1932

Abstract

The TAM receptor tyrosine kinases (RTKs)—YRO3, XL, and ERTK—together with their cognate agonists GAS6 and PROS1 play an essential role in the resolution of inflammation. Deficiencies in TAM signaling have been associated with chronic inflammatory and autoimmune diseases. Three processes regulated by TAM signaling may contribute, either independently or collectively, to immune homeostasis: the negative regulation of the innate immune response, the phagocytosis of apoptotic cells, and the restoration of vascular integrity. Recent studies have also revealed the function of TAMs in infectious diseases and cancer. Here, we review the important milestones in the discovery of these RTKs and their ligands and the studies that underscore the functional importance of this signaling pathway in physiological immune settings and disease.

Keyword(s): AXLGAS6MERTKPROS1TYRO3
Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-032414-112103
2015-03-21
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/immunol/33/1/annurev-immunol-032414-112103.html?itemId=/content/journals/10.1146/annurev-immunol-032414-112103&mimeType=html&fmt=ahah

Literature Cited

  1. Medzhitov R. 1.  2009. Approaching the asymptote: 20 years later. Immunity 30:766–75 [Google Scholar]
  2. Hogquist KA, Baldwin TA, Jameson SC. 2.  2005. Central tolerance: learning self-control in the thymus. Nat. Rev. Immunol. 5:772–82 [Google Scholar]
  3. Gallegos AM, Bevan MJ. 3.  2006. Central tolerance: good but imperfect. Immunol. Rev. 209:290–96 [Google Scholar]
  4. Mathis D, Benoist C. 4.  2009. Aire. Annu. Rev. Immunol. 27:287–312 [Google Scholar]
  5. Nemazee D. 5.  2006. Receptor editing in lymphocyte development and central tolerance. Nat. Rev. Immunol. 6:728–40 [Google Scholar]
  6. Josefowicz SZ, Lu LF, Rudensky AY. 6.  2012. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 30:531–64 [Google Scholar]
  7. Sharpe AH. 7.  2009. Mechanisms of costimulation. Immunol. Rev. 229:5–11 [Google Scholar]
  8. Bour-Jordan H, Esensten JH, Martinez-Llordella M, Penaranda C, Stumpf M, Bluestone JA. 8.  2011. Intrinsic and extrinsic control of peripheral T-cell tolerance by costimulatory molecules of the CD28/B7 family. Immunol. Rev. 241:180–205 [Google Scholar]
  9. Pentcheva-Hoang T, Corse E, Allison JP. 9.  2009. Negative regulators of T-cell activation: potential targets for therapeutic intervention in cancer, autoimmune disease, and persistent infections. Immunol. Rev. 229:67–87 [Google Scholar]
  10. Kaech SM, Cui W. 10.  2012. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat. Rev. Immunol. 12:749–61 [Google Scholar]
  11. Serhan CN, Chiang N, Van Dyke TE. 11.  2008. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat. Rev. Immunol. 8:349–61 [Google Scholar]
  12. Eckhart W, Hutchinson MA, Hunter T. 12.  1979. An activity phosphorylating tyrosine in polyoma T antigen immunoprecipitates. Cell 18:925–33 [Google Scholar]
  13. Lai C, Lemke G. 13.  1991. An extended family of protein-tyrosine kinase genes differentially expressed in the vertebrate nervous system. Neuron 6:691–704 [Google Scholar]
  14. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. 14.  2002. The protein kinase complement of the human genome. Science 298:1912–34 [Google Scholar]
  15. Crosier PS, Lewis PM, Hall LR, Vitas MR, Morris CM. 15.  et al. 1994. Isolation of a receptor tyrosine kinase (DTK) from embryonic stem cells: structure, genetic mapping and analysis of expression. Growth Factors 11:125–36 [Google Scholar]
  16. Fujimoto J, Yamamoto T. 16.  1994. brt, a mouse gene encoding a novel receptor-type protein-tyrosine kinase, is preferentially expressed in the brain. Oncogene 9:693–98 [Google Scholar]
  17. Ohashi K, Mizuno K, Kuma K, Miyata T, Nakamura T. 17.  1994. Cloning of the cDNA for a novel receptor tyrosine kinase, Sky, predominantly expressed in brain. Oncogene 9:699–705 [Google Scholar]
  18. Dai W, Pan H, Hassanain H, Gupta SL, Murphy MJ Jr. 18.  1994. Molecular cloning of a novel receptor tyrosine kinase, tif, highly expressed in human ovary and testis. Oncogene 9:975–79 [Google Scholar]
  19. Mark MR, Scadden DT, Wang Z, Gu Q, Goddard A, Godowski PJ. 19.  1994. rse, a novel receptor-type tyrosine kinase with homology to Axl/Ufo, is expressed at high levels in the brain. J. Biol. Chem. 269:10720–28 [Google Scholar]
  20. Lai C, Gore M, Lemke G. 20.  1994. Structure, expression, and activity of Tyro 3, a neural adhesion-related receptor tyrosine kinase. Oncogene 9:2567–78 [Google Scholar]
  21. O'Bryan JP, Frye RA, Cogswell PC, Neubauer A, Kitch B. 21.  et al. 1991. axl, a transforming gene isolated from primary human myeloid leukemia cells, encodes a novel receptor tyrosine kinase. Mol. Cell. Biol. 11:5016–31 [Google Scholar]
  22. Janssen JW, Schulz AS, Steenvoorden AC, Schmidberger M, Strehl S. 22.  et al. 1991. A novel putative tyrosine kinase receptor with oncogenic potential. Oncogene 6:2113–20 [Google Scholar]
  23. Rescigno J, Mansukhani A, Basilico C. 23.  1991. A putative receptor tyrosine kinase with unique structural topology. Oncogene 6:1909–13 [Google Scholar]
  24. Jia R, Hanafusa H. 24.  1994. The proto-oncogene of v-eyk (v-ryk) is a novel receptor-type protein tyrosine kinase with extracellular Ig/GN-III domains. J. Biol. Chem. 269:1839–44 [Google Scholar]
