1932

Abstract

Immune responses occur in the midst of a variety of cellular stresses that can severely perturb endoplasmic reticulum (ER) function. The unfolded protein response is a three-pronged signaling axis dedicated to preserving ER homeostasis. In this review, we highlight many important and emerging functional roles for ER stress in immunity, focusing on how the bidirectional cross talk between immunological processes and basic cell biology leads to pleiotropic signaling outcomes and enhanced sensitivity to inflammatory stimuli. We also discuss how dysregulated ER stress responses can provoke many diseases, including autoimmunity, firmly positioning the unfolded protein response as a major therapeutic target in human disease.

Keyword(s): ATF6inflammationIRE1PERKproteostasisXBP-1
Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-032414-112116
2015-03-21
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/immunol/33/1/annurev-immunol-032414-112116.html?itemId=/content/journals/10.1146/annurev-immunol-032414-112116&mimeType=html&fmt=ahah

Literature Cited

  1. Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE. 1.  2009. Biological and chemical approaches to diseases of proteostasis deficiency. Annu. Rev. Biochem. 78:959–91 [Google Scholar]
  2. Ye J, Rawson RB, Komuro R, Chen X, Dave UP. 2.  et al. 2000. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol. Cell 6:1355–64 [Google Scholar]
  3. Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D. 3.  2000. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat. Cell Biol. 2:326–32 [Google Scholar]
  4. Gardner BM, Walter P. 3a.  2011. Unfolded proteins are Ire1-activating ligands that directly induce the unfolded protein response. Science 333:1891–94 [Google Scholar]
  5. Hetz C, Glimcher LH. 4.  2009. Fine-tuning of the unfolded protein response: Assembling the IRE1α interactome. Mol. Cell 35:551–61 [Google Scholar]
  6. Calfon M, Zeng H, Urano F, Till JH, Hubbard SR. 5.  et al. 2002. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415:92–96 [Google Scholar]
  7. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K. 6.  2001. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107:881–91 [Google Scholar]
  8. Tirosh B, Iwakoshi NN, Glimcher LH, Ploegh HL. 7.  2006. Rapid turnover of unspliced Xbp-1 as a factor that modulates the unfolded protein response. J. Biol. Chem. 281:5852–60 [Google Scholar]
  9. Liou HC, Boothby MR, Finn PW, Davidon R, Nabavi N. 8.  et al. 1990. A new member of the leucine zipper class of proteins that binds to the HLA DR alpha promoter. Science 247:1581–84 [Google Scholar]
  10. Lee AH, Iwakoshi NN, Glimcher LH. 9.  2003. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol. Cell. Biol. 23:7448–59 [Google Scholar]
  11. Shaffer AL, Shapiro-Shelef M, Iwakoshi NN, Lee AH, Qian SB. 10.  et al. 2004. XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity 21:81–93 [Google Scholar]
  12. Lee AH, Chu GC, Iwakoshi NN, Glimcher LH. 11.  2005. XBP-1 is required for biogenesis of cellular secretory machinery of exocrine glands. EMBO J. 24:4368–80 [Google Scholar]
  13. Lee AH, Scapa EF, Cohen DE, Glimcher LH. 12.  2008. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science 320:1492–96 [Google Scholar]
  14. Martinon F, Chen X, Lee AH, Glimcher LH. 13.  2010. TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat. Immunol. 11:411–18 [Google Scholar]
  15. Chen X, Iliopoulos D, Zhang Q, Tang Q, Greenblatt MB. 14.  et al. 2014. XBP1 promotes triple-negative breast cancer by controlling the HIF1alpha pathway. Nature 508:103–7 [Google Scholar]
  16. Acosta-Alvear D, Zhou Y, Blais A, Tsikitis M, Lents NH. 15.  et al. 2007. XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Mol. Cell 27:53–66 [Google Scholar]
  17. Wang ZV, Deng Y, Gao N, Pedrozo Z, Li DL. 16.  et al. 2014. Spliced X-box binding protein 1 couples the unfolded protein response to hexosamine biosynthetic pathway. Cell 156:1179–92 [Google Scholar]
  18. Hollien J, Weissman JS. 17.  2006. Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science 313:104–7 [Google Scholar]
  19. Han D, Lerner AG, Vande Walle L, Upton JP, Xu W. 18.  et al. 2009. IRE1α kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates. Cell 138:562–75 [Google Scholar]
  20. Gaddam D, Stevens N, Hollien J. 19.  2013. Comparison of mRNA localization and regulation during endoplasmic reticulum stress in Drosophila cells. Mol. Biol. Cell 24:14–20 [Google Scholar]
  21. Kimmig P, Diaz M, Zheng J, Williams CC, Lang A. 20.  et al. 2012. The unfolded protein response in fission yeast modulates stability of select mRNAs to maintain protein homeostasis. Elife 1:e00048 [Google Scholar]
  22. So JS, Hur KY, Tarrio M, Ruda V, Frank-Kamenetsky M. 21.  et al. 2012. Silencing of lipid metabolism genes through IRE1α-mediated mRNA decay lowers plasma lipids in mice. Cell Metab. 16:487–99 [Google Scholar]
  23. Benhamron S, Hadar R, Iwawaky T, So JS, Lee AH, Tirosh B. 22.  2014. Regulated IRE1-dependent decay participates in curtailing immunoglobulin secretion from plasma cells. Eur. J. Immunol. 44:867–76 [Google Scholar]
  24. Osorio F, Tavernier SJ, Hoffmann E, Saeys Y, Martens L. 23.  et al. 2014. The unfolded-protein-response sensor IRE-1α regulates the function of CD8α+ dendritic cells. Nat. Immunol. 15:248–57 [Google Scholar]
  25. Harding HP, Zhang Y, Ron D. 24.  1999. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397:271–74 [Google Scholar]
