CD4+ T helper (Th) cells play a central role in the adaptive immune response by providing help to B cells and cytotoxic T cells and by releasing different types of cytokines in tissues to mediate protection against a wide range of pathogenic microorganisms. These functions are performed by different types of Th cells endowed with distinct migratory capacities and effector functions. Here we discuss how studies of the human T cell response to microbes have advanced our understanding of Th cell functional heterogeneity, in particular with the discovery of a distinct Th1 subset involved in the response to and the characterization of two types of Th17 cells specific for extracellular bacteria or fungi. We also review new approaches to dissect at the clonal level the human CD4+ T cell response induced by pathogens or vaccines that have revealed an unexpected degree of intraclonal diversification and propose a progressive and selective model of CD4+ T cell differentiation.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Germain RN, Robey EA, Cahalan MD. 1.  2012. A decade of imaging cellular motility and interaction dynamics in the immune system. Science 336:1676–81 [Google Scholar]
  2. Reiner SL, Sallusto F, Lanzavecchia A. 2.  2007. Division of labor with a workforce of one: challenges in specifying effector and memory T cell fate. Science 317:622–25 [Google Scholar]
  3. Crotty S. 3.  2014. T follicular helper cell differentiation, function, and roles in disease. Immunity 41:529–42 [Google Scholar]
  4. Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM. 4.  et al. 2011. A human memory T cell subset with stem cell-like properties. Nat. Med. 17:1290–97 [Google Scholar]
  5. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. 5.  1999. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401:708–12 [Google Scholar]
  6. Reinhardt RL, Khoruts A, Merica R, Zell T, Jenkins MK. 6.  2001. Visualizing the generation of memory CD4 T cells in the whole body. Nature 410:101–5 [Google Scholar]
  7. Gebhardt T, Wakim LM, Eidsmo L, Reading PC, Heath WR, Carbone FR. 7.  2009. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol. 10:524–30 [Google Scholar]
  8. Teijaro JR, Turner D, Pham Q, Wherry EJ, Lefrancois L, Farber DL. 8.  2011. Cutting edge: Tissue-retentive lung memory CD4 T cells mediate optimal protection to respiratory virus infection. J. Immunol. 187:5510–14 [Google Scholar]
  9. Farber DL, Yudanin NA, Restifo NP. 9.  2014. Human memory T cells: generation, compartmentalization and homeostasis. Nat. Rev. Immunol. 14:24–35 [Google Scholar]
  10. Hirahara K, Poholek A, Vahedi G, Laurence A, Kanno Y. 10.  et al. 2013. Mechanisms underlying helper T-cell plasticity: implications for immune-mediated disease. J. Allergy Clin. Immunol. 131:1276–87 [Google Scholar]
  11. Yamane H, Paul WE. 11.  2013. Early signaling events that underlie fate decisions of naive CD4+ T cells toward distinct T-helper cell subsets. Immunol. Rev. 252:12–23 [Google Scholar]
  12. Wang C, Collins M, Kuchroo VK. 12.  2015. Effector T cell differentiation: Are master regulators of effector T cells still the masters?. Curr. Opin. Immunol. 37:6–10 [Google Scholar]
  13. Schmitt N, Ueno H. 13.  2015. Regulation of human helper T cell subset differentiation by cytokines. Curr. Opin. Immunol. 34:130–36 [Google Scholar]