  25. Jia R, Mayer BJ, Hanafusa T, Hanafusa H. 25.  1992. A novel oncogene, v-ryk, encoding a truncated receptor tyrosine kinase is transduced into the RPL30 virus without loss of viral sequences. J. Virol. 66:5975–87 [Google Scholar]
  26. Graham DK, Dawson TL, Mullaney DL, Snodgrass HR, Earp HS. 26.  1994. Cloning and mRNA expression analysis of a novel human protooncogene, c-mer. Cell Growth Differ 5:647–57 [Google Scholar]
  27. Scipio RG, Hermodson MA, Yates SG, Davie EW. 27.  Di 1977. A comparison of human prothrombin, factor IX (Christmas factor), factor X (Stuart factor), and protein S. Biochemistry 16:698–706 [Google Scholar]
  28. Stitt TN, Conn G, Gore M, Lai C, Bruno J. 28.  et al. 1995. The anticoagulation factor protein S and its relative, Gas6, are ligands for the Tyro 3/Axl family of receptor tyrosine kinases. Cell 80:661–70 [Google Scholar]
  29. Dahlback B, Lundwall A, Stenflo J. 29.  1986. Primary structure of bovine vitamin K-dependent protein S. PNAS 83:4199–203 [Google Scholar]
  30. Lundwall A, Dackowski W, Cohen E, Shaffer M, Mahr A. 30.  et al. 1986. Isolation and sequence of the cDNA for human protein S, a regulator of blood coagulation. PNAS 83:6716–20 [Google Scholar]
  31. Manfioletti G, Brancolini C, Avanzi G, Schneider C. 31.  1993. The protein encoded by a growth arrest-specific gene (gas6) is a new member of the vitamin K-dependent proteins related to protein S, a negative coregulator in the blood coagulation cascade. Mol. Cell. Biol. 13:4976–85 [Google Scholar]
  32. Rost S, Fregin A, Ivaskevicius V, Conzelmann E, Hortnagel K. 32.  et al. 2004. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 427:537–41 [Google Scholar]
  33. Leventis PA, Grinstein S. 33.  2010. The distribution and function of phosphatidylserine in cellular membranes. Annu. Rev. Biophys. 39:407–27 [Google Scholar]
  34. Suzuki J, Umeda M, Sims PJ, Nagata S. 34.  2010. Calcium-dependent phospholipid scrambling by TMEM16F. Nature 468:834–38 [Google Scholar]
  35. Burstyn-Cohen T, Heeb MJ, Lemke G. 35.  2009. Lack of protein S in mice causes embryonic lethal coagulopathy and vascular dysgenesis. J. Clin. Investig. 119:2942–53 [Google Scholar]
  36. Saller F, Brisset AC, Tchaikovski SN, Azevedo M, Chrast R. 36.  et al. 2009. Generation and phenotypic analysis of protein S-deficient mice. Blood 114:2307–14 [Google Scholar]
  37. Fernandez JA, Heeb MJ, Xu X, Singh I, Zlokovic BV, Griffin JH. 37.  2009. Species-specific anticoagulant and mitogenic activities of murine protein S. Haematologica 94:1721–31 [Google Scholar]
  38. Heeb MJ, Rosing J, Bakker HM, Fernandez JA, Tans G, Griffin JH. 38.  1994. Protein S binds to and inhibits factor Xa. PNAS 91:2728–32 [Google Scholar]
  39. Nakano T, Kawamoto K, Kishino J, Nomura K, Higashino K, Arita H. 39.  1997. Requirement of γ-carboxyglutamic acid residues for the biological activity of Gas6: contribution of endogenous Gas6 to the proliferation of vascular smooth muscle cells. Biochem. J. 323:Pt. 2387–92 [Google Scholar]
  40. Hasanbasic I, Rajotte I, Blostein M. 40.  2005. The role of gamma-carboxylation in the anti-apoptotic function of gas6. J. Thromb. Haemost. 3:2790–97 [Google Scholar]
  41. Benzakour O, Kanthou C. 41.  2000. The anticoagulant factor, protein S, is produced by cultured human vascular smooth muscle cells and its expression is up-regulated by thrombin. Blood 95:2008–14 [Google Scholar]
  42. Anderson HA, Maylock CA, Williams JA, Paweletz CP, Shu H, Shacter E. 42.  2003. Serum-derived protein S binds to phosphatidylserine and stimulates the phagocytosis of apoptotic cells. Nat. Immunol. 4:87–91 [Google Scholar]
  43. Morboeuf O, Borgel D, Gaussem P, Vincenot A, Pittet JL. 43.  et al. 2000. Characterization of cleaved plasma protein S with a monoclonal antibody-based assay. Thromb. Haemost. 84:604–10 [Google Scholar]
  44. Andersson HM, Arantes MJ, Crawley JT, Luken BM, Tran S. 44.  et al. 2010. Activated protein C cofactor function of protein S: a critical role for Asp95 in the EGF1-like domain. Blood 115:4878–85 [Google Scholar]
  45. Evenas P, Dahlback B, Garcia de Frutos P. 45.  2000. The first laminin G-type domain in the SHBG-like region of protein S contains residues essential for activation of the receptor tyrosine kinase sky. Biol. Chem. 381:199–209 [Google Scholar]
  46. Evenas P, Garcia De Frutos P, Linse S, Dahlback B. 46.  1999. Both G-type domains of protein S are required for the high-affinity interaction with C4b-binding protein. Eur. J. Biochem. 266:935–42 [Google Scholar]
  47. Nyberg P, He X, Hardig Y, Dahlback B, Garcia de Frutos P. 47.  1997. Stimulation of Sky tyrosine phosphorylation by bovine protein S: domains involved in the receptor-ligand interaction. Eur. J. Biochem. 246:147–54 [Google Scholar]
  48. Rodriguez de Cordoba S, Perez-Blas M, Ramos-Ruiz R, Sanchez-Corral P, Pardo-Manuel de Villena F, Rey-Campos J. 48.  1994. The gene coding for the β-chain of C4b-binding protein (C4BPB) has become a pseudogene in the mouse. Genomics 21:501–9 [Google Scholar]
  49. Sasaki T, Knyazev PG, Clout NJ, Cheburkin Y, Gohring W. 49.  et al. 2006. Structural basis for Gas6-Axl signalling. EMBO J. 25:80–87 [Google Scholar]
  50. Thorp E, Vaisar T, Subramanian M, Mautner L, Blobel C, Tabas I. 50.  2011. Shedding of the Mer tyrosine kinase receptor is mediated by ADAM17 protein through a pathway involving reactive oxygen species, protein kinase Cδ, and p38 mitogen-activated protein kinase (MAPK). J. Biol. Chem. 286:33335–44 [Google Scholar]