  26. Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D. 25.  2000. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol. Cell 5:897–904 [Google Scholar]
  27. Harding HP, Zeng H, Zhang Y, Jungries R, Chung P. 26.  et al. 2001. Diabetes mellitus and exocrine pancreatic dysfunction in Perk−/− mice reveals a role for translational control in secretory cell survival. Mol. Cell 7:1153–63 [Google Scholar]
  28. Vattem KM, Wek RC. 27.  2004. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc. Natl. Acad. Sci. USA 101:11269–74 [Google Scholar]
  29. Ma Y, Brewer JW, Diehl JA, Hendershot LM. 28.  2002. Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J. Mol. Biol. 318:1351–65 [Google Scholar]
  30. Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang Y. 29.  et al. 2004. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev. 18:3066–77 [Google Scholar]
  31. Haze K, Yoshida H, Yanagi H, Yura T, Mori K. 30.  1999. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol. Biol. Cell 10:3787–99 [Google Scholar]
  32. Shen J, Chen X, Hendershot L, Prywes R. 31.  2002. ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev. Cell 3:99–111 [Google Scholar]
  33. Bailey D, O'Hare P. 32.  2007. Transmembrane bZIP transcription factors in ER stress signaling and the unfolded protein response. Antioxid. Redox Signal. 9:2305–21 [Google Scholar]
  34. Adachi Y, Yamamoto K, Okada T, Yoshida H, Harada A, Mori K. 33.  2008. ATF6 is a transcription factor specializing in the regulation of quality control proteins in the endoplasmic reticulum. Cell Struct. Funct. 33:75–89 [Google Scholar]
  35. Reimold AM, Etkin A, Clauss I, Perkins A, Friend DS. 34.  et al. 2000. An essential role in liver development for transcription factor XBP-1. Genes Dev. 14:152–57 [Google Scholar]
  36. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P. 35.  et al. 2000. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287:664–66 [Google Scholar]
  37. Shoulders MD, Ryno LM, Genereux JC, Moresco JJ, Tu PG. 36.  et al. 2013. Stress-independent activation of XBP1s and/or ATF6 reveals three functionally diverse ER proteostasis environments. Cell Rep. 3:1279–92 [Google Scholar]
  38. Lin JH, Li H, Yasumura D, Cohen HR, Zhang C. 37.  et al. 2007. IRE1 signaling affects cell fate during the unfolded protein response. Science 318:944–49 [Google Scholar]
  39. Reimold AM, Iwakoshi NN, Manis J, Vallabhajosyula P, Szomolanyi-Tsuda E. 38.  et al. 2001. Plasma cell differentiation requires the transcription factor XBP-1. Nature 412:300–7 [Google Scholar]
  40. Todd DJ, McHeyzer-Williams LJ, Kowal C, Lee AH, Volpe BT. 39.  et al. 2009. XBP1 governs late events in plasma cell differentiation and is not required for antigen-specific memory B cell development. J. Exp. Med. 206:2151–59 [Google Scholar]
  41. Iwakoshi NN, Lee AH, Vallabhajosyula P, Otipoby KL, Rajewsky K, Glimcher LH. 40.  2003. Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. Nat. Immunol. 4:321–29 [Google Scholar]
  42. Iwawaki T, Akai R, Kohno K. 41.  2010. IRE1α disruption causes histological abnormality of exocrine tissues, increase of blood glucose level, and decrease of serum immunoglobulin level. PLOS ONE 5:e13052 [Google Scholar]
  43. Lee AH, Iwakoshi NN, Anderson KC, Glimcher LH. 42.  2003. Proteasome inhibitors disrupt the unfolded protein response in myeloma cells. PNAS 100:9946–51 [Google Scholar]
  44. Hu CC, Dougan SK, McGehee AM, Love JC, Ploegh HL. 43.  2009. XBP-1 regulates signal transduction, transcription factors and bone marrow colonization in B cells. EMBO J. 28:1624–36 [Google Scholar]
  45. Ma Y, Shimizu Y, Mann MJ, Jin Y, Hendershot LM. 44.  2010. Plasma cell differentiation initiates a limited ER stress response by specifically suppressing the PERK-dependent branch of the unfolded protein response. Cell Stress Chaperones 15:281–93 [Google Scholar]
  46. Aragon IV, Barrington RA, Jackowski S, Mori K, Brewer JW. 45.  2012. The specialized unfolded protein response of B lymphocytes: ATF6α-independent development of antibody-secreting B cells. Mol. Immunol. 51:347–55 [Google Scholar]
  47. Bertolotti A, Wang X, Novoa I, Jungreis R, Schlessinger K. 46.  et al. 2001. Increased sensitivity to dextran sodium sulfate colitis in IRE1β-deficient mice. J. Clin. Invest. 107:585–93 [Google Scholar]
  48. Kaser A, Lee AH, Franke A, Glickman JN, Zeissig S. 47.  et al. 2008. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134:743–56 [Google Scholar]
  49. Adolph TE, Tomczak MF, Niederreiter L, Ko HJ, Bock J. 48.  et al. 2013. Paneth cells as a site of origin for intestinal inflammation. Nature 503:272–76 [Google Scholar]
  50. Iwakoshi NN, Pypaert M, Glimcher LH. 49.  2007. The transcription factor XBP-1 is essential for the development and survival of dendritic cells. J. Exp. Med. 204:2267–75 [Google Scholar]
  51. Rinaldo CR Jr, Piazza P. 50.  2004. Virus infection of dendritic cells: portal for host invasion and host defense. Trends Microbiol. 12:337–45 [Google Scholar]
  52. Rossi DJ, Jamieson CH, Weissman IL. 51.  2008. Stems cells and the pathways to aging and cancer. Cell 132:681–96 [Google Scholar]
  53. Heijmans J, van Lidth de Jeude JF, Koo BK, Rosekrans SL, Wielenga MC. 52.  et al. 2013. ER stress causes rapid loss of intestinal epithelial stemness through activation of the unfolded protein response. Cell Rep. 3:1128–39 [Google Scholar]