  14. Duhen T, Geiger R, Jarrossay D, Lanzavecchia A, Sallusto F. 14.  2009. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat. Immunol. 10:857–63 [Google Scholar]
  15. Trifari S, Kaplan CD, Tran EH, Crellin NK, Spits H. 15.  2009. Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from TH-17, TH1 and TH2 cells. Nat. Immunol. 10:864–71 [Google Scholar]
  16. Eyerich S, Eyerich K, Pennino D, Carbone T, Nasorri F. 16.  et al. 2009. Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J. Clin. Investig. 119:3573–85 [Google Scholar]
  17. Veldhoen M, Uyttenhove C, van Snick J, Helmby H, Westendorf A. 17.  et al. 2008. Transforming growth factor-beta ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat. Immunol. 9:1341–46 [Google Scholar]
  18. Chang HC, Sehra S, Goswami R, Yao W, Yu Q. 18.  et al. 2010. The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation. Nat. Immunol. 11:527–34 [Google Scholar]
  19. Kanno Y, Vahedi G, Hirahara K, Singleton K, O’Shea JJ. 19.  2012. Transcriptional and epigenetic control of T helper cell specification: molecular mechanisms underlying commitment and plasticity. Annu. Rev. Immunol. 30:707–31 [Google Scholar]
  20. Zhou L, Chong MM, Littman DR. 20.  2009. Plasticity of CD4+ T cell lineage differentiation. Immunity 30:646–55 [Google Scholar]
  21. Lee YK, Mukasa R, Hatton RD, Weaver CT. 21.  2009. Developmental plasticity of Th17 and Treg cells. Curr. Opin. Immunol. 21:274–80 [Google Scholar]
  22. Sallusto F, Lanzavecchia A. 22.  2009. Heterogeneity of CD4+ memory T cells: functional modules for tailored immunity. Eur. J. Immunol. 39:2076–82 [Google Scholar]
  23. Baumjohann D, Ansel KM. 23.  2013. MicroRNA-mediated regulation of T helper cell differentiation and plasticity. Nat. Rev. Immunol. 13:666–78 [Google Scholar]
  24. Panzeri I, Rossetti G, Abrignani S, Pagani M. 24.  2015. Long intergenic non-coding RNAs: novel drivers of human lymphocyte differentiation. Front. Immunol. 6:175 [Google Scholar]
  25. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. 25.  1986. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136:2348–57 [Google Scholar]
  26. Scott P, Natovitz P, Coffman RL, Pearce E, Sher A. 26.  1988. Immunoregulation of cutaneous leishmaniasis: T cell lines that transfer protective immunity or exacerbation belong to different T helper subsets and respond to distinct parasite antigens. J. Exp. Med. 168:1675–84 [Google Scholar]
  27. Heinzel FP, Sadick MD, Holaday BJ, Coffman RL, Locksley RM. 27.  1989. Reciprocal expression of interferon gamma or interleukin 4 during the resolution or progression of murine leishmaniasis: evidence for expansion of distinct helper T cell subsets. J. Exp. Med. 169:59–72 [Google Scholar]
  28. Pirmez C, Yamamura M, Uyemura K, Paes-Oliveira M, Conceicao-Silva F, Modlin RL. 28.  1993. Cytokine patterns in the pathogenesis of human leishmaniasis. J. Clin. Investig. 91:1390–95 [Google Scholar]
  29. Picker LJ, Michie SA, Rott LS, Butcher EC. 29.  1990. A unique phenotype of skin-associated lymphocytes in humans: preferential expression of the HECA-452 epitope by benign and malignant T cells at cutaneous sites. Am. J. Pathol. 136:1053–68 [Google Scholar]
  30. Schaerli P, Willimann K, Lang AB, Lipp M, Loetscher P, Moser B. 30.  2000. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J. Exp. Med. 192:1553–62 [Google Scholar]