  51. O'Bryan JP, Fridell YW, Koski R, Varnum B, Liu ET. 51.  1995. The transforming receptor tyrosine kinase, Axl, is post-translationally regulated by proteolytic cleavage. J. Biol. Chem. 270:551–57 [Google Scholar]
  52. Costa M, Bellosta P, Basilico C. 52.  1996. Cleavage and release of a soluble form of the receptor tyrosine kinase ARK in vitro and in vivo. J. Cell Physiol. 168:737–44 [Google Scholar]
  53. Sather S, Kenyon KD, Lefkowitz JB, Liang X, Varnum BC. 53.  et al. 2007. A soluble form of the Mer receptor tyrosine kinase inhibits macrophage clearance of apoptotic cells and platelet aggregation. Blood 109:1026–33 [Google Scholar]
  54. Ling L, Templeton D, Kung HJ. 54.  1996. Identification of the major autophosphorylation sites of Nyk/Mer, an NCAM-related receptor tyrosine kinase. J. Biol. Chem. 271:18355–62 [Google Scholar]
  55. Hornbeck PV, Kornhauser JM, Tkachev S, Zhang B, Skrzypek E. 55.  et al. 2012. PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res. 40:D261–70 [Google Scholar]
  56. Staub E, Rosenthal A, Hinzmann B. 56.  2004. Systematic identification of immunoreceptor tyrosine-based inhibitory motifs in the human proteome. Cell Signal. 16:435–56 [Google Scholar]
  57. Lu Q, Lemke G. 57.  2001. Homeostatic regulation of the immune system by receptor tyrosine kinases of the Tyro 3 family. Science 293:306–11 [Google Scholar]
  58. Nagata K, Ohashi K, Nakano T, Arita H, Zong C. 58.  et al. 1996. Identification of the product of growth arrest-specific gene 6 as a common ligand for Axl, Sky, and Mer receptor tyrosine kinases. J. Biol. Chem. 271:30022–27 [Google Scholar]
  59. Bhattacharyya S, Zagorska A, Lew ED, Shrestha B, Rothlin CV. 59.  et al. 2013. Enveloped viruses disable innate immune responses in dendritic cells by direct activation of TAM receptors. Cell Host Microbe 14:136–47 [Google Scholar]
  60. Blum JS, Wearsch PA, Cresswell P. 60.  2013. Pathways of antigen processing. Annu. Rev. Immunol. 31:443–73 [Google Scholar]
  61. Saraiva M, O'Garra A. 61.  2010. The regulation of IL-10 production by immune cells. Nat. Rev. Immunol. 10:170–81 [Google Scholar]
  62. Carrera Silva EA, Chan PY, Joannas L, Errasti AE, Gagliani N. 62.  et al. 2013. T cell-derived protein S engages TAM receptor signaling in dendritic cells to control the magnitude of the immune response. Immunity 39:160–70 [Google Scholar]
  63. Rothlin CV, Ghosh S, Zuniga EI, Oldstone MB, Lemke G. 63.  2007. TAM receptors are pleiotropic inhibitors of the innate immune response. Cell 131:1124–36 [Google Scholar]
  64. Sharif MN, Sosic D, Rothlin CV, Kelly E, Lemke G. 64.  et al. 2006. Twist mediates suppression of inflammation by type I IFNs and Axl. J. Exp. Med. 203:1891–901 [Google Scholar]
  65. Camenisch TD, Koller BH, Earp HS, Matsushima GK. 65.  1999. A novel receptor tyrosine kinase, Mer, inhibits TNF-α production and lipopolysaccharide-induced endotoxic shock. J. Immunol. 162:3498–503 [Google Scholar]
  66. Scutera S, Fraone T, Musso T, Cappello P, Rossi S. 66.  et al. 2009. Survival and migration of human dendritic cells are regulated by an IFN-α-inducible Axl/Gas6 pathway. J. Immunol. 183:3004–13 [Google Scholar]
  67. Yoshimura A, Naka T, Kubo M. 67.  2007. SOCS proteins, cytokine signalling and immune regulation. Nat. Rev. Immunol. 7:454–65 [Google Scholar]
  68. Smiley ST, Boyer SN, Heeb MJ, Griffin JH, Grusby MJ. 68.  1997. Protein S is inducible by interleukin 4 in T cells and inhibits lymphoid cell procoagulant activity. PNAS 94:11484–89 [Google Scholar]
  69. Elliott JI, Surprenant A, Marelli-Berg FM, Cooper JC, Cassady-Cain RL. 69.  et al. 2005. Membrane phosphatidylserine distribution as a non-apoptotic signalling mechanism in lymphocytes. Nat. Cell Biol. 7:808–16 [Google Scholar]
  70. Fischer K, Voelkl S, Berger J, Andreesen R, Pomorski T, Mackensen A. 70.  2006. Antigen recognition induces phosphatidylserine exposure on the cell surface of human CD8+ T cells. Blood 108:4094–101 [Google Scholar]
  71. Dillon SR, Constantinescu A, Schlissel MS. 71.  2001. Annexin V binds to positively selected B cells. J. Immunol. 166:58–71 [Google Scholar]
  72. Hochreiter-Hufford A, Ravichandran KS. 72.  2013. Clearing the dead: apoptotic cell sensing, recognition, engulfment, and digestion. Cold Spring Harb. Perspect. Biol. 5:a008748 [Google Scholar]
  73. Stark MA, Huo Y, Burcin TL, Morris MA, Olson TS, Ley K. 73.  2005. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity 22:285–94 [Google Scholar]
  74. Bosurgi L, Bernink JH, Delgado Cuevas V, Gagliani N, Joannas L. 74.  et al. 2013. Paradoxical role of the proto-oncogene Axl and Mer receptor tyrosine kinases in colon cancer. PNAS 110:13091–96 [Google Scholar]
  75. Gautier EL, Shay T, Miller J, Greter M, Jakubzick C. 75.  et al. 2012. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol. 13:1118–28 [Google Scholar]
  76. Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W. 76.  et al. 2014. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40:274–88 [Google Scholar]
  77. Scott RS, McMahon EJ, Pop SM, Reap EA, Caricchio R. 77.  et al. 2001. Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature 411:207–11 [Google Scholar]
  78. Seitz HM, Camenisch TD, Lemke G, Earp HS, Matsushima GK. 78.  2007. Macrophages and dendritic cells use different Axl/Mertk/Tyro3 receptors in clearance of apoptotic cells. J. Immunol. 178:5635–42 [Google Scholar]
