipids. Immunity 27:597–609 [Google Scholar]
  58. Beckman EM, Porcelli SA, Morita CT, Behar SM, Furlong ST, Brenner MB. 58.  1994. Recognition of a lipid antigen by CD1-restricted αβ+ T cells. Nature 372:691–94 [Google Scholar]
  59. Moody DB, Reinhold BB, Guy MR, Beckman EM, Frederique DE. 59.  et al. 1997. Structural requirements for glycolipid antigen recognition by CD1b-restricted T cells. Science 278:283–86 [Google Scholar]
  60. Layre E, Collmann A, Bastian M, Mariotti S, Czaplicki J. 60.  et al. 2009. Mycolic acids constitute a scaffold for mycobacterial lipid antigens stimulating CD1-restricted T cells. Chem. Biol. 16:82–92 [Google Scholar]
  61. Gilleron M, Stenger S, Mazorra Z, Wittke F, Mariotti S. 61.  et al. 2004. Diacylated sulfoglycolipids are novel mycobacterial antigens stimulating CD1-restricted T cells during infection with Mycobacterium tuberculosis. J. Exp. Med. 199:649–59 [Google Scholar]
  62. Moody DB, Ulrichs T, Muhlecker W, Young DC, Gurcha SS. 62.  et al. 2000. CD1c-mediated T-cell recognition of isoprenoid glycolipids in Mycobacterium tuberculosis infection. Nature 404:884–88 [Google Scholar]
  63. Sieling PA, Chatterjee D, Porcelli SA, Prigozy TI, Mazzaccaro RJ. 63.  et al. 1995. CD1-restricted T cell recognition of microbial lipoglycan antigens. Science 269:227–30 [Google Scholar]
  64. Zajonc DM, Ainge GD, Painter GF, Severn WB, Wilson IA. 64.  2006. Structural characterization of mycobacterial phosphatidylinositol mannoside binding to mouse CD1d. J. Immunol. 177:4577–83 [Google Scholar]
  65. de la Salle H, Mariotti S, Angenieux C, Gilleron M, Garcia-Alles LF. 65.  et al. 2005. Assistance of microbial glycolipid antigen processing by CD1e. Science 310:1321–24 [Google Scholar]
  66. Ernst WA, Maher J, Cho S, Niazi KR, Chatterjee D. 66.  et al. 1998. Molecular interaction of CD1b with lipoglycan antigens. Immunity 8:331–40 [Google Scholar]
  67. Moody DB, Young DC, Cheng TY, Rosat JP, Roura-Mir C. 67.  et al. 2004. T cell activation by lipopeptide antigens. Science 303:527–31 [Google Scholar]
  68. Zajonc DM, Crispin MD, Bowden TA, Young DC, Cheng TY. 68.  et al. 2005. Molecular mechanism of lipopeptide presentation by CD1a. Immunity 22:209–19 [Google Scholar]
  69. Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y. 69.  et al. 1998. Natural killer–like nonspecific tumor cell lysis mediated by specific ligand-activated Vα14 NKT cells. PNAS 95:5690–93 [Google Scholar]
  70. Kinjo Y, Wu D, Kim G, Xing GW, Poles MA. 70.  et al. 2005. Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434:520–25 [Google Scholar]
  71. Mattner J, Debord KL, Ismail N, Goff RD, Cantu C 3rd. 71.  et al. 2005. Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434:525–29 [Google Scholar]
  72. Sriram V, Du W, Gervay-Hague J, Brutkiewicz RR. 72.  2005. Cell wall glycosphingolipids of Sphingomonas paucimobilis are CD1d-specific ligands for NKT cells. Eur. J. Immunol. 35:1692–701 [Google Scholar]
  73. Wieland Brown LC, Penaranda C, Kashyap PC, Williams BB, Clardy J. 73.  et al. 2013. Production of α-galactosylceramide by a prominent member of the human gut microbiota. PLOS Biol. 11:e1001610 [Google Scholar]
  74. Albacker LA, Chaudhary V, Chang YJ, Kim HY, Chuang YT. 74.  et al. 2013. Invariant natural killer T cells recognize a fungal glycosphingolipid that can induce airway hyperreactivity. Nat. Med. 19:1297–304 [Google Scholar]
  75. Kinjo Y, Tupin E, Wu D, Fujio M, Garcia-Navarro R. 75.  et al. 2006. Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat. Immunol. 7:978–86 [Google Scholar]
  76. Kinjo Y, Illarionov P, Vela JL, Pei B, Girardi E. 76.  et al. 2011. Invariant natural killer T cells recognize glycolipids from pathogenic gram-positive bacteria. Nat. Immunol. 12:966–74 [Google Scholar]
  77. Chang YJ, Kim HY, Albacker LA, Lee HH, Baumgarth N. 77.  et al. 2011. Influenza infection in suckling mice expands an NKT cell subset that protects against airway hyperreactivity. J. Clin. Investig. 121:57–69 [Google Scholar]
  78. Ito Y, Vela JL, Matsumura F, Hoshino H, Tyznik A. 78.  et al. 2013. Helicobacter pylori cholesteryl α-glucosides contribute to its pathogenicity and immune response by natural killer T cells. PLOS ONE 8:e78191 [Google Scholar]
  79. Soudais C, Samassa F, Sarkis M, Le Bourhis L, Bessoles S. 79.  et al. 2015. In vitro and in vivo analysis of the gram-negative bacteria–derived riboflavin precursor derivatives activating mouse MAIT cells. J. Immunol. 194:4641–49 [Google Scholar]