  31. Breitfeld D, Ohl L, Kremmer E, Ellwart J, Sallusto F. 31.  et al. 2000. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J. Exp. Med. 192:1545–52 [Google Scholar]
  32. Bonecchi R, Bianchi G, Bordignon PP, D’Ambrosio D, Lang R. 32.  et al. 1998. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J. Exp. Med. 187:129–34 [Google Scholar]
  33. Sallusto F, Lenig D, Mackay CR, Lanzavecchia A. 33.  1998. Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J. Exp. Med. 187:875–83 [Google Scholar]
  34. Sallusto F, Mackay CR, Lanzavecchia A. 34.  1997. Selective expression of the eotaxin receptor CCR3 by human T helper 2 cells. Science 277:2005–7 [Google Scholar]
  35. Nagata K, Tanaka K, Ogawa K, Kemmotsu K, Imai T. 35.  et al. 1999. Selective expression of a novel surface molecule by human Th2 cells in vivo. J. Immunol. 162:1278–86 [Google Scholar]
  36. Acosta-Rodriguez EV, Rivino L, Geginat J, Jarrossay D, Gattorno M. 36.  et al. 2007. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat. Immunol. 8:639–46 [Google Scholar]
  37. Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F. 37.  et al. 2007. Phenotypic and functional features of human Th17 cells. J. Exp. Med. 204:1849–61 [Google Scholar]
  38. Langenkamp A, Messi M, Lanzavecchia A, Sallusto F. 38.  2000. Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nat. Immunol. 1:311–6 [Google Scholar]
  39. Langenkamp A, Casorati G, Garavaglia C, Dellabona P, Lanzavecchia A, Sallusto F. 39.  2002. T cell priming by dendritic cells: thresholds for proliferation, differentiation and death and intraclonal functional diversification. Eur. J. Immunol. 32:2046–54 [Google Scholar]
  40. Gett AV, Sallusto F, Lanzavecchia A, Geginat J. 40.  2003. T cell fitness determined by signal strength. Nat. Immunol. 4:355–60 [Google Scholar]
  41. Lanzavecchia A, Sallusto F. 41.  2000. Dynamics of T lymphocyte responses: intermediates, effectors, and memory cells. Science 290:92–97 [Google Scholar]
  42. Lanzavecchia A, Sallusto F. 42.  2002. Progressive differentiation and selection of the fittest in the immune response. Nat. Rev. Immunol. 2:982–87 [Google Scholar]
  43. Buchholz VR, Flossdorf M, Hensel I, Kretschmer L, Weissbrich B. 43.  et al. 2013. Disparate individual fates compose robust CD8+ T cell immunity. Science 340:630–35 [Google Scholar]
  44. Gerlach C, Rohr JC, Perié L, van Rooij N, van Heijst JW. 44.  et al. 2013. Heterogeneous differentiation patterns of individual CD8+ T cells. Science 340:635–39 [Google Scholar]
  45. Plumlee CR, Sheridan BS, Cicek BB, Lefrançois L. 45.  2013. Environmental cues dictate the fate of individual CD8+ T cells responding to infection. Immunity 39:347–56 [Google Scholar]
  46. Messi M, Giacchetto I, Nagata K, Lanzavecchia A, Natoli G, Sallusto F. 46.  2003. Memory and flexibility of cytokine gene expression as separable properties of human TH1 and TH2 lymphocytes. Nat. Immunol. 4:78–86 [Google Scholar]
  47. Annunziato F, Cosmi L, Manetti R, Brugnolo F, Parronchi P. 47.  et al. 2001. Reversal of human allergen-specific CRTH2+ TH2 cells by IL-12 or the PS-DSP30 oligodeoxynucleotide. J. Allergy Clin. Immunol. 108:815–21 [Google Scholar]
  48. Davis MM. 48.  2008. A prescription for human immunology. Immunity 29:835–38 [Google Scholar]
  49. Furman D, Davis MM. 49.  2015. New approaches to understanding the immune response to vaccination and infection. Vaccine 33:5271–81 [Google Scholar]