  79. Cohen PL, Caricchio R, Abraham V, Camenisch TD, Jennette JC. 79.  et al. 2002. Delayed apoptotic cell clearance and lupus-like autoimmunity in mice lacking the c-mer membrane tyrosine kinase. J. Exp. Med. 196:135–40 [Google Scholar]
  80. Tibrewal N, Wu Y, D'Mello V, Akakura R, George TC. 80.  et al. 2008. Autophosphorylation docking site Tyr-867 in Mer receptor tyrosine kinase allows for dissociation of multiple signaling pathways for phagocytosis of apoptotic cells and down-modulation of lipopolysaccharide-inducible NF-κB transcriptional activation. J. Biol. Chem. 283:3618–27 [Google Scholar]
  81. Sen P, Wallet MA, Yi Z, Huang Y, Henderson M. 81.  et al. 2007. Apoptotic cells induce Mer tyrosine kinase-dependent blockade of NF-κB activation in dendritic cells. Blood 109:653–60 [Google Scholar]
  82. Suzuki J, Denning DP, Imanishi E, Horvitz HR, Nagata S. 82.  2013. Xk-related protein 8 and CED-8 promote phosphatidylserine exposure in apoptotic cells. Science 341:403–6 [Google Scholar]
  83. Nakano T, Ishimoto Y, Kishino J, Umeda M, Inoue K. 83.  et al. 1997. Cell adhesion to phosphatidylserine mediated by a product of growth arrest-specific gene 6. J. Biol. Chem. 272:29411–14 [Google Scholar]
  84. Nishi C, Toda S, Segawa K, Nagata S. 84.  2014. Tim4- and MerTK-mediated engulfment of apoptotic cells by mouse resident peritoneal macrophages. Mol. Cell. Biol. 34:1512–20 [Google Scholar]
  85. Finnemann SC, Nandrot EF. 85.  2006. MerTK activation during RPE phagocytosis in vivo requires αVβ5 integrin. Adv. Exp. Med. Biol. 572:499–503 [Google Scholar]
  86. Nandrot E, Dufour EM, Provost AC, Pequignot MO, Bonnel S. 86.  et al. 2000. Homozygous deletion in the coding sequence of the c-mer gene in RCS rats unravels general mechanisms of physiological cell adhesion and apoptosis. Neurobiol. Dis. 7:586–99 [Google Scholar]
  87. D'Cruz PM, Yasumura D, Weir J, Matthes MT, Abderrahim H. 87.  et al. 2000. Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum. Mol. Genet. 9:645–51 [Google Scholar]
  88. Feng W, Yasumura D, Matthes MT, LaVail MM, Vollrath D. 88.  2002. Mertk triggers uptake of photoreceptor outer segments during phagocytosis by cultured retinal pigment epithelial cells. J. Biol. Chem. 277:17016–22 [Google Scholar]
  89. Gal A, Li Y, Thompson DA, Weir J, Orth U. 89.  et al. 2000. Mutations in MERTK, the human orthologue of the RCS rat retinal dystrophy gene, cause retinitis pigmentosa. Nat. Genet. 26:270–71 [Google Scholar]
  90. Xiong W, Chen Y, Wang H, Wu H, Lu Q, Han D. 90.  2008. Gas6 and the Tyro 3 receptor tyrosine kinase subfamily regulate the phagocytic function of Sertoli cells. Reproduction 135:77–87 [Google Scholar]
  91. Lu Q, Gore M, Zhang Q, Camenisch T, Boast S. 91.  et al. 1999. Tyro-3 family receptors are essential regulators of mammalian spermatogenesis. Nature 398:723–28 [Google Scholar]
  92. Chung WS, Clarke LE, Wang GX, Stafford BK, Sher A. 92.  et al. 2013. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 504:394–400 [Google Scholar]
  93. Rothlin CV, Lemke G. 93.  2010. TAM receptor signaling and autoimmune disease. Curr. Opin. Immunol. 22:740–46 [Google Scholar]
  94. Lemke G, Burstyn-Cohen T. 94.  2010. TAM receptors and the clearance of apoptotic cells. Ann. NY Acad. Sci. 1209:23–29 [Google Scholar]
  95. Furie B, Furie BC. 95.  2008. Mechanisms of thrombus formation. N. Engl. J. Med. 359:938–49 [Google Scholar]
  96. Angelillo-Scherrer A, Burnier L, Flores N, Savi P, DeMol M. 96.  et al. 2005. Role of Gas6 receptors in platelet signaling during thrombus stabilization and implications for antithrombotic therapy. J. Clin. Investig. 115:237–46 [Google Scholar]
  97. Angelillo-Scherrer A, de Frutos P, Aparicio C, Melis E, Savi P. 97.  et al. 2001. Deficiency or inhibition of Gas6 causes platelet dysfunction and protects mice against thrombosis. Nat. Med. 7:215–21 [Google Scholar]
  98. Cosemans JM, Van Kruchten R, Olieslagers S, Schurgers LJ, Verheyen FK. 98.  et al. 2010. Potentiating role of Gas6 and Tyro3, Axl and Mer (TAM) receptors in human and murine platelet activation and thrombus stabilization. J. Thromb. Haemost. 8:1797–808 [Google Scholar]
  99. Ruan GX, Kazlauskas A. 99.  2012. Axl is essential for VEGF-A-dependent activation of PI3K/Akt. EMBO J. 31:1692–703 [Google Scholar]
  100. Ruan GX, Kazlauskas A. 100.  2013. Lactate engages receptor tyrosine kinases Axl, Tie2, and vascular endothelial growth factor receptor 2 to activate phosphoinositide 3-kinase/Akt and promote angiogenesis. J. Biol. Chem. 288:21161–72 [Google Scholar]
  101. Holland SJ, Pan A, Franci C, Hu Y, Chang B. 101.  et al. 2010. R428, a selective small molecule inhibitor of Axl kinase, blocks tumor spread and prolongs survival in models of metastatic breast cancer. Cancer Res. 70:1544–54 [Google Scholar]
  102. Li Y, Ye X, Tan C, Hongo JA, Zha J. 102.  et al. 2009. Axl as a potential therapeutic target in cancer: role of Axl in tumor growth, metastasis and angiogenesis. Oncogene 28:3442–55 [Google Scholar]
  103. Melaragno MG, Cavet ME, Yan C, Tai LK, Jin ZG. 103.  et al. 2004. Gas6 inhibits apoptosis in vascular smooth muscle: role of Axl kinase and Akt. J. Mol. Cell. Cardiol. 37:881–87 [Google Scholar]