  80. Le Bourhis L, Martin E, Peguillet I, Guihot A, Froux N. 80.  et al. 2010. Antimicrobial activity of mucosal-associated invariant T cells. Nat. Immunol. 11:701–8 [Google Scholar]
  81. Gold MC, Cerri S, Smyk-Pearson S, Cansler ME, Vogt TM. 81.  et al. 2010. Human mucosal associated invariant T cells detect bacterially infected cells. PLOS Biol. 8:e1000407 [Google Scholar]
  82. Freigang S, Kain L, Teyton L. 82.  2013. Transport and uptake of immunogenic lipids. Mol. Immunol. 55:179–81 [Google Scholar]
  83. Freigang S, Zadorozhny V, McKinney MK, Krebs P, Herro R. 83.  et al. 2010. Fatty acid amide hydrolase shapes NKT cell responses by influencing the serum transport of lipid antigen in mice. J. Clin. Investig. 120:1873–84 [Google Scholar]
  84. Freigang S, Landais E, Zadorozhny V, Kain L, Yoshida K. 84.  et al. 2012. Scavenger receptors target glycolipids for natural killer T cell activation. J. Clin. Investig. 122:3943–54 [Google Scholar]
  85. Zhou D, Cantu C 3rd, Sagiv Y, Schrantz N, Kulkarni AB. 85.  et al. 2004. Editing of CD1d-bound lipid antigens by endosomal lipid transfer proteins. Science 303:523–27 [Google Scholar]
  86. Facciotti F, Cavallari M, Angenieux C, Garcia-Alles LF, Signorino-Gelo F. 86.  et al. 2011. Fine tuning by human CD1e of lipid-specific immune responses. PNAS 108:14228–33 [Google Scholar]
  87. Salio M, Puleston DJ, Mathan TS, Shepherd D, Stranks AJ. 87.  et al. 2014. Essential role for autophagy during invariant NKT cell development. PNAS 111:E5678–87 [Google Scholar]
  88. Pei B, Zhao M, Miller BC, Vela JL, Bruinsma MW. 88.  et al. 2015. Invariant NKT cells require autophagy to coordinate proliferation and survival signals during differentiation. J. Immunol. 194:5872–84 [Google Scholar]
  89. Garcia-Alles LF, Versluis K, Maveyraud L, Vallina AT, Sansano S. 89.  et al. 2006. Endogenous phosphatidylcholine and a long spacer ligand stabilize the lipid-binding groove of CD1b. EMBO J. 25:3684–92 [Google Scholar]
  90. Garcia-Alles LF, Collmann A, Versluis C, Lindner B, Guiard J. 90.  et al. 2011. Structural reorganization of the antigen-binding groove of human CD1b for presentation of mycobacterial sulfoglycolipids. PNAS 108:17755–60 [Google Scholar]
  91. Huang S, Cheng TY, Young DC, Layre E, Madigan CA. 91.  et al. 2011. Discovery of deoxyceramides and diacylglycerols as CD1b scaffold lipids among diverse groove-blocking lipids of the human CD1 system. PNAS 108:19335–40 [Google Scholar]
  92. Wun KS, Cameron G, Patel O, Pang SS, Pellicci DG. 92.  et al. 2011. A molecular basis for the exquisite CD1d-restricted antigen specificity and functional responses of natural killer T cells. Immunity 34:327–39 [Google Scholar]
  93. Gadola SD, Zaccai NR, Harlos K, Shepherd D, Castro-Palomino JC. 93.  et al. 2002. Structure of human CD1b with bound ligands at 2.3 Å, a maze for alkyl chains. Nat. Immunol. 3:721–26 [Google Scholar]
  94. Scharf L, Li NS, Hawk AJ, Garzon D, Zhang T. 94.  et al. 2010. The 2.5 Å structure of CD1c in complex with a mycobacterial lipid reveals an open groove ideally suited for diverse antigen presentation. Immunity 33:853–62 [Google Scholar]
  95. Relloso M, Cheng TY, Im JS, Parisini E, Roura-Mir C. 95.  et al. 2008. pH-dependent interdomain tethers of CD1b regulate its antigen capture. Immunity 28:774–86 [Google Scholar]
  96. Miley MJ, Truscott SM, Yu YY, Gilfillan S, Fremont DH. 96.  et al. 2003. Biochemical features of the MHC-related protein 1 consistent with an immunological function. J. Immunol. 170:6090–98 [Google Scholar]
  97. Huang S, Gilfillan S, Kim S, Thompson B, Wang X. 97.  et al. 2008. MR1 uses an endocytic pathway to activate mucosal-associated invariant T cells. J. Exp. Med. 205:1201–11 [Google Scholar]
  98. Porcelli S, Yockey CE, Brenner MB, Balk SP. 98.  1993. Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD48 α/β T cells demonstrates preferential use of several Vβ genes and an invariant TCR α chain. J. Exp. Med. 178:1–16 [Google Scholar]
  99. Dellabona P, Padovan E, Casorati G, Brockhaus M, Lanzavecchia A. 99.  1994. An invariant Vα24-JαQ/Vβ11 T cell receptor is expressed in all individuals by clonally expanded CD48 T cells. J. Exp. Med. 180:1171–76 [Google Scholar]
  100. Gadola SD, Dulphy N, Salio M, Cerundolo V. 100.  2002. Vα24-JαQ–independent, CD1d-restricted recognition of α-galactosylceramide by human CD4+ and CD8αβ+ T lymphocytes. J. Immunol. 168:5514–20 [Google Scholar]
  101. Uldrich AP, Patel O, Cameron G, Pellicci DG, Day EB. 101.  et al. 2011. A semi-invariant Vα10+ T cell antigen receptor defines a population of natural killer T cells with distinct glycolipid antigen-recognition properties. Nat. Immunol. 12:616–23 [Google Scholar]