  50. Han A, Glanville J, Hansmann L, Davis MM. 50.  2014. Linking T-cell receptor sequence to functional phenotype at the single-cell level. Nat. Biotechnol. 32:684–92 [Google Scholar]
  51. Birnbaum ME, Mendoza JL, Sethi DK, Dong S, Glanville J. 51.  et al. 2014. Deconstructing the peptide-MHC specificity of T cell recognition. Cell 157:1073–87 [Google Scholar]
  52. Pulendran B. 52.  2014. Systems vaccinology: probing humanity's diverse immune systems with vaccines. PNAS 111:12300–6 [Google Scholar]
  53. Chattopadhyay PK, Gierahn TM, Roederer M, Love JC. 53.  2014. Single-cell technologies for monitoring immune systems. Nat. Immunol. 15:128–35 [Google Scholar]
  54. Bendall SC, Simonds EF, Qiu P, Amir EAD, Krutzik PO. 54.  et al. 2011. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332:687–96 [Google Scholar]
  55. Newell EW, Sigal N, Nair N, Kidd BA, Greenberg HB, Davis MM. 55.  2013. Combinatorial tetramer staining and mass cytometry analysis facilitate T-cell epitope mapping and characterization. Nat. Biotechnol. 31:623–29 [Google Scholar]
  56. Robins HS, Campregher PV, Srivastava SK, Wacher A, Turtle CJ. 56.  et al. 2009. Comprehensive assessment of T-cell receptor β-chain diversity in αβ T cells. Blood 114:4099–107 [Google Scholar]
  57. Maggi L, Santarlasci V, Capone M, Rossi MC, Querci V. 57.  et al. 2012. Distinctive features of classic and nonclassic (Th17 derived) human Th1 cells. Eur. J. Immunol. 42:3180–88 [Google Scholar]
  58. Zielinski CE, Corti D, Mele F, Pinto D, Lanzavecchia A, Sallusto F. 58.  2011. Dissecting the human immunologic memory for pathogens. Immunol. Rev. 240:40–51 [Google Scholar]
  59. Lindestam Arlehamn CS, Gerasimova A, Mele F, Henderson R, Swann J. 59.  et al. 2013. Memory T cells in latent Mycobacterium tuberculosis infection are directed against three antigenic islands and largely contained in a CXCR3+CCR6+ Th1 subset. PLOS Pathog. 9:e1003130 [Google Scholar]
  60. Lindestam Arlehamn C, Seumois G, Gerasimova A, Huang C, Fu Z. 60.  et al. 2014. Transcriptional profile of tuberculosis antigen-specific T cells reveals novel multifunctional features. J. Immunol. 193:2931–40 [Google Scholar]
  61. Okada S, Markle JG, Deenick EK, Mele F, Averbuch D. 61.  et al. 2015. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations. Science 349:606–13 [Google Scholar]
  62. Nistala K, Adams S, Cambrook H, Ursu S, Olivito B. 62.  et al. 2010. Th17 plasticity in human autoimmune arthritis is driven by the inflammatory environment. PNAS 107:3314751–56 [Google Scholar]
  63. Maggi L1, Cimaz R, Capone M, Santarlasci V, Querci V. 63.  et al. 2014. Brief report: etanercept inhibits the tumor necrosis factor α-driven shift of Th17 lymphocytes toward a nonclassic Th1 phenotype in juvenile idiopathic arthritis. Arthritis Rheumatol 66:1372–77 [Google Scholar]
  64. Duhen T, Campbell DJ. 64.  2014. IL-1β promotes the differentiation of polyfunctional human CCR6+CXCR3+ Th1/17 cells that are specific for pathogenic and commensal microbes. J. Immunol. 193:120–29 [Google Scholar]
  65. Mazzoni A, Santarlasci V, Maggi L, Capone M, Rossi MC. 65.  et al. 2015. Demethylation of the RORC2 and IL17A in human CD4+ T lymphocytes defines Th17 origin of nonclassic Th1 cells. J. Immunol. 194:3116–26 [Google Scholar]