  104. Melaragno MG, Wuthrich DA, Poppa V, Gill D, Lindner V. 104.  et al. 1998. Increased expression of Axl tyrosine kinase after vascular injury and regulation by G protein-coupled receptor agonists in rats. Circ. Res. 83:697–704 [Google Scholar]
  105. Fair DS, Marlar RA, Levin EG. 105.  1986. Human endothelial cells synthesize protein S. Blood 67:1168–71 [Google Scholar]
  106. Healy AM, Schwartz JJ, Zhu X, Herrick BE, Varnum B, Farber HW. 106.  2001. Gas 6 promotes Axl-mediated survival in pulmonary endothelial cells. Am. J. Physiol. Lung. Cell. Mol. Physiol. 280:L1273–81 [Google Scholar]
  107. Nakano T, Higashino K, Kikuchi N, Kishino J, Nomura K. 107.  et al. 1995. Vascular smooth muscle cell-derived, Gla-containing growth-potentiating factor for Ca2+-mobilizing growth factors. J. Biol. Chem. 270:5702–5 [Google Scholar]
  108. Kim YS, Jung SH, Jung DH, Choi SJ, Lee YR, Kim JS. 108.  2014. Gas6 stimulates angiogenesis of human retinal endothelial cells and of zebrafish embryos via ERK1/2 signaling. PLOS ONE 9:e83901 [Google Scholar]
  109. Mosnier LO, Zlokovic BV, Griffin JH. 109.  2007. The cytoprotective protein C pathway. Blood 109:3161–72 [Google Scholar]
  110. Zhu D, Wang Y, Singh I, Bell RD, Deane R. 110.  et al. 2010. Protein S controls hypoxic/ischemic blood-brain barrier disruption through the TAM receptor Tyro3 and sphingosine 1-phosphate receptor. Blood 115:4963–72 [Google Scholar]
  111. Gasic GP, Arenas CP, Gasic TB, Gasic GJ. 111.  1992. Coagulation factors X, Xa, and protein S as potent mitogens of cultured aortic smooth muscle cells. PNAS 89:2317–20 [Google Scholar]
  112. Nylander A, Hafler DA. 112.  2012. Multiple sclerosis. J. Clin. Investig. 122:1180–88 [Google Scholar]
  113. Hoehn HJ, Kress Y, Sohn A, Brosnan CF, Bourdon S, Shafit-Zagardo B. 113.  2008. Axl−/− mice have delayed recovery and prolonged axonal damage following cuprizone toxicity. Brain Res. 1240:1–11 [Google Scholar]
  114. Binder MD, Cate HS, Prieto AL, Kemper D, Butzkueven H. 114.  et al. 2008. Gas6 deficiency increases oligodendrocyte loss and microglial activation in response to cuprizone-induced demyelination. J. Neurosci. 28:5195–206 [Google Scholar]
  115. Binder MD, Xiao J, Kemper D, Ma GZ, Murray SS, Kilpatrick TJ. 115.  2011. Gas6 increases myelination by oligodendrocytes and its deficiency delays recovery following cuprizone-induced demyelination. PLOS ONE 6:e17727 [Google Scholar]
  116. Tsiperson V, Li X, Schwartz GJ, Raine CS, Shafit-Zagardo B. 116.  2010. GAS6 enhances repair following cuprizone-induced demyelination. PLOS ONE 5:e15748 [Google Scholar]
  117. Weinger JG, Brosnan CF, Loudig O, Goldberg MF, Macian F. 117.  et al. 2011. Loss of the receptor tyrosine kinase Axl leads to enhanced inflammation in the CNS and delayed removal of myelin debris during experimental autoimmune encephalomyelitis. J. Neuroinflamm. 8:49 [Google Scholar]
  118. International Multiple Sclerosis Genetics Consortium, Wellcome Trust Case Control Consortium 2, Sawcer S, Hellenthal G, Pirinen M. 118.  et al. 2011. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476:214–19 [Google Scholar]
  119. Ma GZ, Stankovich J. Australia and New Zealand Multiple Sclerosis Genetics Consortium Kilpatrick TJ, Binder MD, Field J. 119.  2011. Polymorphisms in the receptor tyrosine kinase MERTK gene are associated with multiple sclerosis susceptibility. PLOS ONE 6:e16964 [Google Scholar]
  120. Raj T, Rothamel K, Mostafavi S, Ye C, Lee MN. 120.  et al. 2014. Polarization of the effects of autoimmune and neurodegenerative risk alleles in leukocytes. Science 344:519–23 [Google Scholar]
  121. Ji R, Tian S, Lu HJ, Lu Q, Zheng Y. 121.  et al. 2013. TAM receptors affect adult brain neurogenesis by negative regulation of microglial cell activation. J. Immunol. 191:6165–77 [Google Scholar]
  122. Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ. 122.  et al. 2014. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat. Neurosci. 17:131–43 [Google Scholar]
  123. Grommes C, Lee CY, Wilkinson BL, Jiang Q, Koenigsknecht-Talboo JL. 123.  et al. 2008. Regulation of microglial phagocytosis and inflammatory gene expression by Gas6 acting on the Axl/Mer family of tyrosine kinases. J. Neuroimmune Pharmacol. 3:130–40 [Google Scholar]
  124. Shankar SL, O'Guin K, Kim M, Varnum B, Lemke G. 124.  et al. 2006. Gas6/Axl signaling activates the phosphatidylinositol 3-kinase/Akt1 survival pathway to protect oligodendrocytes from tumor necrosis factor α-induced apoptosis. J. Neurosci. 26:5638–48 [Google Scholar]
  125. Baumann I, Kolowos W, Voll RE, Manger B, Gaipl U. 125.  et al. 2002. Impaired uptake of apoptotic cells into tingible body macrophages in germinal centers of patients with systemic lupus erythematosus. Arthritis Rheum. 46:191–201 [Google Scholar]
  126. Rahman ZS, Shao WH, Khan TN, Zhen Y, Cohen PL. 126.  2010. Impaired apoptotic cell clearance in the germinal center by Mer-deficient tingible body macrophages leads to enhanced antibody-forming cell and germinal center responses. J. Immunol. 185:5859–68 [Google Scholar]
  127. Khan TN, Wong EB, Soni C, Rahman ZS. 127.  2013. Prolonged apoptotic cell accumulation in germinal centers of Mer-deficient mice causes elevated B cell and CD4+ Th cell responses leading to autoantibody production. J. Immunol. 190:1433–46 [Google Scholar]
  128. Gaipl US, Kuhn A, Sheriff A, Munoz LE, Franz S. 128.  et al. 2006. Clearance of apoptotic cells in human SLE. Curr. Dir. Autoimmun 9:173–87 [Google Scholar]