  102. Van Rhijn I, Kasmar A, de Jong A, Gras S, Bhati M. 102.  et al. 2013. A conserved human T cell population targets mycobacterial antigens presented by CD1b. Nat. Immunol. 14:706–13 [Google Scholar]
  103. Van Rhijn I, Gherardin NA, Kasmar A, de Jager W, Pellicci DG. 103.  et al. 2014. TCR bias and affinity define two compartments of the CD1b-glycolipid–specific T cell repertoire. J. Immunol. 192:4054–60 [Google Scholar]
  104. Gold MC, McLaren JE, Reistetter JA, Smyk-Pearson S, Ladell K. 104.  et al. 2014. MR1-restricted MAIT cells display ligand discrimination and pathogen selectivity through distinct T cell receptor usage. J. Exp. Med. 211:1601–10 [Google Scholar]
  105. Brigl M, van den Elzen P, Chen X, Meyers JH, Wu D. 105.  et al. 2006. Conserved and heterogeneous lipid antigen specificities of CD1d-restricted NKT cell receptors. J. Immunol. 176:3625–34 [Google Scholar]
  106. Reantragoon R, Corbett AJ, Sakala IG, Gherardin NA, Furness JB. 106.  et al. 2013. Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells. J. Exp. Med. 210:2305–20 [Google Scholar]
  107. Borg NA, Wun KS, Kjer-Nielsen L, Wilce MC, Pellicci DG. 107.  et al. 2007. CD1d–lipid-antigen recognition by the semi-invariant NKT T-cell receptor. Nature 448:44–49 [Google Scholar]
  108. Girardi E, Maricic I, Wang J, Mac TT, Iyer P. 108.  et al. 2012. Type II natural killer T cells use features of both innate-like and conventional T cells to recognize sulfatide self antigens. Nat. Immunol. 13:851–56 [Google Scholar]
  109. Patel O, Pellicci DG, Gras S, Sandoval-Romero ML, Uldrich AP. 109.  et al. 2012. Recognition of CD1d-sulfatide mediated by a type II natural killer T cell antigen receptor. Nat. Immunol. 13:857–63 [Google Scholar]
  110. Luoma AM, Castro CD, Mayassi T, Bembinster LA, Bai L. 110.  et al. 2013. Crystal structure of Vδ1 T cell receptor in complex with CD1d-sulfatide shows MHC-like recognition of a self-lipid by human γδ T cells. Immunity 39:1032–42 [Google Scholar]
  111. Pellicci DG, Uldrich AP, Le Nours J, Ross F, Chabrol E. 111.  et al. 2014. The molecular bases of δ/αβ T cell–mediated antigen recognition. J. Exp. Med. 211:2599–615 [Google Scholar]
  112. Roy S, Ly D, Li NS, Altman JD, Piccirilli JA. 112.  et al. 2014. Molecular basis of mycobacterial lipid antigen presentation by CD1c and its recognition by αβ T cells. PNAS 111:E4648–57 [Google Scholar]
  113. Dascher CC, Hiromatsu K, Xiong X, Morehouse C, Watts G. 113.  et al. 2003. Immunization with a mycobacterial lipid vaccine improves pulmonary pathology in the guinea pig model of tuberculosis. Int. Immunol. 15:915–25 [Google Scholar]
  114. Felio K, Nguyen H, Dascher CC, Choi HJ, Li S. 114.  et al. 2009. CD1-restricted adaptive immune responses to Mycobacteria in human group 1 CD1 transgenic mice. J. Exp. Med. 206:2497–509 [Google Scholar]
  115. Kumar H, Belperron A, Barthold SW, Bockenstedt LK. 115.  2000. Cutting edge: CD1d deficiency impairs murine host defense against the spirochete, Borrelia burgdorferi. J. Immunol. 165:4797–801 [Google Scholar]
  116. Nieuwenhuis EE, Matsumoto T, Exley M, Schleipman RA, Glickman J. 116.  et al. 2002. CD1d-dependent macrophage-mediated clearance of Pseudomonas aeruginosa from lung. Nat. Med. 8:588–93 [Google Scholar]
  117. Joyee AG, Qiu H, Wang S, Fan Y, Bilenki L, Yang X. 117.  2007. Distinct NKT cell subsets are induced by different Chlamydia species leading to differential adaptive immunity and host resistance to the infections. J. Immunol. 178:1048–58 [Google Scholar]
  118. Kawakami K, Kinjo Y, Yara S, Koguchi Y, Uezu K. 118.  et al. 2001. Activation of Vα14+ natural killer T cells by α-galactosylceramide results in development of Th1 response and local host resistance in mice infected with Cryptococcus neoformans. Infect. Immun. 69:213–20 [Google Scholar]
  119. Cohen NR, Tatituri RV, Rivera A, Watts GF, Kim EY. 119.  et al. 2011. Innate recognition of cell wall β-glucans drives invariant natural killer T cell responses against fungi. Cell Host Microbe 10:437–50 [Google Scholar]
  120. Sousa AO, Mazzaccaro RJ, Russell RG, Lee FK, Turner OC. 120.  et al. 2000. Relative contributions of distinct MHC class I–dependent cell populations in protection to tuberculosis infection in mice. PNAS 97:4204–8 [Google Scholar]
  121. Chackerian A, Alt J, Perera V, Behar SM. 121.  2002. Activation of NKT cells protects mice from tuberculosis. Infect. Immun. 70:6302–9 [Google Scholar]