  66. Bustamante J, Boisson-Dupuis S, Abel L, Casanova JL. 66.  2014. Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-gamma immunity. Semin. Immunol. 26:454–70 [Google Scholar]
  67. Yu D, Rao S, Tsai LM, Lee SK, He Y. 67.  et al. 2009. The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity 31:457–68 [Google Scholar]
  68. Nurieva RI, Chung Y, Martinez GJ, Yang XO, Tanaka S. 68.  et al. 2009. Bcl6 mediates the development of T follicular helper cells. Science 325:1001–5 [Google Scholar]
  69. Johnston RJ, Poholek AC, DiToro D, Yusuf I, Eto D. 69.  et al. 2009. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325:1006–10 [Google Scholar]
  70. Victora GD, Schwickert TA, Fooksman DR, Kamphorst AO, Meyer-Hermann M. 70.  et al. 2010. Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 143:592–605 [Google Scholar]
  71. Gitlin AD, Shulman Z, Nussenzweig MC. 71.  2014. Clonal selection in the germinal centre by regulated proliferation and hypermutation. Nature 509:637–40 [Google Scholar]
  72. Baumjohann D, Preite S, Reboldi A, Ronchi F, Ansel KM. 72.  et al. 2013. Persistent antigen and germinal center B cells sustain T follicular helper cell responses and phenotype. Immunity 38:596–605 [Google Scholar]
  73. Preite S, Baumjohann D, Foglierini M, Basso C, Ronchi F. 73.  et al. 2015. Somatic mutations and affinity maturation are impaired by excessive numbers of T follicular helper cells and restored by Treg cells or memory T cells. Eur. J. Immunol. 453010–21 [Google Scholar]
  74. Rivino L, Messi M, Jarrossay D, Lanzavecchia A, Sallusto F, Geginat J. 74.  2004. Chemokine receptor expression identifies pre-T helper (Th)1, pre-Th2, and nonpolarized cells among human CD4+ central memory T cells. J. Exp. Med. 200:725–35 [Google Scholar]
  75. Lu KT, Kanno Y, Cannons JL, Handon R, Bible P. 75.  et al. 2011. Functional and epigenetic studies reveal multistep differentiation and plasticity of in vitro-generated and in vivo-derived follicular T helper cells. Immunity 35:622–32 [Google Scholar]
  76. Schmitt N, Liu Y, Bentebibel SE, Munagala I, Bourdery L. 76.  et al. 2014. The cytokine TGF-β co-opts signaling via STAT3-STAT4 to promote the differentiation of human TFH cells. Nat. Immunol. 15:856–65 [Google Scholar]
  77. Morita R, Schmitt N, Bentebibel SE, Ranganathan R, Bourdery L. 77.  et al. 2011. Human blood CXCR5+CD4+ T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity 34:108–21 [Google Scholar]
  78. Schmitt N, Bustamante J, Bourdery L, Bentebibel SE, Boisson-Dupuis S. 78.  et al. 2013. IL-12 receptor β1 deficiency alters in vivo T follicular helper cell response in humans. Blood 121:3375–85 [Google Scholar]
  79. Ma CS, Wong N, Rao G, Avery DT, Torpy J. 79.  et al. 2015. Monogenic mutations differentially affect the quantity and quality of T follicular helper cells in patients with human primary immunodeficiencies. J. Allergy Clin. Immunol. 136:993–1006.e1 [Google Scholar]
  80. Ma CS, Avery DT, Chan A, Batten M, Bustamante J. 80.  et al. 2012. Functional STAT3 deficiency compromises the generation of human T follicular helper cells. Blood 119:3997–4008 [Google Scholar]
  81. Grimbacher B, Hutloff A, Schlesier M, Glocker E, Warnatz K. 81.  et al. 2003. Homozygous loss of ICOS is associated with adult-onset common variable immunodeficiency. Nat. Immunol. 4:261–68 [Google Scholar]
