T cells carry out the formidable task of identifying small numbers of foreign antigenic peptides rapidly and specifically against a very noisy environmental background of endogenous self-peptides. Early steps in T cell activation have thus fascinated biologists and are among the best-studied models of cell stimulation. This remarkable process, critical in adaptive immune responses, approaches and even seems to exceed the limitations set by the physical laws ruling molecular behavior. Despite the enormous amount of information concerning the nature of molecules involved in the T cell antigen receptor (TCR) signal transduction network, and the description of the nanoscale organization and real-time analysis of T cell responses, the general principles of information gathering and processing remain incompletely understood. Here we review currently accepted key data on TCR function, discuss the limitations of current research strategies, and suggest a novel model of TCR triggering and a few promising ways of going further into the integration of available data.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Birnbaum ME, Mendoza JL, Sethi DK, Dong S, Glanville J. 1.  et al. 2014. Deconstructing the peptide-MHC specificity of T cell recognition. Cell 157:1073–87 [Google Scholar]
  2. Mazza C, Auphan-Anezin N, Gregoire C, Guimezanes A, Kellenberger C. 2.  et al. 2007. How much can a T-cell antigen receptor adapt to structurally distinct antigenic peptides?. EMBO J. 26:1972–83 [Google Scholar]
  3. Pitcher LA, Young JA, Mathis MA, Wrage PC, Bartok B, van Oers NS. 3.  2003. The formation and functions of the 21- and 23-kDa tyrosine-phosphorylated TCR ζ subunits. Immunol. Rev. 191:47–61 [Google Scholar]
  4. Moran AE, Holzapfel KL, Xing Y, Cunningham NR, Maltzman JS. 4.  et al. 2011. T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. J. Exp. Med. 208:1279–89 [Google Scholar]
  5. Hochweller K, Wabnitz GH, Samstag Y, Suffner J, Hammerling GJ, Garbi N. 5.  2010. Dendritic cells control T cell tonic signaling required for responsiveness to foreign antigen. PNAS 107:5931–36 [Google Scholar]
  6. Huang J, Brameshuber M, Zeng X, Xie J, Li QJ. 6.  et al. 2013. A single peptide-major histocompatibility complex ligand triggers digital cytokine secretion in CD4+ T cells. Immunity 39:846–57 [Google Scholar]
  7. Manz BN, Jackson BL, Petit RS, Dustin ML, Groves J. 7.  2011. T-cell triggering thresholds are modulated by the number of antigen within individual T-cell receptor clusters. PNAS 108:9089–94 [Google Scholar]
  8. O'Donoghue GP, Pielak RM, Smoligovets AA, Lin JJ, Groves JT. 8.  2013. Direct single molecule measurement of TCR triggering by agonist pMHC in living primary T cells. eLIFE 2:e00778 [Google Scholar]
  9. Houtman JC, Houghtling RA, Barda-Saad M, Toda Y, Samelson LE. 9.  2005. Early phosphorylation kinetics of proteins involved in proximal TCR-mediated signaling pathways. J. Immunol. 175:2449–58 [Google Scholar]
  10. Huse M, Klein LO, Girvin AT, Faraj JM, Li QJ. 10.  et al. 2007. Spatial and temporal dynamics of T cell receptor signaling with a photoactivatable agonist. Immunity 27:76–88 [Google Scholar]
  11. Brodovitch A, Bongrand P, Pierres A. 11.  2013. T lymphocytes sense antigens within seconds and make a decision within one minute. J. Immunol. 191:2064–71 [Google Scholar]