  122. Sada-Ovalle I, Chiba A, Gonzales A, Brenner MB, Behar SM. 122.  2008. Innate invariant NKT cells recognize Mycobacterium tuberculosis–infected macrophages, produce interferon-γ, and kill intracellular bacteria. PLOS Pathog. 4:e1000239 [Google Scholar]
  123. Kawakami K, Yamamoto N, Kinjo Y, Miyagi K, Nakasone C. 123.  et al. 2003. Critical role of Vα14+ natural killer T cells in the innate phase of host protection against Streptococcus pneumoniae infection. Eur. J. Immunol. 33:3322–30 [Google Scholar]
  124. Gonzalez-Aseguinolaza G, de Oliveira C, Tomaska M, Hong S, Bruna-Romero O. 124.  et al. 2000. α-Galactosylceramide–activated Vα14 natural killer T cells mediate protection against murine malaria. PNAS 97:8461–66 [Google Scholar]
  125. Karmakar S, Bhaumik SK, Paul J, De T. 125.  2012. TLR4 and NKT cell synergy in immunotherapy against visceral leishmaniasis. PLOS Pathog. 8:e1002646 [Google Scholar]
  126. Grubor-Bauk B, Arthur JL, Mayrhofer G. 126.  2008. Importance of NKT cells in resistance to herpes simplex virus, fate of virus-infected neurons, and level of latency in mice. J. Virol. 82:11073–83 [Google Scholar]
  127. Ho LP, Denney L, Luhn K, Teoh D, Clelland C, McMichael AJ. 127.  2008. Activation of invariant NKT cells enhances the innate immune response and improves the disease course in influenza A virus infection. Eur. J. Immunol. 38:1913–22 [Google Scholar]
  128. Tyznik AJ, Verma S, Wang Q, Kronenberg M, Benedict CA. 128.  2014. Distinct requirements for activation of NKT and NK cells during viral infection. J. Immunol. 192:3676–85 [Google Scholar]
  129. De Santo C, Salio M, Masri SH, Lee LY, Dong T. 129.  et al. 2008. Invariant NKT cells reduce the immunosuppressive activity of influenza A virus–induced myeloid-derived suppressor cells in mice and humans. J. Clin. Investig. 118:4036–48 [Google Scholar]
  130. Paget C, Ivanov S, Fontaine J, Blanc F, Pichavant M. 130.  et al. 2011. Potential role of invariant NKT cells in the control of pulmonary inflammation and CD8+ T cell response during acute influenza A virus H3N2 pneumonia. J. Immunol. 186:5590–602 [Google Scholar]
  131. Kakimi K, Guidotti LG, Koezuka Y, Chisari FV. 131.  2000. Natural killer T cell activation inhibits hepatitis B virus replication in vivo. J. Exp. Med. 192:921–30 [Google Scholar]
  132. Zeissig S, Murata K, Sweet L, Publicover J, Hu Z. 132.  et al. 2012. Hepatitis B virus–induced lipid alterations contribute to natural killer T cell–dependent protective immunity. Nat. Med. 18:1060–68 [Google Scholar]
  133. Bilenki L, Wang S, Yang J, Fan Y, Joyee AG, Yang X. 133.  2005. NK T cell activation promotes Chlamydia trachomatis infection in vivo. J. Immunol. 175:3197–206 [Google Scholar]
  134. Hill TM, Gilchuk P, Cicek BB, Osina MA, Boyd KL. 134.  et al. 2015. Border patrol gone awry: Lung NKT cell activation by Francisella tularensis exacerbates tularemia-like disease. PLOS Pathog. 11:e1004975 [Google Scholar]
  135. Van Rhijn I, Nguyen TK, Michel A, Cooper D, Govaerts M. 135.  et al. 2009. Low cross-reactivity of T-cell responses against lipids from Mycobacterium bovis and M. avium paratuberculosis during natural infection. Eur. J. Immunol. 39:3031–41 [Google Scholar]
  136. Kee SJ, Kwon YS, Park YW, Cho YN, Lee SJ. 136.  et al. 2012. Dysfunction of natural killer T cells in patients with active Mycobacterium tuberculosis infection. Infect. Immun. 80:2100–8 [Google Scholar]
  137. Sutherland JS, Jeffries DJ, Donkor S, Walther B, Hill PC. 137.  et al. 2009. High granulocyte/lymphocyte ratio and paucity of NKT cells defines TB disease in a TB-endemic setting. Tuberculosis 89:398–404 [Google Scholar]
  138. Montamat-Sicotte DJ, Millington KA, Willcox CR, Hingley-Wilson S, Hackforth S. 138.  et al. 2011. A mycolic acid–specific CD1-restricted T cell population contributes to acute and memory immune responses in human tuberculosis infection. J. Clin. Investig. 121:2493–503 [Google Scholar]
  139. Ulrichs T, Moody DB, Grant E, Kaufmann SH, Porcelli SA. 139.  2003. T-cell responses to CD1-presented lipid antigens in humans with Mycobacterium tuberculosis infection. Infect. Immun. 71:3076–87 [Google Scholar]
  140. Yuan W, Dasgupta A, Cresswell P. 140.  2006. Herpes simplex virus evades natural killer T cell recognition by suppressing CD1d recycling. Nat. Immunol. 7:835–42 [Google Scholar]
  141. Yanagisawa K, Yue S, van der Vliet HJ, Wang R, Alatrakchi N. 141.  et al. 2013. Ex vivo analysis of resident hepatic pro-inflammatory CD1d-reactive T cells and hepatocyte surface CD1d expression in hepatitis C. J. Viral Hepat. 20:556–65 [Google Scholar]