  82. Bossaller L, Burger J, Draeger R, Grimbacher B, Knoth R. 82.  et al. 2006. ICOS deficiency is associated with a severe reduction of CXCR5+CD4 germinal center Th cells. J. Immunol. 177:4927–32 [Google Scholar]
  83. Locci M, Havenar-Daughton C, Landais E, Wu J, Kroenke MA. 83.  et al. 2013. Human circulating PD-1+CXCR3CXCR5+ memory Tfh cells are highly functional and correlate with broadly neutralizing HIV antibody responses. Immunity 39:758–69 [Google Scholar]
  84. He J, Tsai LM, Leong YA, Hu X, Ma CS. 84.  et al. 2013. Circulating precursor CCR7loPD-1hi CXCR5+ CD4+ T cells indicate Tfh cell activity and promote antibody responses upon antigen reexposure. Immunity 39:770–81 [Google Scholar]
  85. Bentebibel SE, Lopez S, Obermoser G, Schmitt N, Mueller C. 85.  et al. 2013. Induction of ICOS+CXCR3+CXCR5+ TH cells correlates with antibody responses to influenza vaccination. Sci. Transl. Med. 5:176ra32 [Google Scholar]
  86. Cubas RA, Mudd JC, Savoye AL, Perreau M, van Grevenynghe J. 86.  et al. 2013. Inadequate T follicular cell help impairs B cell immunity during HIV infection. Nat. Med. 19:494–99 [Google Scholar]
  87. Perreau M, Savoye AL, De Crignis E, Corpataux JM, Cubas R. 87.  et al. 2013. Follicular helper T cells serve as the major CD4 T cell compartment for HIV-1 infection, replication, and production. J. Exp. Med. 210:143–56 [Google Scholar]
  88. Wilkinson TM, Li CK, Chui CS, Huang AK, Perkins M. 88.  et al. 2012. Preexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans. Nat. Med. 18:274–80 [Google Scholar]
  89. Weiskopf D, Bangs DJ, Sidney J, Kolla RV, De Silva AD. 89.  et al. 2015. Dengue virus infection elicits highly polarized CX3CR1+ cytotoxic CD4+ T cells associated with protective immunity. PNAS 112:E4256–63 [Google Scholar]
  90. Park H, Li Z, Yang XO, Chang SH, Nurieva R. 90.  et al. 2005. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6:1133–41 [Google Scholar]
  91. Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B. 91.  et al. 2003. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421:744–48 [Google Scholar]
  92. Murphy CA, Langrish CL, Chen Y, Blumenschein W, McClanahan T. 92.  et al. 2003. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J. Exp. Med. 198:1951–57 [Google Scholar]
  93. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB. 93.  et al. 2006. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–38 [Google Scholar]
  94. Ma CS, Chew GY, Simpson N, Priyadarshi A, Wong M. 94.  et al. 2008. Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT3. J. Exp. Med. 205:1551–57 [Google Scholar]
  95. Renner ED, Rylaarsdam S, Anover-Sombke S, Rack AL, Reichenbach J. 95.  et al. 2008. Novel signal transducer and activator of transcription 3 (STAT3) mutations, reduced TH17 cell numbers, and variably defective STAT3 phosphorylation in hyper-IgE syndrome. J. Allergy Clin. Immunol. 122:181–87 [Google Scholar]
  96. de Beaucoudrey L, Puel A, Filipe-Santos O, Cobat A, Ghandil P. 96.  et al. 2008. Mutations in STAT3 and IL12RB1 impair the development of human IL-17-producing T cells. J. Exp. Med. 205:1543–50 [Google Scholar]
  97. Puel A, Cypowyj S, Bustamante J, Wright JF, Liu L. 97.  et al. 2011. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 332:65–68 [Google Scholar]
  98. Ling Y, Cypowyj S, Aytekin C, Galicchio M, Camcioglu Y. 98.  et al. 2015. Inherited IL-17RC deficiency in patients with chronic mucocutaneous candidiasis. J. Exp. Med. 212:619–31 [Google Scholar]