  54. van Galen P, Kreso A, Mbong N, Kent DG, Fitzmaurice T. 53.  et al. 2014. The unfolded protein response governs integrity of the haematopoietic stem-cell pool during stress. Nature 510:268–72 [Google Scholar]
  55. Signer RA, Magee JA, Salic A, Morrison SJ. 54.  2014. Haematopoietic stem cells require a highly regulated protein synthesis rate. Nature 509:49–54 [Google Scholar]
  56. Senovilla L, Vitale I, Martins I, Kepp O, Galluzzi L. 55.  et al. 2013. An anticancer therapy-elicited immunosurveillance system that eliminates tetraploid cells. Oncoimmunology 2:e22409 [Google Scholar]
  57. Feske S, Okamura H, Hogan PG, Rao A. 56.  2003. Ca2+/calcineurin signalling in cells of the immune system. Biochem. Biophys. Res. Commun. 311:1117–32 [Google Scholar]
  58. Vig M, Kinet JP. 57.  2009. Calcium signaling in immune cells. Nat. Immunol. 10:21–27 [Google Scholar]
  59. Cardozo AK, Ortis F, Storling J, Feng YM, Rasschaert J. 58.  et al. 2005. Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic β-cells. Diabetes 54:452–61 [Google Scholar]
  60. Higo T, Hamada K, Hisatsune C, Nukina N, Hashikawa T. 59.  et al. 2010. Mechanism of ER stress-induced brain damage by IP3 receptor. Neuron 68:865–78 [Google Scholar]
  61. Higo T, Hattori M, Nakamura T, Natsume T, Michikawa T, Mikoshiba K. 60.  2005. Subtype-specific and ER lumenal environment-dependent regulation of inositol 1,4,5-trisphosphate receptor type 1 by ERp44. Cell 120:85–98 [Google Scholar]
  62. Verfaillie T, Rubio N, Garg AD, Bultynck G, Rizzuto R. 61.  et al. 2012. PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death Differ. 19:1880–91 [Google Scholar]
  63. Huang G, Yao J, Zeng W, Mizuno Y, Kamm KE. 62.  et al. 2006. ER stress disrupts Ca2+-signaling complexes and Ca2+ regulation in secretory and muscle cells from PERK-knockout mice. J. Cell Sci. 119:153–61 [Google Scholar]
  64. Son SM, Byun J, Roh SE, Kim SJ, Mook-Jung I. 63.  2014. Reduced IRE1α mediates apoptotic cell death by disrupting calcium homeostasis via the InsP3 receptor. Cell Death Dis. 5:e1188 [Google Scholar]
  65. Tan Y, Dourdin N, Wu C, De Veyra T, Elce JS, Greer PA. 64.  2006. Ubiquitous calpains promote caspase-12 and JNK activation during endoplasmic reticulum stress-induced apoptosis. J. Biol. Chem. 281:16016–24 [Google Scholar]
  66. Timmins JM, Ozcan L, Seimon TA, Li G, Malagelada C. 65.  et al. 2009. Calcium/calmodulin-dependent protein kinase II links ER stress with Fas and mitochondrial apoptosis pathways. J. Clin. Invest. 119:2925–41 [Google Scholar]
  67. Nathan C, Cunningham-Bussel A. 66.  2013. Beyond oxidative stress: an immunologist's guide to reactive oxygen species. Nat. Rev. Immunol. 13:349–61 [Google Scholar]
  68. Tu BP, Weissman JS. 67.  2004. Oxidative protein folding in eukaryotes: mechanisms and consequences. J. Cell Biol. 164:341–46 [Google Scholar]
  69. Malhotra JD, Miao H, Zhang K, Wolfson A, Pennathur S. 68.  et al. 2008. Antioxidants reduce endoplasmic reticulum stress and improve protein secretion. PNAS 105:18525–30 [Google Scholar]
  70. Malhotra JD, Kaufman RJ. 69.  2007. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword?. Antioxid. Redox Signal. 9:2277–93 [Google Scholar]
  71. Lerner AG, Upton JP, Praveen PV, Ghosh R, Nakagawa Y. 70.  et al. 2012. IRE1α induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress. Cell Metab. 16:250–64 [Google Scholar]
  72. Li G, Scull C, Ozcan L, Tabas I. 71.  2010. NADPH oxidase links endoplasmic reticulum stress, oxidative stress, and PKR activation to induce apoptosis. J. Cell Biol. 191:1113–25 [Google Scholar]
  73. Liu Y, Adachi M, Zhao S, Hareyama M, Koong AC. 72.  et al. 2009. Preventing oxidative stress: a new role for XBP1. Cell Death Differ. 16:847–57 [Google Scholar]
  74. Gupta S, Giricz Z, Natoni A, Donnelly N, Deegan S. 73.  et al. 2012. NOXA contributes to the sensitivity of PERK-deficient cells to ER stress. FEBS Lett. 586:4023–30 [Google Scholar]
  75. Li Y, Schwabe RF, DeVries-Seimon T, Yao PM, Gerbod-Giannone MC. 74.  et al. 2005. Free cholesterol-loaded macrophages are an abundant source of tumor necrosis factor-α and interleukin-6: model of NF-κB- and map kinase-dependent inflammation in advanced atherosclerosis. J. Biol. Chem. 280:21763–72 [Google Scholar]
  76. Oslowski CM, Hara T, O'Sullivan-Murphy B, Kanekura K, Lu S. 75.  et al. 2012. Thioredoxin-interacting protein mediates ER stress-induced beta cell death through initiation of the inflammasome. Cell Metab. 16:265–73 [Google Scholar]
  77. Menu P, Mayor A, Zhou R, Tardivel A, Ichijo H. 76.  et al. 2012. ER stress activates the NLRP3 inflammasome via an UPR-independent pathway. Cell Death Dis. 3:e261 [Google Scholar]
  78. Melo RC, D'Avila H, Wan HC, Bozza PT, Dvorak AM, Weller PF. 77.  2011. Lipid bodies in inflammatory cells: structure, function, and current imaging techniques. J. Histochem. Cytochem. 59:540–56 [Google Scholar]
  79. Im SS, Yousef L, Blaschitz C, Liu JZ, Edwards RA. 78.  et al. 2011. Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a. Cell Metab. 13:540–49 [Google Scholar]
  80. Kidani Y, Elsaesser H, Hock MB, Vergnes L, Williams KJ. 79.  et al. 2013. Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity. Nat. Immunol. 14:489–99 [Google Scholar]
  81. Kidani Y, Bensinger SJ. 80.  2012. Liver X receptor and peroxisome proliferator-activated receptor as integrators of lipid homeostasis and immunity. Immunol. Rev. 249:72–83 [Google Scholar]