  142. van der Vliet HJ, von Blomberg BM, Nishi N, Reijm M, Voskuyl AE. 142.  et al. 2001. Circulating Vα24+ Vβ11+ NKT cell numbers are decreased in a wide variety of diseases that are characterized by autoreactive tissue damage. Clin. Immunol. 100:144–48 [Google Scholar]
  143. Moll M, Snyder-Cappione J, Spotts G, Hecht FM, Sandberg JK, Nixon DF. 143.  2006. Expansion of CD1d-restricted NKT cells in patients with primary HIV-1 infection treated with interleukin-2. Blood 107:3081–83 [Google Scholar]
  144. Renukaradhya GJ, Khan MA, Vieira M, Du W, Gervay-Hague J, Brutkiewicz RR. 144.  2008. Type I NKT cells protect (and type II NKT cells suppress) the host's innate antitumor immune response to a B-cell lymphoma. Blood 111:5637–45 [Google Scholar]
  145. Georgel P, Radosavljevic M, Macquin C, Bahram S. 145.  2011. The non-conventional MHC class I MR1 molecule controls infection by Klebsiella pneumoniae in mice. Mol. Immunol. 48:769–75 [Google Scholar]
  146. Chua WJ, Truscott SM, Eickhoff CS, Blazevic A, Hoft DF, Hansen TH. 146.  2012. Polyclonal mucosa-associated invariant T cells have unique innate functions in bacterial infection. Infect. Immun. 80:3256–67 [Google Scholar]
  147. Wakao H, Yoshikiyo K, Koshimizu U, Furukawa T, Enomoto K. 147.  et al. 2013. Expansion of functional human mucosal–associated invariant T cells via reprogramming to pluripotency and redifferentiation. Cell Stem Cell 12:546–58 [Google Scholar]
  148. Meierovics A, Yankelevich WJ, Cowley SC. 148.  2013. MAIT cells are critical for optimal mucosal immune responses during in vivo pulmonary bacterial infection. PNAS 110:E3119–28 [Google Scholar]
  149. Leung DT, Bhuiyan TR, Nishat NS, Hoq MR, Aktar A. 149.  et al. 2014. Circulating mucosal associated invariant T cells are activated in Vibrio cholerae O1 infection and associated with lipopolysaccharide antibody responses. PLOS Negl. Trop. Dis. 8:e3076 [Google Scholar]
  150. Grimaldi D, Le Bourhis L, Sauneuf B, Dechartres A, Rousseau C. 150.  et al. 2014. Specific MAIT cell behaviour among innate-like T lymphocytes in critically ill patients with severe infections. Intensive Care Med. 40:192–201 [Google Scholar]
  151. Cosgrove C, Ussher JE, Rauch A, Gartner K, Kurioka A. 151.  et al. 2013. Early and nonreversible decrease of CD161++/MAIT cells in HIV infection. Blood 121:951–61 [Google Scholar]
  152. Leeansyah E, Ganesh A, Quigley MF, Sonnerborg A, Andersson J. 152.  et al. 2013. Activation, exhaustion, and persistent decline of the antimicrobial MR1-restricted MAIT-cell population in chronic HIV-1 infection. Blood 121:1124–35 [Google Scholar]
  153. Yanagihara Y, Shiozawa K, Takai M, Kyogoku M, Shiozawa S. 153.  1999. Natural killer (NK) T cells are significantly decreased in the peripheral blood of patients with rheumatoid arthritis (RA). Clin. Exp. Immunol. 118:131–36 [Google Scholar]
  154. Linsen L, Thewissen M, Baeten K, Somers V, Geusens P. 154.  et al. 2005. Peripheral blood but not synovial fluid natural killer T cells are biased towards a Th1-like phenotype in rheumatoid arthritis. Arthritis Res. Ther. 7:R493–502 [Google Scholar]
  155. Parietti V, Chifflot H, Sibilia J, Muller S, Monneaux F. 155.  2010. Rituximab treatment overcomes reduction of regulatory iNKT cells in patients with rheumatoid arthritis. Clin. Immunol. 134:331–39 [Google Scholar]
  156. Jacques P, Venken K, Van Beneden K, Hammad H, Seeuws S. 156.  et al. 2010. Invariant natural killer T cells are natural regulators of murine spondylarthritis. Arthritis Rheum. 62:988–99 [Google Scholar]
  157. Liu Y, Teige A, Mondoc E, Ibrahim S, Holmdahl R, Issazadeh-Navikas S. 157.  2011. Endogenous collagen peptide activation of CD1d-restricted NKT cells ameliorates tissue-specific inflammation in mice. J. Clin. Investig. 121:249–64 [Google Scholar]
  158. Miellot-Gafsou A, Biton J, Bourgeois E, Herbelin A, Boissier MC, Bessis N. 158.  2010. Early activation of invariant natural killer T cells in a rheumatoid arthritis model and application to disease treatment. Immunology 130:296–306 [Google Scholar]
  159. Kim HY, Kim HJ, Min HS, Kim S, Park WS. 159.  et al. 2005. NKT cells promote antibody-induced joint inflammation by suppressing transforming growth factor β1 production. J. Exp. Med. 201:41–47 [Google Scholar]
  160. Araki M, Kondo T, Gumperz JE, Brenner MB, Miyake S, Yamamura T. 160.  2003. Th2 bias of CD4+ NKT cells derived from multiple sclerosis in remission. Int. Immunol. 15:279–88 [Google Scholar]