  12. van der Merwe PA, Dushek O. 12.  2011. Mechanisms for T cell receptor triggering. Nat. Rev. Immunol. 11:47–55 [Google Scholar]
  13. Malissen B. 13.  2003. An evolutionary and structural perspective on T cell antigen receptor function. Immunol. Rev. 191:7–27 [Google Scholar]
  14. Brooks AJ, Dai W, O'Mara ML, Abankwa D, Chhabra Y. 14.  et al. 2014. Mechanism of activation of protein kinase JAK2 by the growth hormone receptor. Science 344:1249783 [Google Scholar]
  15. DeFord-Watts LM, Dougall DS, Belkaya S, Johnson BA, Eitson JL. 15.  et al. 2011. The CD3 ζ subunit contains a phosphoinositide-binding motif that is required for the stable accumulation of TCR-CD3 complex at the immunological synapse. J. Immunol. 186:6839–47 [Google Scholar]
  16. Xu C, Gagnon E, Call ME, Schnell JR, Schwieters CD. 16.  et al. 2008. Regulation of T cell receptor activation by dynamic membrane binding of the CD3ε cytoplasmic tyrosine-based motif. Cell 135:702–13 [Google Scholar]
  17. Bettini ML, Guy C, Dash P, Vignali KM, Hamm DE. 17.  et al. 2014. Membrane association of the CD3ε signaling domain is required for optimal T cell development and function. J. Immunol. 193:258–67 [Google Scholar]
  18. Aivazian D, Stern LJ. 18.  2000. Phosphorylation of T cell receptor ζ is regulated by a lipid dependent folding transition. Nat. Struct. Biol. 7:1023–26 [Google Scholar]
  19. Gil D, Schamel WW, Montoya M, Sanchez-Madrid F, Alarcon B. 19.  2002. Recruitment of Nck by CD3 epsilon reveals a ligand-induced conformational change essential for T cell receptor signaling and synapse formation. Cell 109:901–12 [Google Scholar]
  20. Szymczak AL, Workman CJ, Gil D, Dilioglou S, Vignali KM. 20.  et al. 2005. The CD3ε proline-rich sequence, and its interaction with Nck, is not required for T cell development and function. J. Immunol. 175:270–75 [Google Scholar]
  21. Mingueneau M, Sansoni A, Gregoire C, Roncagalli R, Aguado E. 21.  et al. 2008. The proline-rich sequence of CD3ε controls T cell antigen receptor expression on and signaling potency in preselection CD4+CD8+ thymocytes. Nat. Immunol. 9:522–32 [Google Scholar]
  22. Zhang H, Cordoba SP, Dushek O, van der Merwe PA. 22.  2011. Basic residues in the T-cell receptor ζ cytoplasmic domain mediate membrane association and modulate signaling. PNAS 108:19323–28 [Google Scholar]
  23. Fernandes RA, Yu C, Carmo AM, Evans EJ, van der Merwe PA, Davis SJ. 23.  2010. What controls T cell receptor phosphorylation?. Cell 142:668–69 [Google Scholar]
  24. Garcia KC, Adams EJ. 24.  2005. How the T cell receptor sees antigen—a structural view. Cell 122:333–36 [Google Scholar]
  25. Sadelain M, Brentjens R, Riviere I. 25.  2013. The basic principles of chimeric antigen receptor design. Cancer Discov. 3:388–98 [Google Scholar]
  26. Granier S, Kobilka B. 26.  2012. A new era of GPCR structural and chemical biology. Nat. Chem. Biol. 8:670–73 [Google Scholar]
  27. Mitra AK, Celia H, Ren G, Luz JG, Wilson IA, Teyton L. 27.  2004. Supine orientation of a murine MHC class I molecule on the membrane bilayer. Curr. Biol. 14:718–24 [Google Scholar]
  28. Birnbaum ME, Berry R, Hsiao YS, Chen Z, Shingu-Vazquez MA. 28.  et al. 2014. Molecular architecture of the αβ T cell receptor-CD3 complex. PNAS 111:17576–81 [Google Scholar]