  82. Hotamisligil GS. 81.  2010. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140:900–17 [Google Scholar]
  83. Osborn O, Olefsky JM. 82.  2012. The cellular and signaling networks linking the immune system and metabolism in disease. Nat. Med. 18:363–74 [Google Scholar]
  84. Lumeng CN, Bodzin JL, Saltiel AR. 83.  2007. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117:175–84 [Google Scholar]
  85. Nagareddy PR, Murphy AJ, Stirzaker RA, Hu Y, Yu S. 84.  et al. 2013. Hyperglycemia promotes myelopoiesis and impairs the resolution of atherosclerosis. Cell Metab. 17:695–708 [Google Scholar]
  86. Esposito K, Nappo F, Marfella R, Giugliano G, Giugliano F. 85.  et al. 2002. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation 106:2067–72 [Google Scholar]
  87. Lipson KL, Fonseca SG, Ishigaki S, Nguyen LX, Foss E. 86.  et al. 2006. Regulation of insulin biosynthesis in pancreatic beta cells by an endoplasmic reticulum-resident protein kinase IRE1. Cell Metab. 4:245–54 [Google Scholar]
  88. Vladykovskaya E, Sithu SD, Haberzettl P, Wickramasinghe NS, Merchant ML. 87.  et al. 2012. Lipid peroxidation product 4-hydroxy-trans-2-nonenal causes endothelial activation by inducing endoplasmic reticulum stress. J. Biol. Chem. 287:11398–409 [Google Scholar]
  89. Seimon TA, Nadolski MJ, Liao X, Magallon J, Nguyen M. 88.  et al. 2010. Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress. Cell Metab. 12:467–82 [Google Scholar]
  90. Fu S, Yang L, Li P, Hofmann O, Dicker L. 89.  et al. 2011. Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature 473:528–31 [Google Scholar]
  91. Cai L, Wang Z, Ji A, Meyer JM, van der Westhuyzen DR. 90.  2012. Scavenger receptor CD36 expression contributes to adipose tissue inflammation and cell death in diet-induced obesity. PLOS ONE 7:e36785 [Google Scholar]
  92. Feng B, Yao PM, Li Y, Devlin CM, Zhang D. 91.  et al. 2003. The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat. Cell Biol. 5:781–92 [Google Scholar]
  93. Flowers MT, Keller MP, Choi Y, Lan H, Kendziorski C. 92.  et al. 2008. Liver gene expression analysis reveals endoplasmic reticulum stress and metabolic dysfunction in SCD1-deficient mice fed a very low-fat diet. Physiol. Genomics 33:361–72 [Google Scholar]
  94. Rong X, Albert CJ, Hong C, Duerr MA, Chamberlain BT. 93.  et al. 2013. LXRs regulate ER stress and inflammation through dynamic modulation of membrane phospholipid composition. Cell Metab. 18:685–97 [Google Scholar]
  95. Fei W, Wang H, Fu X, Bielby C, Yang H. 94.  2009. Conditions of endoplasmic reticulum stress stimulate lipid droplet formation in Saccharomyces cerevisiae. Biochem. J. 424:61–67 [Google Scholar]
  96. Sriburi R, Bommiasamy H, Buldak GL, Robbins GR, Frank M. 95.  et al. 2007. Coordinate regulation of phospholipid biosynthesis and secretory pathway gene expression in XBP-1(S)-induced endoplasmic reticulum biogenesis. J. Biol. Chem. 282:7024–34 [Google Scholar]
  97. Volmer R, van der Ploeg K, Ron D. 96.  2013. Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains. PNAS 110:4628–33 [Google Scholar]
  98. Kitai Y, Ariyama H, Kono N, Oikawa D, Iwawaki T, Arai H. 97.  2013. Membrane lipid saturation activates IRE1α without inducing clustering. Genes Cells 18:798–809 [Google Scholar]
  99. Ellies LG, Sperandio M, Underhill GH, Yousif J, Smith M. 98.  et al. 2002. Sialyltransferase specificity in selectin ligand formation. Blood 100:3618–25 [Google Scholar]
  100. Raju TS. 99.  2008. Terminal sugars of Fc glycans influence antibody effector functions of IgGs. Curr. Opin. Immunol. 20:471–78 [Google Scholar]
  101. Bruckner K, Perez L, Clausen H, Cohen S. 100.  2000. Glycosyltransferase activity of Fringe modulates Notch-Delta interactions. Nature 406:411–15 [Google Scholar]
  102. Moloney DJ, Panin VM, Johnston SH, Chen J, Shao L. 101.  et al. 2000. Fringe is a glycosyltransferase that modifies Notch. Nature 406:369–75 [Google Scholar]
  103. Lau KS, Partridge EA, Grigorian A, Silvescu CI, Reinhold VN. 102.  et al. 2007. Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell 129:123–34 [Google Scholar]
  104. Demetriou M, Granovsky M, Quaggin S, Dennis JW. 103.  2001. Negative regulation of T-cell activation and autoimmunity by Mgat5N-glycosylation. Nature 409:733–39 [Google Scholar]
  105. McGehee AM, Dougan SK, Klemm EJ, Shui G, Park B. 104.  et al. 2009. XBP-1-deficient plasmablasts show normal protein folding but altered glycosylation and lipid synthesis. J. Immunol. 183:3690–99 [Google Scholar]
  106. Munz C. 105.  2009. Enhancing immunity through autophagy. Annu. Rev. Immunol. 27:423–49 [Google Scholar]
  107. Gade P, Ramachandran G, Maachani UB, Rizzo MA, Okada T. 106.  et al. 2012. An IFN-γ-stimulated ATF6-C/EBP-β-signaling pathway critical for the expression of Death Associated Protein Kinase 1 and induction of autophagy. PNAS 109:10316–21 [Google Scholar]
  108. Ogata M, Hino S, Saito A, Morikawa K, Kondo S. 107.  et al. 2006. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol. Cell. Biol. 26:9220–31 [Google Scholar]
  109. Kouroku Y, Fujita E, Tanida I, Ueno T, Isoai A. 108.  et al. 2007. ER stress (PERK/eIF2α phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ. 14:230–39 [Google Scholar]
  110. Yang L, Li P, Fu S, Calay ES, Hotamisligil GS. 109.  2010. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 11:467–78 [Google Scholar]