  161. Oh SJ, Chung DH. 161.  2011. Invariant NKT cells producing IL-4 or IL-10, but not IFN-γ, inhibit the Th1 response in experimental autoimmune encephalomyelitis, whereas none of these cells inhibits the Th17 response. J. Immunol. 186:6815–21 [Google Scholar]
  162. Mars LT, Gautron AS, Novak J, Beaudoin L, Diana J. 162.  et al. 2008. Invariant NKT cells regulate experimental autoimmune encephalomyelitis and infiltrate the central nervous system in a CD1d-independent manner. J. Immunol. 181:2321–29 [Google Scholar]
  163. Kojo S, Adachi Y, Keino H, Taniguchi M, Sumida T. 163.  2001. Dysfunction of T cell receptor AV24AJ18+, BV11+ double-negative regulatory natural killer T cells in autoimmune diseases. Arthritis Rheum. 44:1127–38 [Google Scholar]
  164. Sieling PA, Porcelli SA, Duong BT, Spada F, Bloom BR. 164.  et al. 2000. Human double-negative T cells in systemic lupus erythematosus provide help for IgG and are restricted by CD1c. J. Immunol. 165:5338–44 [Google Scholar]
  165. Forestier C, Molano A, Im JS, Dutronc Y, Diamond B. 165.  et al. 2005. Expansion and hyperactivity of CD1d-restricted NKT cells during the progression of systemic lupus erythematosus in (New Zealand Black x New Zealand White)F1 mice. J. Immunol. 175:763–70 [Google Scholar]
  166. Takahashi T, Strober S. 166.  2008. Natural killer T cells and innate immune B cells from lupus-prone NZB/W mice interact to generate IgM and IgG autoantibodies. Eur. J. Immunol. 38:156–65 [Google Scholar]
  167. Yang JQ, Chun T, Liu H, Hong S, Bui H. 167.  et al. 2004. CD1d deficiency exacerbates inflammatory dermatitis in MRL-lpr/lpr mice. Eur. J. Immunol. 34:1723–32 [Google Scholar]
  168. Magalhaes I, Kiaf B, Lehuen A. 168.  2015. iNKT and MAIT cell alterations in diabetes. Front. Immunol. 6:341 [Google Scholar]
  169. Shi FD, Flodstrom M, Balasa B, Kim SH, Van Gunst K. 169.  et al. 2001. Germ line deletion of the CD1 locus exacerbates diabetes in the NOD mouse. PNAS 98:6777–82 [Google Scholar]
  170. Fletcher MT, Baxter AG. 170.  2009. Clinical application of NKT cell biology in type I (autoimmune) diabetes mellitus. Immunol. Cell Biol. 87:315–23 [Google Scholar]
  171. Ly D, Mi QS, Hussain S, Delovitch TL. 171.  2006. Protection from type 1 diabetes by invariant NK T cells requires the activity of CD4+CD25+ regulatory T cells. J. Immunol. 177:3695–704 [Google Scholar]
  172. Forestier C, Takaki T, Molano A, Im JS, Baine I. 172.  et al. 2007. Improved outcomes in NOD mice treated with a novel Th2 cytokine-biasing NKT cell activator. J. Immunol. 178:1415–25 [Google Scholar]
  173. Simoni Y, Diana J, Ghazarian L, Beaudoin L, Lehuen A. 173.  2013. Therapeutic manipulation of natural killer (NK) T cells in autoimmunity: Are we close to reality?. Clin. Exp. Immunol. 171:8–19 [Google Scholar]
  174. Exley MA, Hand L, O’Shea D, Lynch L. 174.  2014. Interplay between the immune system and adipose tissue in obesity. J. Endocrinol. 223:R41–48 [Google Scholar]
  175. Lynch L, Michelet X, Zhang S, Brennan PJ, Moseman A. 175.  et al. 2015. Regulatory iNKT cells lack expression of the transcription factor PLZF and control the homeostasis of Treg cells and macrophages in adipose tissue. Nat. Immunol. 16:85–95 [Google Scholar]
  176. Nickoloff BJ, Wrone-Smith T, Bonish B, Porcelli SA. 176.  1999. Response of murine and normal human skin to injection of allogeneic blood-derived psoriatic immunocytes: detection of T cells expressing receptors typically present on natural killer cells, including CD94, CD158, and CD161. Arch. Dermatol. 135:546–52 [Google Scholar]
  177. Gilhar A, Ullmann Y, Kerner H, Assy B, Shalaginov R. 177.  et al. 2002. Psoriasis is mediated by a cutaneous defect triggered by activated immunocytes: induction of psoriasis by cells with natural killer receptors. J. Investig. Dermatol. 119:384–91 [Google Scholar]
  178. Tupin E, Nicoletti A, Elhage R, Rudling M, Ljunggren HG. 178.  et al. 2004. CD1d-dependent activation of NKT cells aggravates atherosclerosis. J. Exp. Med. 199:417–22 [Google Scholar]
  179. Kyriakakis E, Cavallari M, Andert J, Philippova M, Koella C. 179.  et al. 2010. Invariant natural killer T cells: linking inflammation and neovascularization in human atherosclerosis. Eur. J. Immunol. 40:3268–79 [Google Scholar]
  180. Melian A, Geng YJ, Sukhova GK, Libby P, Porcelli SA. 180.  1999. CD1 expression in human atherosclerosis: a potential mechanism for T cell activation by foam cells. Am. J. Pathol. 155:775–86 [Google Scholar]
  181. Zeissig S, Blumberg RS. 181.  2013. Commensal microbiota and NKT cells in the control of inflammatory diseases at mucosal surfaces. Curr. Opin. Immunol. 25:690–96 [Google Scholar]