  99. Zielinski CE, Mele F, Aschenbrenner D, Jarrossay D, Ronchi F. 99.  et al. 2012. Pathogen-induced human TH17 cells produce IFN-γ or IL-10 and are regulated by IL-1β. Nature 484:514–18 [Google Scholar]
  100. Hirota K, Yoshitomi H, Hashimoto M, Maeda S, Teradaira S. 100.  et al. 2007. Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model. J. Exp. Med. 204:2803–12 [Google Scholar]
  101. Cosmi L, Cimaz R, Maggi L, Santarlasci V, Capone M. 101.  et al. 2011. Evidence of the transient nature of the Th17 phenotype of CD4+CD161+ T cells in the synovial fluid of patients with juvenile idiopathic arthritis. Arthritis Rheumatol. 63:2504–15 [Google Scholar]
  102. Hirota K, Duarte JH, Veldhoen M, Hornsby E, Li Y. 102.  et al. 2011. Fate mapping of IL-17-producing T cells in inflammatory responses. Nat. Immunol. 12:255–63 [Google Scholar]
  103. Cohen CJ, Crome SQ, MacDonald KG, Dai EL, Mager DL, Levings MK. 103.  2011. Human Th1 and Th17 cells exhibit epigenetic stability at signature cytokine and transcription factor loci. J. Immunol. 187:5615–26 [Google Scholar]
  104. Sigmundsdottir H, Pan J, Debes GF, Alt C, Habtezion A. 104.  et al. 2007. DCs metabolize sunlight-induced vitamin D3 to ‘program’ T cell attraction to the epidermal chemokine CCL27. Nat. Immunol. 8:285–93 [Google Scholar]
  105. de Jong A, Pena-Cruz V, Cheng TY, Clark RA, Van Rhijn I, Moody DB. 105.  2010. CD1a-autoreactive T cells are a normal component of the human αβ T cell repertoire. Nat. Immunol. 11:1102–9 [Google Scholar]
  106. Bourgeois EA, Subramaniam S, Cheng TY, De Jong A, Layre E. 106.  et al. 2015. Bee venom processes human skin lipids for presentation by CD1a. J. Exp. Med. 212:149–63 [Google Scholar]
  107. de Jong A, Cheng TY, Huang S, Gras S, Birkinshaw RW. 107.  et al. 2014. CD1a-autoreactive T cells recognize natural skin oils that function as headless antigens. Nat. Immunol. 15:177–85 [Google Scholar]
  108. Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP. 108.  et al. 2013. Innate lymphoid cells—a proposal for uniform nomenclature. Nat. Rev. Immunol. 13:145–49 [Google Scholar]
  109. Palm NW, Rosenstein RK, Medzhitov R. 109.  2012. Allergic host defences. Nature 484:465–72 [Google Scholar]
  110. Cosmi L, Annunziato F, Galli MIG, Maggi RME, Nagata K, Romagnani S. 110.  2000. CRTH2 is the most reliable marker for the detection of circulating human type 2 Th and type 2 T cytotoxic cells in health and disease. Eur. J. Immunol. 30:2972–79 [Google Scholar]
  111. Gerber BO, Zanni MP, Uguccioni M, Loetscher M, Mackay CR. 111.  et al. 1997. Functional expression of the eotaxin receptor CCR3 in T lymphocytes co-localizing with eosinophils. Curr. Biol. 7:836–43 [Google Scholar]
  112. Upadhyaya B, Yin Y, Hill BJ, Douek DC, Prussin C. 112.  2011. Hierarchical IL-5 expression defines a subpopulation of highly differentiated human Th2 cells. J. Immunol. 187:3111–20 [Google Scholar]
  113. Mitson-Salazar A, Yin Y, Wansley DL, Young M, Bolan H. 113.  et al. 2016. Hematopoietic prostaglandin D synthase defines a proeosinophilic pathogenic effector human TH2 cell subpopulation with enhanced function. J. Allergy Clin. Immunol. 1373907–18.e9 [Google Scholar]
  114. Endo Y, Hirahara K, Iinuma T, Shinoda K, Tumes DJ. 114.  et al. 2015. The interleukin-33-p38 kinase axis confers memory T helper 2 cell pathogenicity in the airway. Immunity 42:294–308 [Google Scholar]