  111. Pengo N, Scolari M, Oliva L, Milan E, Mainoldi F. 110.  et al. 2013. Plasma cells require autophagy for sustainable immunoglobulin production. Nat. Immunol. 14:298–305 [Google Scholar]
  112. Bernales S, McDonald KL, Walter P. 111.  2006. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLOS Biol. 4:e423 [Google Scholar]
  113. Holm CK, Jensen SB, Jakobsen MR, Cheshenko N, Horan KA. 112.  et al. 2012. Virus-cell fusion as a trigger of innate immunity dependent on the adaptor STING. Nat. Immunol. 13:737–43 [Google Scholar]
  114. Liberman E, Fong YL, Selby MJ, Choo QL, Cousens L. 113.  et al. 1999. Activation of the grp78 and grp94 promoters by hepatitis C virus E2 envelope protein. J. Virol. 73:3718–22 [Google Scholar]
  115. Mulvey M, Arias C, Mohr I. 114.  2007. Maintenance of endoplasmic reticulum (ER) homeostasis in herpes simplex virus type 1-infected cells through the association of a viral glycoprotein with PERK, a cellular ER stress sensor. J. Virol. 81:3377–90 [Google Scholar]
  116. Galindo I, Hernaez B, Munoz-Moreno R, Cuesta-Geijo MA, Dalmau-Mena I, Alonso C. 115.  2012. The ATF6 branch of unfolded protein response and apoptosis are activated to promote African swine fever virus infection. Cell Death Dis. 3:e341 [Google Scholar]
  117. Pasqual G, Burri DJ, Pasquato A, de la Torre JC, Kunz S. 116.  2011. Role of the host cell's unfolded protein response in arenavirus infection. J. Virol. 85:1662–70 [Google Scholar]
  118. Martinon F, Glimcher LH. 117.  2011. Regulation of innate immunity by signaling pathways emerging from the endoplasmic reticulum. Curr. Opin. Immunol. 23:35–40 [Google Scholar]
  119. Ke PY, Chen SS. 118.  2011. Activation of the unfolded protein response and autophagy after hepatitis C virus infection suppresses innate antiviral immunity in vitro. J. Clin. Invest. 121:37–56 [Google Scholar]
  120. Ambrose RL, Mackenzie JM. 119.  2013. ATF6 signaling is required for efficient West Nile virus replication by promoting cell survival and inhibition of innate immune responses. J. Virol. 87:2206–14 [Google Scholar]
  121. Bischof LJ, Kao CY, Los FC, Gonzalez MR, Shen Z. 120.  et al. 2008. Activation of the unfolded protein response is required for defenses against bacterial pore-forming toxin in vivo. PLOS Pathog 4:e1000176 [Google Scholar]
  122. Wolfson JJ, May KL, Thorpe CM, Jandhyala DM, Paton JC, Paton AW. 121.  2008. Subtilase cytotoxin activates PERK, IRE1 and ATF6 endoplasmic reticulum stress-signalling pathways. Cell Microbiol. 10:1775–86 [Google Scholar]
  123. Cho JA, Lee AH, Platzer B, Cross BC, Gardner BM. 122.  et al. 2013. The unfolded protein response element IRE1α senses bacterial proteins invading the ER to activate RIG-I and innate immune signaling. Cell Host Microbe 13:558–69 [Google Scholar]
  124. Seimon TA, Kim MJ, Blumenthal A, Koo J, Ehrt S. 123.  et al. 2010. Induction of ER stress in macrophages of tuberculosis granulomas. PLOS ONE 5:e12772 [Google Scholar]
  125. Lardner A. 124.  2001. The effects of extracellular pH on immune function. J. Leukoc. Biol. 69:522–30 [Google Scholar]
  126. Vats D, Mukundan L, Odegaard JI, Zhang L, Smith KL. 125.  et al. 2006. Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation. Cell Metab. 4:13–24 [Google Scholar]
  127. Cathcart MK, Morel DW, Chisolm GM 3rd. 126.  1985. Monocytes and neutrophils oxidize low density lipoprotein making it cytotoxic. J. Leukoc. Biol. 38:341–50 [Google Scholar]
  128. Karali E, Bellou S, Stellas D, Klinakis A, Murphy C, Fotsis T. 127.  2014. VEGF signals through ATF6 and PERK to promote endothelial cell survival and angiogenesis in the absence of ER stress. Mol. Cell 54:559–72 [Google Scholar]
  129. Pahl HL, Baeuerle PA. 128.  1996. Activation of NF-κ B by ER stress requires both Ca2+ and reactive oxygen intermediates as messengers. FEBS Lett. 392:129–36 [Google Scholar]
  130. Pahl HL, Baeuerle PA. 129.  1995. A novel signal transduction pathway from the endoplasmic reticulum to the nucleus is mediated by transcription factor NF-kappa B. EMBO J. 14:2580–88 [Google Scholar]
  131. Hu P, Han Z, Couvillon AD, Kaufman RJ, Exton JH. 130.  2006. Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1α-mediated NF-κB activation and down-regulation of TRAF2 expression. Mol. Cell. Biol. 26:3071–84 [Google Scholar]
  132. Tam AB, Mercado EL, Hoffmann A, Niwa M. 131.  2012. ER stress activates NF-κB by integrating functions of basal IKK activity, IRE1 and PERK. PLOS ONE 7:e45078 [Google Scholar]
  133. Deng J, Lu PD, Zhang Y, Scheuner D, Kaufman RJ. 132.  et al. 2004. Translational repression mediates activation of nuclear factor kappa B by phosphorylated translation initiation factor 2. Mol. Cell. Biol. 24:10161–68 [Google Scholar]
  134. Li J, Wang JJ, Zhang SX. 133.  2011. Preconditioning with endoplasmic reticulum stress mitigates retinal endothelial inflammation via activation of X-box binding protein 1. J. Biol. Chem. 286:4912–21 [Google Scholar]
  135. Rutkowski DT, Arnold SM, Miller CN, Wu J, Li J. 134.  et al. 2006. Adaptation to ER stress is mediated by differential stabilities of pro-survival and pro-apoptotic mRNAs and proteins. PLOS Biol. 4:e374 [Google Scholar]
  136. Hu P, Han Z, Couvillon AD, Exton JH. 135.  2004. Critical role of endogenous Akt/IAPs and MEK1/ERK pathways in counteracting endoplasmic reticulum stress-induced cell death. J. Biol. Chem. 279:49420–29 [Google Scholar]