  129. Meesters EW, Hansen H, Spronk HM, Hamulyak K, Rosing J. 129.  et al. 2007. The inflammation and coagulation cross-talk in patients with systemic lupus erythematosus. Blood Coagul. Fibrinolysis 18:21–28 [Google Scholar]
  130. Suh CH, Hilliard BA, Li S, Merrill JT, Cohen PL. 130.  2010. TAM receptor ligands in lupus: Protein S but not Gas6 levels reflect disease activity in systemic lupus erythematosus. Arthritis Res. Ther. 12:R146 [Google Scholar]
  131. Song KS, Park YS, Kim HK. 131.  2000. Prevalence of anti-protein S antibodies in patients with systemic lupus erythematosus. Arthritis Rheum. 43:557–60 [Google Scholar]
  132. Cooper DN, Ball EV, Stenson PD, Phillips AD, Howells K. 132.  et al. 2013. The Human Gene Mutation Database Inst. Med. Genet., Cardiff, updated June 2013. http://www.hgmd.cf.ac.uk/ac/index.php
  133. Duebgen S, Kauke T, Marschall C, Giebl A, Lison S. 133.  et al. 2012. Genotype and laboratory and clinical phenotypes of protein s deficiency. Am. J. Clin. Pathol. 137:178–84 [Google Scholar]
  134. Alhenc-Gelas M, Canonico M, Morange PE, Emmerich J. 134.  Geht Genetic Thrombophilia Group 2010. Protein S inherited qualitative deficiency: novel mutations and phenotypic influence. J. Thromb. Haemost. 8:2718–26 [Google Scholar]
  135. Caspers M, Pavlova A, Driesen J, Harbrecht U, Klamroth R. 135.  et al. 2012. Deficiencies of antithrombin, protein C and protein S—practical experience in genetic analysis of a large patient cohort. Thromb. Haemost. 108:247–57 [Google Scholar]
  136. Shindo A, Ikejiri M, Ii Y, Nakatani K, Wada H. 136.  et al. 2012. A novel protein S gene mutation combined with protein S Tokushima mutation in a patient with superior sagittal sinus thrombosis. J. Neurol. 259:178–79 [Google Scholar]
  137. Castoldi E, Maurissen LF, Tormene D, Spiezia L, Gavasso S. 137.  et al. 2010. Similar hypercoagulable state and thrombosis risk in type I and type III protein S-deficient individuals from families with mixed type I/III protein S deficiency. Haematologica 95:1563–71 [Google Scholar]
  138. Zhu T, Ding Q, Bai X, Wang X, Kaguelidou F. 138.  et al. 2011. Normal ranges and genetic variants of antithrombin, protein C and protein S in the general Chinese population. Results of the Chinese Hemostasis Investigation on Natural Anticoagulants Study I Group. Haematologica 96:1033–40 [Google Scholar]
  139. Leung TW, Yip SF, Lam CW, Chan TL, Lam WW. 139.  et al. 2010. Genetic predisposition of white matter infarction with protein S deficiency and R355C mutation. Neurology 75:2185–89 [Google Scholar]
  140. Kasperaviciute D, Catarino CB, Chinthapalli K, Clayton LM, Thom M. 140.  et al. 2011. Uncovering genomic causes of co-morbidity in epilepsy: gene-driven phenotypic characterization of rare microdeletions. PLOS ONE 6:e23182 [Google Scholar]
  141. Lind-Hallden C, Dahlen A, Hillarp A, Zoller B, Dahlback B, Hallden C. 141.  2012. Small and large PROS1 deletions but no other types of rearrangements detected in patients with protein S deficiency. Thromb. Haemost. 108:94–100 [Google Scholar]
  142. Bruno DL, Stark Z, Amor DJ, Burgess T, Butler K. 142.  et al. 2011. Extending the scope of diagnostic chromosome analysis: detection of single gene defects using high-resolution SNP microarrays. Hum. Mutat. 32:1500–6 [Google Scholar]
  143. Kim HJ, Kim DK, Yoo KY, You CW, Yoo JH. 143.  et al. 2012. Heterogeneous lengths of copy number mutations in human coagulopathy revealed by genome-wide high-density SNP array. Haematologica 97:304–9 [Google Scholar]
  144. Zezos P, Papaioannou G, Nikolaidis N, Vasiliadis T, Giouleme O, Evgenidis N. 144.  2007. Thrombophilic abnormalities of natural anticoagulants in patients with ulcerative colitis. Hepatogastroenterology 54:1417–21 [Google Scholar]
  145. Cakal B, Gokmen A, Yalinkilic M, Cakal E, Ayaz S. 145.  et al. 2010. Natural anticoagulant protein levels in Turkish patients with inflammatory bowel disease. Blood Coagul. Fibrinolysis 21:118–21 [Google Scholar]
  146. Koutroubakis IE, Sfiridaki A, Mouzas IA, Maladaki A, Kapsoritakis A. 146.  et al. 2000. Resistance to activated protein C and low levels of free protein S in Greek patients with inflammatory bowel disease. Am. J. Gastroenterol. 95:190–94 [Google Scholar]
  147. Koutroumpakis EI, Tsiolakidou G, Koutroubakis IE. 147.  2013. Risk of venous thromboembolism in patients with inflammatory bowel disease. Semin. Thromb. Hemost. 39:461–68 [Google Scholar]
  148. Engelmann B, Massberg S. 148.  2013. Thrombosis as an intravascular effector of innate immunity. Nat. Rev. Immunol. 13:34–45 [Google Scholar]
  149. van den Brand BT, Abdollahi-Roodsaz S, Vermeij EA, Bennink MB, Arntz OJ. 149.  et al. 2013. Therapeutic efficacy of Tyro3, Axl, and Mer tyrosine kinase agonists in collagen-induced arthritis. Arthritis Rheum. 65:671–80 [Google Scholar]
  150. Gonzalez NA, Bensinger SJ, Hong C, Beceiro S, Bradley MN. 150.  et al. 2009. Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immunity 31:245–58 [Google Scholar]
  151. McColl A, Bournazos S, Franz S, Perretti M, Morgan BP. 151.  et al. 2009. Glucocorticoids induce protein S-dependent phagocytosis of apoptotic neutrophils by human macrophages. J. Immunol. 183:2167–75 [Google Scholar]
  152. Shimojima M, Takada A, Ebihara H, Neumann G, Fujioka K. 152.  et al. 2006. Tyro3 family-mediated cell entry of Ebola and Marburg viruses. J. Virol. 80:10109–16 [Google Scholar]