  115. Endo Y, Iwamura C, Kuwahara M, Suzuki A, Sugaya K. 115.  et al. 2011. Eomesodermin controls interleukin-5 production in memory T helper 2 cells through inhibition of activity of the transcription factor GATA3. Immunity 35:733–45 [Google Scholar]
  116. Kaplan MH, Hufford MM, Olson MR. 116.  2015. The development and in vivo function of T helper 9 cells. Nat. Rev. Immunol. 15:295–307 [Google Scholar]
  117. Schmitt E, Germann T, Goedert S, Hoehn P, Huels C. 117.  et al. 1994. IL-9 production of naive CD4+ T cells depends on IL-2, is synergistically enhanced by a combination of TGF-beta and IL-4, and is inhibited by IFN-gamma. J. Immunol. 153:3989–96 [Google Scholar]
  118. Licona-Limon P, Henao-Mejia J, Temann AU, Gagliani N, Licona-Limon I. 118.  et al. 2013. Th9 cells drive host immunity against gastrointestinal worm infection. Immunity 39:744–57 [Google Scholar]
  119. Gerlach K, Hwang Y, Nikolaev A, Atreya R, Dornhoff H. 119.  et al. 2014. TH9 cells that express the transcription factor PU.1 drive T cell-mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nat. Immunol. 15:676–86 [Google Scholar]
  120. Nalleweg N, Chiriac MT, Podstawa E, Lehmann C, Rau TT. 120.  et al. 2015. IL-9 and its receptor are predominantly involved in the pathogenesis of UC. Gut 64:743–55 [Google Scholar]
  121. Anuradha R, George PJ, Hanna LE, Chandrasekaran V, Kumaran P. 121.  et al. 2013. IL-4–, TGF-β–, and IL-1–dependent expansion of parasite antigen-specific Th9 cells is associated with clinical pathology in human lymphatic filariasis. J. Immunol. 191:2466–73 [Google Scholar]
  122. Schlapbach C, Gehad A, Yang C, Watanabe R, Guenova E. 122.  et al. 2014. Human TH9 cells are skin-tropic and have autocrine and paracrine proinflammatory capacity. Sci. Transl. Med. 6:219ra8 [Google Scholar]
  123. Wang YH, Voo KS, Liu B, Chen CY, Uygungil B. 123.  et al. 2010. A novel subset of CD4+ TH2 memory/effector cells that produce inflammatory IL-17 cytokine and promote the exacerbation of chronic allergic asthma. J. Exp. Med. 207:2479–91 [Google Scholar]
  124. Honda T, Egen JG, Lammermann T, Kastenmuller W, Torabi-Parizi P, Germain RN. 124.  2014. Tuning of antigen sensitivity by T cell receptor-dependent negative feedback controls T cell effector function in inflamed tissues. Immunity 40:235–47 [Google Scholar]
  125. Saraiva M, O’Garra A. 125.  2010. The regulation of IL-10 production by immune cells. Nat. Rev. Immunol. 10:170–81 [Google Scholar]
  126. Dong J, Ivascu C, Chang HD, Wu P, Angeli R. 126.  et al. 2007. IL-10 is excluded from the functional cytokine memory of human CD4+ memory T lymphocytes. J. Immunol. 179:2389–96 [Google Scholar]
  127. Soumelis V, Reche PA, Kanzler H, Yuan W, Edward G. 127.  et al. 2002. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat. Immunol. 3:673–80 [Google Scholar]
  128. Ito T, Wang YH, Duramad O, Hori T, Delespesse GJ. 128.  et al. 2005. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J. Exp. Med. 202:1213–23 [Google Scholar]
  129. Becattini S, Latorre D, Mele F, Foglierini M, De Gregorio C. 129.  et al. 2015. T cell immunity: functional heterogeneity of human memory CD4+ T cell clones primed by pathogens or vaccines. Science 347:400–6 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error