  182. Akbari O, Stock P, Meyer E, Kronenberg M, Sidobre S. 182.  et al. 2003. Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity. Nat. Med. 9:582–88 [Google Scholar]
  183. Meyer EH, Goya S, Akbari O, Berry GJ, Savage PB. 183.  et al. 2006. Glycolipid activation of invariant T cell receptor+ NK T cells is sufficient to induce airway hyperreactivity independent of conventional CD4+ T cells. PNAS 103:2782–87 [Google Scholar]
  184. Matangkasombut P, Pichavant M, Yasumi T, Hendricks C, Savage PB. 184.  et al. 2008. Direct activation of natural killer T cells induces airway hyperreactivity in nonhuman primates. J. Allergy Clin. Immunol. 121:1287–89 [Google Scholar]
  185. Nambiar J, Clarke AW, Shim D, Mabon D, Tian C. 185.  et al. 2015. Potent neutralizing anti-CD1d antibody reduces lung cytokine release in primate asthma model. mAbs 7:638–50 [Google Scholar]
  186. Berzins SP, Ritchie DS. 186.  2014. Natural killer T cells: drivers or passengers in preventing human disease?. Nat. Rev. Immunol. 14:640–46 [Google Scholar]
  187. Pereira CS, Azevedo O, Maia ML, Dias AF, Sa-Miranda C, Macedo MF. 187.  2013. Invariant natural killer T cells are phenotypically and functionally altered in Fabry disease. Mol. Genet. Metab. 108:241–48 [Google Scholar]
  188. Nair S, Boddupalli CS, Verma R, Liu J, Yang R. 188.  et al. 2015. Type II NKT-TFH cells against Gaucher lipids regulate B-cell immunity and inflammation. Blood 125:1256–71 [Google Scholar]
  189. Croxford JL, Miyake S, Huang YY, Shimamura M, Yamamura T. 189.  2006. Invariant Vα19i T cells regulate autoimmune inflammation. Nat. Immunol. 7:987–94 [Google Scholar]
  190. Miyazaki Y, Miyake S, Chiba A, Lantz O, Yamamura T. 190.  2011. Mucosal-associated invariant T cells regulate Th1 response in multiple sclerosis. Int. Immunol. 23:529–35 [Google Scholar]
  191. Abrahamsson SV, Angelini DF, Dubinsky AN, Morel E, Oh U. 191.  et al. 2013. Non-myeloablative autologous haematopoietic stem cell transplantation expands regulatory cells and depletes IL-17 producing mucosal-associated invariant T cells in multiple sclerosis. Brain 136:2888–903 [Google Scholar]
  192. Annibali V, Ristori G, Angelini DF, Serafini B, Mechelli R. 192.  et al. 2011. CD161highCD8+T cells bear pathogenetic potential in multiple sclerosis. Brain 134:542–54 [Google Scholar]
  193. Willing A, Leach OA, Ufer F, Attfield KE, Steinbach K. 193.  et al. 2014. CD8+ MAIT cells infiltrate into the CNS and alterations in their blood frequencies correlate with IL-18 serum levels in multiple sclerosis. Eur. J. Immunol. 44:3119–28 [Google Scholar]
  194. Cho YN, Kee SJ, Kim TJ, Jin HM, Kim MJ. 194.  et al. 2014. Mucosal-associated invariant T cell deficiency in systemic lupus erythematosus. J. Immunol. 193:3891–901 [Google Scholar]
  195. Magalhaes I, Pingris K, Poitou C, Bessoles S, Venteclef N. 195.  et al. 2015. Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients. J. Clin. Investig. 125:1752–62 [Google Scholar]
  196. Serriari NE, Eoche M, Lamotte L, Lion J, Fumery M. 196.  et al. 2014. Innate mucosal-associated invariant T (MAIT) cells are activated in inflammatory bowel diseases. Clin. Exp. Immunol. 176:266–74 [Google Scholar]
  197. Hiejima E, Kawai T, Nakase H, Tsuruyama T, Morimoto T. 197.  et al. 2015. Reduced numbers and proapoptotic features of mucosal-associated invariant T cells as a characteristic finding in patients with inflammatory bowel disease. Inflamm. Bowel Dis. 21:1529–40 [Google Scholar]
  198. McEwen-Smith RM, Salio M, Cerundolo V. 198.  2015. The regulatory role of invariant NKT cells in tumor immunity. Cancer Immunol. Res. 3:425–35 [Google Scholar]
  199. Shimizu K, Kurosawa Y, Taniguchi M, Steinman RM, Fujii S. 199.  2007. Cross-presentation of glycolipid from tumor cells loaded with α-galactosylceramide leads to potent and long-lived T cell mediated immunity via dendritic cells. J. Exp. Med. 204:2641–53 [Google Scholar]
  200. Crowe NY, Smyth MJ, Godfrey DI. 200.  2002. A critical role for natural killer T cells in immunosurveillance of methylcholanthrene-induced sarcomas. J. Exp. Med. 196:119–27 [Google Scholar]
  201. Swann J, Crowe NY, Hayakawa Y, Godfrey DI, Smyth MJ. 201.  2004. Regulation of antitumour immunity by CD1d-restricted NKT cells. Immunol. Cell Biol. 82:323–31 [Google Scholar]
  202. Song L, Asgharzadeh S, Salo J, Engell K, Wu HW. 202.  et al. 2009. Vα24-invariant NKT cells mediate antitumor activity via killing of tumor-associated macrophages. J. Clin. Investig. 119:1524–36 [Google Scholar]