  137. Nishitoh H, Matsuzawa A, Tobiume K, Saegusa K, Takeda K. 136.  et al. 2002. ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev. 16:1345–55 [Google Scholar]
  138. Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E. 137.  et al. 2006. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313:1137–40 [Google Scholar]
  139. Richardson CE, Kooistra T, Kim DH. 138.  2010. An essential role for XBP-1 in host protection against immune activation in C. elegans. Nature 463:1092–95 [Google Scholar]
  140. Lee J, Sun C, Zhou Y, Lee J, Gokalp D. 139.  et al. 2011. p38 MAPK-mediated regulation of Xbp1s is crucial for glucose homeostasis. Nat. Med. 17:1251–60 [Google Scholar]
  141. Chovatiya R, Medzhitov R. 140.  2014. Stress, inflammation, and defense of homeostasis. Mol. Cell 54:281–88 [Google Scholar]
  142. Gargalovic PS, Gharavi NM, Clark MJ, Pagnon J, Yang WP. 141.  et al. 2006. The unfolded protein response is an important regulator of inflammatory genes in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 26:2490–96 [Google Scholar]
  143. Wang YI, Bettaieb A, Sun C, DeVerse JS, Radecke CE. 142.  et al. 2013. Triglyceride-rich lipoprotein modulates endothelial vascular cell adhesion molecule (VCAM)-1 expression via differential regulation of endoplasmic reticulum stress. PLOS ONE 8:e78322 [Google Scholar]
  144. Majors AK, Austin RC, de la Motte CA, Pyeritz RE, Hascall VC. 143.  et al. 2003. Endoplasmic reticulum stress induces hyaluronan deposition and leukocyte adhesion. J. Biol. Chem. 278:47223–31 [Google Scholar]
  145. Li CK, Knopp P, Moncrieffe H, Singh B, Shah S. 144.  et al. 2009. Overexpression of MHC class I heavy chain protein in young skeletal muscle leads to severe myositis: implications for juvenile myositis. Am. J. Pathol. 175:1030–40 [Google Scholar]
  146. Vattemi G, Engel WK, McFerrin J, Askanas V. 145.  2004. Endoplasmic reticulum stress and unfolded protein response in inclusion body myositis muscle. Am. J. Pathol. 164:1–7 [Google Scholar]
  147. Suwara MI, Green NJ, Borthwick LA, Mann J, Mayer-Barber KD. 146.  et al. 2014. IL-1α released from damaged epithelial cells is sufficient and essential to trigger inflammatory responses in human lung fibroblasts. Mucosal Immunol. 7:684–93 [Google Scholar]
  148. Wang G, Yang ZQ, Zhang K. 147.  2010. Endoplasmic reticulum stress response in cancer: molecular mechanism and therapeutic potential. Am. J. Transl. Res. 2:65–74 [Google Scholar]
  149. Drogat B, Auguste P, Nguyen DT, Bouchecareilh M, Pineau R. 148.  et al. 2007. IRE1 signaling is essential for ischemia-induced vascular endothelial growth factor-A expression and contributes to angiogenesis and tumor growth in vivo. Cancer Res. 67:6700–7 [Google Scholar]
  150. Bi M, Naczki C, Koritzinsky M, Fels D, Blais J. 149.  et al. 2005. ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. EMBO J. 24:3470–81 [Google Scholar]
  151. Mahadevan NR, Rodvold J, Sepulveda H, Rossi S, Drew AF, Zanetti M. 150.  2011. Transmission of endoplasmic reticulum stress and pro-inflammation from tumor cells to myeloid cells. PNAS 108:6561–66 [Google Scholar]
  152. Cullen SJ, Fatemie S, Ladiges W. 151.  2013. Breast tumor cells primed by endoplasmic reticulum stress remodel macrophage phenotype. Am. J. Cancer Res. 3:196–210 [Google Scholar]
  153. Mahadevan NR, Anufreichik V, Rodvold JJ, Chiu KT, Sepulveda H, Zanetti M. 152.  2012. Cell-extrinsic effects of tumor ER stress imprint myeloid dendritic cells and impair CD8+ T cell priming. PLOS ONE 7:e51845 [Google Scholar]
  154. Kono H, Rock KL. 153.  2008. How dying cells alert the immune system to danger. Nat. Rev. Immunol. 8:279–89 [Google Scholar]
  155. Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L. 154.  et al. 2007. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med. 13:54–61 [Google Scholar]
  156. Scaffidi P, Misteli T, Bianchi ME. 155.  2002. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418:191–95 [Google Scholar]
  157. Luo Y, Li SJ, Yang J, Qiu YZ, Chen FP. 156.  2013. HMGB1 induces an inflammatory response in endothelial cells via the RAGE-dependent endoplasmic reticulum stress pathway. Biochem. Biophys. Res. Commun. 438:732–38 [Google Scholar]
  158. Zhu XM, Yao FH, Yao YM, Dong N, Yu Y, Sheng ZY. 157.  2012. Endoplasmic reticulum stress and its regulator XBP-1 contributes to dendritic cell maturation and activation induced by high mobility group box-1 protein. Int. J. Biochem. Cell Biol. 44:1097–105 [Google Scholar]
  159. Tufi R, Panaretakis T, Bianchi K, Criollo A, Fazi B. 158.  et al. 2008. Reduction of endoplasmic reticulum Ca2+ levels favors plasma membrane surface exposure of calreticulin. Cell Death Differ. 15:274–82 [Google Scholar]
  160. Garg AD, Krysko DV, Verfaillie T, Kaczmarek A, Ferreira GB. 159.  et al. 2012. A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO J. 31:1062–79 [Google Scholar]
  161. Martins I, Kepp O, Schlemmer F, Adjemian S, Tailler M. 160.  et al. 2011. Restoration of the immunogenicity of cisplatin-induced cancer cell death by endoplasmic reticulum stress. Oncogene 30:1147–58 [Google Scholar]
  162. Senovilla L, Vitale I, Martins I, Tailler M, Pailleret C. 161.  et al. 2012. An immunosurveillance mechanism controls cancer cell ploidy. Science 337:1678–84 [Google Scholar]
  163. Smith JA, Turner MJ, DeLay ML, Klenk EI, Sowders DP, Colbert RA. 162.  2008. Endoplasmic reticulum stress and the unfolded protein response are linked to synergistic IFN-beta induction via X-box binding protein 1. Eur. J. Immunol. 38:1194–203 [Google Scholar]