  153. Morizono K, Xie Y, Olafsen T, Lee B, Dasgupta A. 153.  et al. 2011. The soluble serum protein Gas6 bridges virion envelope phosphatidylserine to the TAM receptor tyrosine kinase Axl to mediate viral entry. Cell Host Microbe 9:286–98 [Google Scholar]
  154. Shimojima M, Stroher U, Ebihara H, Feldmann H, Kawaoka Y. 154.  2012. Identification of cell surface molecules involved in dystroglycan-independent Lassa virus cell entry. J. Virol. 86:2067–78 [Google Scholar]
  155. Meertens L, Carnec X, Lecoin MP, Ramdasi R, Guivel-Benhassine F. 155.  et al. 2012. The TIM and TAM families of phosphatidylserine receptors mediate dengue virus entry. Cell Host Microbe 12:544–57 [Google Scholar]
  156. Brindley MA, Hunt CL, Kondratowicz AS, Bowman J, Sinn PL. 156.  et al. 2011. Tyrosine kinase receptor Axl enhances entry of Zaire ebolavirus without direct interactions with the viral glycoprotein. Virology 415:83–94 [Google Scholar]
  157. Mercer J, Helenius A. 157.  2010. Apoptotic mimicry: phosphatidylserine-mediated macropinocytosis of vaccinia virus. Ann. NY Acad. Sci.120949–55
  158. Shimojima M, Ikeda Y, Kawaoka Y. 158.  2007. The mechanism of Axl-mediated Ebola virus infection. J. Infect. Dis. 196:Suppl. 2S259–63 [Google Scholar]
  159. Drayman N, Glick Y, Ben-nun-shaul O, Zer H, Zlotnick A. 159.  et al. 2013. Pathogens use structural mimicry of native host ligands as a mechanism for host receptor engagement. Cell Host Microbe 14:63–73 [Google Scholar]
  160. Subramanian M, Hayes CD, Thome JJ, Thorp E, Matsushima GK. 160.  et al. 2014. An AXL/LRP-1/RANBP9 complex mediates DC efferocytosis and antigen cross-presentation in vivo. J. Clin. Investig. 124:1296–308 [Google Scholar]
  161. Joffre OP, Segura E, Savina A, Amigorena S. 161.  2012. Cross-presentation by dendritic cells. Nat. Rev. Immunol. 12:557–69 [Google Scholar]
  162. Shibata T, Habiel DM, Coelho AL, Kunkel SL, Lukacs NW, Hogaboam CM. 162.  2014. Axl receptor blockade ameliorates pulmonary pathology resulting from primary viral infection and viral exacerbation of asthma. J. Immunol. 192:3569–81 [Google Scholar]
  163. Sullivan BM, Welch MJ, Lemke G, Oldstone MB. 163.  2013. Is the TAM receptor Axl a receptor for lymphocytic choriomeningitis virus?. J. Virol. 87:4071–74 [Google Scholar]
  164. Taylor IC, Roy S, Yaswen P, Stampfer MR, Varmus HE. 164.  1995. Mouse mammary tumors express elevated levels of RNA encoding the murine homology of SKY, a putative receptor tyrosine kinase. J. Biol. Chem. 270:6872–80 [Google Scholar]
  165. Graham DK, Bowman GW, Dawson TL, Stanford WL, Earp HS, Snodgrass HR. 165.  1995. Cloning and developmental expression analysis of the murine c-mer tyrosine kinase. Oncogene 10:2349–59 [Google Scholar]
  166. Keating AK, Salzberg DB, Sather S, Liang X, Nickoloff S. 166.  et al. 2006. Lymphoblastic leukemia/lymphoma in mice overexpressing the Mer (MerTK) receptor tyrosine kinase. Oncogene 25:6092–100 [Google Scholar]
  167. Linger RM, Keating AK, Earp HS, Graham DK. 167.  2010. Taking aim at Mer and Axl receptor tyrosine kinases as novel therapeutic targets in solid tumors. Expert Opin. Ther. Targets 14:1073–90 [Google Scholar]
  168. Loges S, Schmidt T, Tjwa M, van Geyte K, Lievens D. 168.  et al. 2010. Malignant cells fuel tumor growth by educating infiltrating leukocytes to produce the mitogen Gas6. Blood 115:2264–73 [Google Scholar]
  169. Ben-Batalla I, Schultze A, Wroblewski M, Erdmann R, Heuser M. 169.  et al. 2013. Axl, a prognostic and therapeutic target in acute myeloid leukemia mediates paracrine crosstalk of leukemia cells with bone marrow stroma. Blood 122:2443–52 [Google Scholar]
  170. Shiozawa Y, Pedersen EA, Patel LR, Ziegler AM, Havens AM. 170.  et al. 2010. GAS6/AXL axis regulates prostate cancer invasion, proliferation, and survival in the bone marrow niche. Neoplasia 12:116–27 [Google Scholar]
  171. Cook RS, Jacobsen KM, Wofford AM, DeRyckere D, Stanford J. 171.  et al. 2013. MerTK inhibition in tumor leukocytes decreases tumor growth and metastasis. J. Clin. Investig. 123:3231–42 [Google Scholar]
  172. Paolino M, Choidas A, Wallner S, Pranjic B, Uribesalgo I. 172.  et al. 2014. The E3 ligase Cbl-b and TAM receptors regulate cancer metastasis via natural killer cells. Nature 507:508–12 [Google Scholar]
  173. Caraux A, Lu Q, Fernandez N, Riou S, Di Santo JP. 173.  et al. 2006. Natural killer cell differentiation driven by Tyro3 receptor tyrosine kinases. Nat. Immunol. 7:747–54 [Google Scholar]
  174. Akitake-Kawano R, Seno H, Nakatsuji M, Kimura Y, Nakanishi Y. 174.  et al. 2013. Inhibitory role of Gas6 in intestinal tumorigenesis. Carcinogenesis 34:1567–74 [Google Scholar]
  175. Hong C, Kidani Y, A-Gonzalez N, Phung T, Ito A. 175.  et al. 2012. Coordinate regulation of neutrophil homeostasis by liver X receptors in mice. J. Clin. Investig. 122:337–47 [Google Scholar]
  176. Behrens EM, Gadue P, Gong SY, Garrett S, Stein PL, Cohen PL. 176.  2003. The mer receptor tyrosine kinase: expression and function suggest a role in innate immunity. Eur. J. Immunol. 33:2160–67 [Google Scholar]
  177. Wallet MA, Sen P, Flores RR, Wang Y, Yi Z. 177.  et al. 2008. MerTK is required for apoptotic cell-induced T cell tolerance. J. Exp. Med. 205:219–32 [Google Scholar]