  203. Metelitsa LS, Naidenko OV, Kant A, Wu HW, Loza MJ. 203.  et al. 2001. Human NKT cells mediate antitumor cytotoxicity directly by recognizing target cell CD1d with bound ligand or indirectly by producing IL-2 to activate NK cells. J. Immunol. 167:3114–22 [Google Scholar]
  204. Robertson FC, Berzofsky JA, Terabe M. 204.  2014. NKT cell networks in the regulation of tumor immunity. Front. Immunol. 5:543 [Google Scholar]
  205. Chang DH, Deng H, Matthews P, Krasovsky J, Ragupathi G. 205.  et al. 2008. Inflammation-associated lysophospholipids as ligands for CD1d-restricted T cells in human cancer. Blood 112:1308–16 [Google Scholar]
  206. de Lalla C, Rinaldi A, Montagna D, Azzimonti L, Bernardo ME. 206.  et al. 2011. Invariant NKT cell reconstitution in pediatric leukemia patients given HLA-haploidentical stem cell transplantation defines distinct CD4+ and CD4 subset dynamics and correlates with remission state. J. Immunol. 186:4490–99 [Google Scholar]
  207. Rubio MT, Moreira-Teixeira L, Bachy E, Bouillie M, Milpied P. 207.  et al. 2012. Early posttransplantation donor-derived invariant natural killer T-cell recovery predicts the occurrence of acute graft-versus-host disease and overall survival. Blood 120:2144–54 [Google Scholar]
  208. Peterfalvi A, Gomori E, Magyarlaki T, Pal J, Banati M. 208.  et al. 2008. Invariant Vα7.2-Jα33 TCR is expressed in human kidney and brain tumors indicating infiltration by mucosal-associated invariant T (MAIT) cells. Int. Immunol 20:1517–25 [Google Scholar]
  209. Terabe M, Berzofsky JA. 209.  2012. Natural Killer T Cells: Balancing the Regulation of Tumor Immunity New York: Springer
  210. Nieda M, Okai M, Tazbirkova A, Lin H, Yamaura A. 210.  et al. 2004. Therapeutic activation of Vα24+Vβ11+ NKT cells in human subjects results in highly coordinated secondary activation of acquired and innate immunity. Blood 103:383–89 [Google Scholar]
  211. Motohashi S, Nagato K, Kunii N, Yamamoto H, Yamasaki K. 211.  et al. 2009. A phase I-II study of α-galactosylceramide-pulsed IL-2/GM-CSF–cultured peripheral blood mononuclear cells in patients with advanced and recurrent non-small cell lung cancer. J. Immunol. 182:2492–501 [Google Scholar]
  212. Richter J, Neparidze N, Zhang L, Nair S, Monesmith T. 212.  et al. 2013. Clinical regressions and broad immune activation following combination therapy targeting human NKT cells in myeloma. Blood 121:423–30 [Google Scholar]
  213. Yamasaki K, Horiguchi S, Kurosaki M, Kunii N, Nagato K. 213.  et al. 2011. Induction of NKT cell–specific immune responses in cancer tissues after NKT cell–targeted adoptive immunotherapy. Clin. Immunol. 138:255–65 [Google Scholar]
  214. Ishikawa A, Motohashi S, Ishikawa E, Fuchida H, Higashino K. 214.  et al. 2005. A phase I study of α-galactosylceramide (KRN7000)-pulsed dendritic cells in patients with advanced and recurrent non-small cell lung cancer. Clin. Cancer Res. 11:1910–17 [Google Scholar]
  215. Uchida T, Horiguchi S, Tanaka Y, Yamamoto H, Kunii N. 215.  et al. 2008. Phase I study of α-galactosylceramide–pulsed antigen presenting cells administration to the nasal submucosa in unresectable or recurrent head and neck cancer. Cancer Immunol. Immunother. 57:337–45 [Google Scholar]
  216. Bai L, Deng S, Reboulet R, Mathew R, Teyton L. 216.  et al. 2013. Natural killer T (NKT)–B-cell interactions promote prolonged antibody responses and long-term memory to pneumococcal capsular polysaccharides. PNAS 110:16097–102 [Google Scholar]
  217. Cavallari M, Stallforth P, Kalinichenko A, Rathwell DC, Gronewold TM. 217.  et al. 2014. A semisynthetic carbohydrate-lipid vaccine that protects against S. pneumoniae in mice. Nat. Chem. Biol. 10:950–56 [Google Scholar]
  218. Anderson RJ, Tang CW, Daniels NJ, Compton BJ, Hayman CM. 218.  et al. 2014. A self-adjuvanting vaccine induces cytotoxic T lymphocytes that suppress allergy. Nat. Chem. Biol. 10:943–49 [Google Scholar]
  219. Agea E, Russano A, Bistoni O, Mannucci R, Nicoletti I. 219.  et al. 2005. Human CD1-restricted T cell recognition of lipids from pollens. J. Exp. Med. 202:295–308 [Google Scholar]
  220. Lee WY, Moriarty TJ, Wong CH, Zhou H, Strieter RM. 220.  et al. 2010. An intravascular immune response to Borrelia burgdorferi involves Kupffer cells and iNKT cells. Nat. Immunol. 11:295–302 [Google Scholar]
  221. Kawakami K, Kinjo Y, Uezu K, Yara S, Miyagi K. 221.  et al. 2001. Monocyte chemoattractant protein-1–dependent increase of Vα14 NKT cells in lungs and their roles in Th1 response and host defense in cryptococcal infection. J. Immunol. 167:6525–32 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error