  164. Zeng L, Liu YP, Sha H, Chen H, Qi L, Smith JA. 163.  2010. XBP-1 couples endoplasmic reticulum stress to augmented IFN-beta induction via a cis-acting enhancer in macrophages. J. Immunol. 185:2324–30 [Google Scholar]
  165. Liu YP, Zeng L, Tian A, Bomkamp A, Rivera D. 164.  et al. 2012. Endoplasmic reticulum stress regulates the innate immunity critical transcription factor IRF3. J. Immunol. 189:4630–39 [Google Scholar]
  166. Goodall JC, Wu C, Zhang Y, McNeill L, Ellis L. 165.  et al. 2010. Endoplasmic reticulum stress-induced transcription factor, CHOP, is crucial for dendritic cell IL-23 expression. PNAS 107:17698–703 [Google Scholar]
  167. Zhao C, Pavicic PG Jr, Datta S, Sun D, Novotny M, Hamilton TA. 166.  2014. Cellular stress amplifies TLR3/4-induced CXCL1/2 gene transcription in mononuclear phagocytes via RIPK1. J. Immunol. 193:879–88 [Google Scholar]
  168. Szmola R, Sahin-Toth M. 167.  2010. Pancreatitis-associated chymotrypsinogen C (CTRC) mutant elicits endoplasmic reticulum stress in pancreatic acinar cells. Gut 59:365–72 [Google Scholar]
  169. Carroll TP, Greene CM, O'Connor CA, Nolan AM, O'Neill SJ, McElvaney NG. 168.  2010. Evidence for unfolded protein response activation in monocytes from individuals with alpha-1 antitrypsin deficiency. J. Immunol. 184:4538–46 [Google Scholar]
  170. Feng Y, Ding J, Fan CM, Zhu P. 169.  2012. Interferon-gamma contributes to HLA-B27-associated unfolded protein response in spondyloarthropathies. J. Rheumatol. 39:574–82 [Google Scholar]
  171. Woo CW, Cui D, Arellano J, Dorweiler B, Harding H. 170.  et al. 2009. Adaptive suppression of the ATF4-CHOP branch of the unfolded protein response by Toll-like receptor signalling. Nat. Cell Biol. 11:1473–80 [Google Scholar]
  172. Amor S, Puentes F, Baker D, van der Valk P. 171.  2010. Inflammation in neurodegenerative diseases. Immunology 129:154–69 [Google Scholar]
  173. Vinson CR, Hai T, Boyd SM. 172.  1993. Dimerization specificity of the leucine zipper-containing bZIP motif on DNA binding: prediction and rational design. Genes Dev. 7:1047–58 [Google Scholar]
  174. Reinke AW, Baek J, Ashenberg O, Keating AE. 173.  2013. Networks of bZIP protein-protein interactions diversified over a billion years of evolution. Science 340:730–34 [Google Scholar]
  175. Ron D, Habener JF. 174.  1992. CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev. 6:439–53 [Google Scholar]
  176. Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K. 175.  2010. Development of monocytes, macrophages, and dendritic cells. Science 327:656–61 [Google Scholar]
  177. Gombart AF, Grewal J, Koeffler HP. 176.  2007. ATF4 differentially regulates transcriptional activation of myeloid-specific genes by C/EBPε and C/EBPα. J. Leukoc. Biol. 81:1535–47 [Google Scholar]
  178. Gery S, Park DJ, Vuong PT, Chih DY, Lemp N, Koeffler HP. 177.  2004. Retinoic acid regulates C/EBP homologous protein expression (CHOP), which negatively regulates myeloid target genes. Blood 104:3911–17 [Google Scholar]
  179. Kim I, Xu W, Reed JC. 178.  2008. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat. Rev. Drug Discov. 7:1013–30 [Google Scholar]
  180. Todd DJ, Lee AH, Glimcher LH. 179.  2008. The endoplasmic reticulum stress response in immunity and autoimmunity. Nat. Rev. Immunol. 8:663–74 [Google Scholar]
  181. Hampe J, Schreiber S, Shaw SH, Lau KF, Bridger S. 180.  et al. 1999. A genomewide analysis provides evidence for novel linkages in inflammatory bowel disease in a large European cohort. Am. J. Hum. Genet. 64:808–16 [Google Scholar]
  182. Hampe J, Franke A, Rosenstiel P, Till A, Teuber M. 181.  et al. 2007. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat. Genet. 39:207–11 [Google Scholar]
  183. Parkes M, Barrett JC, Prescott NJ, Tremelling M, Anderson CA. 182.  et al. 2007. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility. Nat. Genet. 39:830–32 [Google Scholar]
  184. Deuring JJ, Fuhler GM, Konstantinov SR, Peppelenbosch MP, Kuipers EJ. 183.  et al. 2014. Genomic ATG16L1 risk allele-restricted Paneth cell ER stress in quiescent Crohn's disease. Gut 63:1081–91 [Google Scholar]
  185. Cao SS, Wang M, Harrington JC, Chuang BM, Eckmann L, Kaufman RJ. 184.  2014. Phosphorylation of eIF2α is dispensable for differentiation but required at a posttranscriptional level for Paneth cell function and intestinal homeostasis in mice. Inflamm. Bowel Dis. 20:712–22 [Google Scholar]
  186. Heazlewood CK, Cook MC, Eri R, Price GR, Tauro SB. 185.  et al. 2008. Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLOS Med. 5:e54 [Google Scholar]
  187. Zhao F, Edwards R, Dizon D, Afrasiabi K, Mastroianni JR. 186.  et al. 2010. Disruption of Paneth and goblet cell homeostasis and increased endoplasmic reticulum stress in Agr2−/− mice. Dev. Biol. 338:270–79 [Google Scholar]
  188. Hino K, Saito A, Asada R, Kanemoto S, Imaizumi K. 187.  2014. Increased susceptibility to dextran sulfate sodium-induced colitis in the endoplasmic reticulum stress transducer OASIS deficient mice. PLOS ONE 9:e88048 [Google Scholar]
  189. Cao SS, Zimmermann EM, Chuang BM, Song B, Nwokoye A. 188.  et al. 2013. The unfolded protein response and chemical chaperones reduce protein misfolding and colitis in mice. Gastroenterology 144:989–1000.e6 [Google Scholar]