  178. Bosurgi L, Brunelli S, Rigamonti E, Monno A, Manfredi AA, Rovere-Querini P. 178.  2015. Vessel-associated myogenic precursors control macrophage activation and clearance of apoptotic cells. Clin. Exp. Immunol. 179:62–67 [Google Scholar]
  179. Mukundan L, Odegaard JI, Morel CR, Heredia JE, Mwangi JW. 179.  et al. 2009. PPAR-δ senses and orchestrates clearance of apoptotic cells to promote tolerance. Nat. Med. 15:1266–72 [Google Scholar]
  180. A-Gonzalez N, Bensinger SJ, Hong C, Beceiro S, Bradley MN. 180.  et al. 2009. Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immunity 31:245–58 [Google Scholar]
  181. Gould WR, Baxi SM, Schroeder R, Peng YW, Leadley RJ. 181.  et al. 2005. Gas6 receptors Axl, Sky and Mer enhance platelet activation and regulate thrombotic responses. J. Thromb. Haemost. 3:733–41 [Google Scholar]
  182. Chen C, Li Q, Darrow AL, Wang Y, Derian CK. 182.  et al. 2004. Mer receptor tyrosine kinase signaling participates in platelet function. Arterioscler. Thromb. Vasc. Biol. 24:1118–23 [Google Scholar]
  183. Epelman S, Lavine KJ, Beaudin AE, Sojka DK, Carrero JA. 183.  et al. 2014. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40:91–104 [Google Scholar]
  184. Jennings JH, Linderman DJ, Hu B, Sonstein J, Curtis JL. 184.  2005. Monocytes recruited to the lungs of mice during immune inflammation ingest apoptotic cells poorly. Am. J. Respir. Cell Mol. Biol. 32:108–17 [Google Scholar]
  185. Deng T, Zhang Y, Chen Q, Yan K, Han D. 185.  2012. Toll-like receptor-mediated inhibition of Gas6 and ProS expression facilitates inflammatory cytokine production in mouse macrophages. Immunology 135:40–50 [Google Scholar]
  186. Todt JC, Hu B, Curtis JL. 186.  2004. The receptor tyrosine kinase MerTK activates phospholipase Cγ2 during recognition of apoptotic thymocytes by murine macrophages. J. Leukoc. Biol. 75:705–13 [Google Scholar]
  187. Shao WH, Zhen Y, Eisenberg RA, Cohen PL. 187.  2009. The Mer receptor tyrosine kinase is expressed on discrete macrophage subpopulations and mainly uses Gas6 as its ligand for uptake of apoptotic cells. Clin. Immunol. 133:138–44 [Google Scholar]
  188. Shao WH, Eisenberg RA, Cohen PL. 188.  2008. The Mer receptor tyrosine kinase is required for the loss of B cell tolerance in the chronic graft-versus-host disease model of systemic lupus erythematosus. J. Immunol. 180:7728–35 [Google Scholar]
  189. Franklin RA, Liao W, Sarkar A, Kim MV, Bivona MR. 189.  et al. 2014. The cellular and molecular origin of tumor-associated macrophages. Science 344:921–25 [Google Scholar]
  190. Hilliard BA, Zizzo G, Ulas M, Linan MK, Schreiter J, Cohen PL. 190.  2014. Increased expression of Mer tyrosine kinase in circulating dendritic cells and monocytes of lupus patients: correlations with plasma interferon activity and steroid therapy. Arthritis Res. Ther. 16:R76 [Google Scholar]
  191. Hodrea J, Majai G, Doro Z, Zahuczky G, Pap A. 191.  et al. 2012. The glucocorticoid dexamethasone programs human dendritic cells for enhanced phagocytosis of apoptotic neutrophils and inflammatory response. J. Leukoc. Biol. 91:127–36 [Google Scholar]
  192. Zahuczky G, Kristof E, Majai G, Fesus L. 192.  2011. Differentiation and glucocorticoid regulated apopto-phagocytic gene expression patterns in human macrophages. Role of Mertk in enhanced phagocytosis. PLOS ONE 6:e21349 [Google Scholar]
  193. Uehara H, Shacter E. 193.  2008. Auto-oxidation and oligomerization of protein s on the apoptotic cell surface is required for mer tyrosine kinase-mediated phagocytosis of apoptotic cells. J. Immunol. 180:2522–30 [Google Scholar]
  194. Heide I, Sokoll AC, Henz BM, Nagel S, Kreissig K. 194.  et al. 1998. Regulation and possible function of axl expression in immature human mast cells. Ann. Hematol. 77:199–205 [Google Scholar]
  195. Park IK, Giovenzana C, Hughes TL, Yu J, Trotta R, Caligiuri MA. 195.  2009. The Axl/Gas6 pathway is required for optimal cytokine signaling during human natural killer cell development. Blood 113:2470–77 [Google Scholar]
  196. Park IK, Trotta R, Yu J, Caligiuri MA. 196.  2013. Axl/Gas6 pathway positively regulates FLT3 activation in human natural killer cell development. Eur. J. Immunol. 43:2750–55 [Google Scholar]
  197. Kazeros A, Harvey BG, Carolan BJ, Vanni H, Krause A, Crystal RG. 197.  2008. Overexpression of apoptotic cell removal receptor MERTK in alveolar macrophages of cigarette smokers. Am. J. Respir. Cell Mol. Biol. 39:747–57 [Google Scholar]
  198. Zagorska A, Traves PG, Lew ED, Dransfield I, Lemke G. 198.  2014. Diversification of TAM receptor tyrosine kinase function. Nat. Immunol. 15:920–28 [Google Scholar]
  199. Lew ED, Oh J, Burrola PG, Lax I, Zagorska A. 199.  et al. 2014. Differential TAM receptor-ligand-phospholipid interactions delimit differential TAM bioactivities. eLife 3:e03385 doi: 10.7554/eLife.03385 [Google Scholar]
  200. Tsou WI, Nguyen KQ, Calarese DA, Garforth SJ, Antes AL. 200.  et al. 2014. Receptor tyrosine kinases, TYRO3, AXL, and MER, demonstrate distinct patterns and complex regulation of ligand-induced activation. J. Biol. Chem. 289:25750–63 [Google Scholar]
  201. Graham DK, DeRyckere D, Davies KD, Earp HS. 201.  2014. The TAM family: phosphatidylserine-sensing receptor tyrosine kinases gone awry in cancer. Nat. Rev. Cancer 14:769–85 [Google Scholar]
/content/journals/10.1146/annurev-immunol-032414-112103
Loading
/content/journals/10.1146/annurev-immunol-032414-112103
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error