  190. Das I, Png CW, Oancea I, Hasnain SZ, Lourie R. 189.  et al. 2013. Glucocorticoids alleviate intestinal ER stress by enhancing protein folding and degradation of misfolded proteins. J. Exp. Med. 210:1201–16 [Google Scholar]
  191. Hasnain SZ, Tauro S, Das I, Tong H, Chen AC. 190.  et al. 2013. IL-10 promotes production of intestinal mucus by suppressing protein misfolding and endoplasmic reticulum stress in goblet cells. Gastroenterology 144:357–68.e9 [Google Scholar]
  192. Paton AW, Beddoe T, Thorpe CM, Whisstock JC, Wilce MC. 191.  et al. 2006. AB5 subtilase cytotoxin inactivates the endoplasmic reticulum chaperone BiP. Nature 443:548–52 [Google Scholar]
  193. Yamazaki H, Hiramatsu N, Hayakawa K, Tagawa Y, Okamura M. 192.  et al. 2009. Activation of the Akt-NF-κB pathway by subtilase cytotoxin through the ATF6 branch of the unfolded protein response. J. Immunol. 183:1480–87 [Google Scholar]
  194. Martin FP, Dumas ME, Wang Y, Legido-Quigley C, Yap IK. 193.  et al. 2007. A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model. Mol. Syst. Biol. 3:112 [Google Scholar]
  195. van der Linden SM, Valkenburg HA, de Jongh BM, Cats A. 194.  1984. The risk of developing ankylosing spondylitis in HLA-B27 positive individuals. A comparison of relatives of spondylitis patients with the general population. Arthritis Rheum. 27:241–49 [Google Scholar]
  196. Turner MJ, Sowders DP, DeLay ML, Mohapatra R, Bai S. 195.  et al. 2005. HLA-B27 misfolding in transgenic rats is associated with activation of the unfolded protein response. J. Immunol. 175:2438–48 [Google Scholar]
  197. Turner MJ, Delay ML, Bai S, Klenk E, Colbert RA. 196.  2007. HLA–B27 up-regulation causes accumulation of misfolded heavy chains and correlates with the magnitude of the unfolded protein response in transgenic rats: implications for the pathogenesis of spondylarthritis-like disease. Arthritis Rheum. 56:215–23 [Google Scholar]
  198. Hammer RE, Maika SD, Richardson JA, Tang JP, Taurog JD. 197.  1990. Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human β2m: an animal model of HLA-B27-associated human disorders. Cell 63:1099–112 [Google Scholar]
  199. DeLay ML, Turner MJ, Klenk EI, Smith JA, Sowders DP, Colbert RA. 198.  2009. HLA-B27 misfolding and the unfolded protein response augment interleukin-23 production and are associated with Th17 activation in transgenic rats. Arthritis Rheum. 60:2633–43 [Google Scholar]
  200. Qiu Q, Zheng Z, Chang L, Zhao YS, Tan C. 199.  et al. 2013. Toll-like receptor-mediated IRE1α activation as a therapeutic target for inflammatory arthritis. EMBO J. 32:2477–90 [Google Scholar]
  201. Osorio F, Lambrecht B, Janssens S. 200.  2013. The UPR and lung disease. Semin. Immunopathol. 35:293–306 [Google Scholar]
  202. Bartoszewski R, Rab A, Jurkuvenaite A, Mazur M, Wakefield J. 201.  et al. 2008. Activation of the unfolded protein response by ΔF508 CFTR. Am. J. Respir. Cell Mol. Biol. 39:448–57 [Google Scholar]
  203. Blohmke CJ, Mayer ML, Tang AC, Hirschfeld AF, Fjell CD. 202.  et al. 2012. Atypical activation of the unfolded protein response in cystic fibrosis airway cells contributes to p38 MAPK-mediated innate immune responses. J. Immunol. 189:5467–75 [Google Scholar]
  204. Perez A, Issler AC, Cotton CU, Kelley TJ, Verkman AS, Davis PB. 203.  2007. CFTR inhibition mimics the cystic fibrosis inflammatory profile. Am. J. Physiol. Lung Cell. Mol. Physiol. 292:L383–95 [Google Scholar]
  205. Luciani A, Villella VR, Esposito S, Brunetti-Pierri N, Medina D. 204.  et al. 2010. Defective CFTR induces aggresome formation and lung inflammation in cystic fibrosis through ROS-mediated autophagy inhibition. Nat. Cell Biol. 12:863–75 [Google Scholar]
  206. Moffatt MF, Kabesch M, Liang L, Dixon AL, Strachan D. 205.  et al. 2007. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 448:470–73 [Google Scholar]
  207. Cantero-Recasens G, Fandos C, Rubio-Moscardo F, Valverde MA, Vicente R. 206.  2010. The asthma-associated ORMDL3 gene product regulates endoplasmic reticulum-mediated calcium signaling and cellular stress. Hum. Mol. Genet. 19:111–21 [Google Scholar]
  208. Miller M, Tam AB, Cho JY, Doherty TA, Pham A. 207.  et al. 2012. ORMDL3 is an inducible lung epithelial gene regulating metalloproteases, chemokines, OAS, and ATF6. PNAS 109:16648–53 [Google Scholar]
  209. Mahn K, Hirst SJ, Ying S, Holt MR, Lavender P. 208.  et al. 2009. Diminished sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) expression contributes to airway remodelling in bronchial asthma. PNAS 106:10775–80 [Google Scholar]
  210. Martino ME, Olsen JC, Fulcher NB, Wolfgang MC, O'Neal WK, Ribeiro CM. 209.  2009. Airway epithelial inflammation-induced endoplasmic reticulum Ca2+ store expansion is mediated by X-box binding protein-1. J. Biol. Chem. 284:14904–13 [Google Scholar]
  211. Makhija L, Krishnan V, Rehman R, Chakraborty S, Maity S. 210.  et al. 2013. Chemical chaperones mitigate experimental asthma by attenuating endoplasmic reticulum stress. Am. J. Respir. Cell Mol. Biol. 50:923–31 [Google Scholar]
  212. Lukacs NW, Tekkanat KK, Berlin A, Hogaboam CM, Miller A. 211.  et al. 2001. Respiratory syncytial virus predisposes mice to augmented allergic airway responses via IL-13-mediated mechanisms. J. Immunol. 167:1060–65 [Google Scholar]
/content/journals/10.1146/annurev-immunol-032414-112116
Loading
/content/journals/10.1146/annurev-immunol-032414-112116
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error