  29. Springer TA. 29.  1990. Adhesion receptors of the immune system. Nature 346:425–34 [Google Scholar]
  30. Yin Y, Wang XX, Mariuzza RA. 30.  2012. Crystal structure of a complete ternary complex of T-cell receptor, peptide-MHC, and CD4. PNAS 109:5405–10 [Google Scholar]
  31. Malissen B. 31.  1996. Immunology. Two faces are better than one. Nature 384:518–19 [Google Scholar]
  32. Nika K, Soldani C, Salek M, Paster W, Gray A. 32.  et al. 2010. Constitutively active Lck kinase in T cells drives antigen receptor signal transduction. Immunity 32:766–77 [Google Scholar]
  33. Germain RN, Stefanova I. 33.  1999. The dynamics of T cell receptor signaling: complex orchestration and the key roles of tempo and cooperation. Annu. Rev. Immunol. 17:467–522 [Google Scholar]
  34. Stepanek O, Prabhakar AS, Osswald C, King CG, Bulek A. 34.  et al. 2014. Coreceptor scanning by the T cell receptor provides a mechanism for T cell tolerance. Cell 159:333–45 [Google Scholar]
  35. Lin SY, Ardouin L, Gillet A, Malissen M, Malissen B. 35.  1997. The single positive T cells found in CD3-ζ/η−/− mice overtly react with self-major histocompatibility complex molecules upon restoration of normal surface density of T cell receptor–CD3 complex. J. Exp. Med. 185:707–15 [Google Scholar]
  36. Aguado E, Richelme S, Nunez-Cruz S, Miazek A, Mura A-M. 36.  et al. 2002. Induction of T helper type 2 immunity by a point mutation in the LAT adaptor. Science 296:2036–40 [Google Scholar]
  37. Madrenas J, Wange RL, Wang JL, Isakov N, Samelson LE, Germain RN. 37.  1995. Zeta phosphorylation without ZAP-70 activation induced by TCR antagonists or partial agonists. Science 267:515–18 [Google Scholar]
  38. Yan Q, Barros T, Visperas PR, Deindl S, Kadlecek TA. 38.  et al. 2013. Structural basis for activation of ZAP-70 by phosphorylation of the SH2-kinase linker. Mol. Cell. Biol. 33:2188–201 [Google Scholar]
  39. Chakraborty AK, Weiss A. 39.  2014. Insights into the initiation of TCR signaling. Nat. Immunol. 15:798–807 [Google Scholar]
  40. Lewis LA, Chung CD, Chen J, Parnes JR, Moran M. 40.  et al. 1997. The Lck SH2 phosphotyrosine binding site is critical for efficient TCR-induced processive tyrosine phosphorylation of the zeta-chain and IL-2 production. J. Immunol. 159:2292–300 [Google Scholar]
  41. Meng Y, Roux B. 41.  2014. Locking the active conformation of c-SRC kinase through the phosphorylation of the activation loop. J. Mol. Biol. 426:423–35 [Google Scholar]
  42. Azzam HS, Grinberg A, Lui K, Shen H, Shores EW, Love PE. 42.  1998. CD5 expression is developmentally regulated by T cell receptor (TCR) signals and TCR avidity. J. Exp. Med. 188:2301–11 [Google Scholar]
  43. Mandl JN, Monteiro JP, Vrisekoop N, Germain RN. 43.  2013. T cell-positive selection uses self-ligand binding strength to optimize repertoire recognition of foreign antigens. Immunity 38:263–74 [Google Scholar]
  44. Fulton RB, Hamilton SE, Xing Y, Best JA, Goldrath AW. 44.  et al. 2014. The TCR's sensitivity to self peptide-MHC dictates the ability of naive CD8 T cells to respond to foreign antigens. Nat. Immunol. 16:107–17 [Google Scholar]
  45. Hogquist KA, Jameson SC. 45.  2014. The self-obsession of T cells: how TCR signaling thresholds affect fate ‘decisions’ and effector function. Nat. Immunol. 15:815–23 [Google Scholar]
  46. Persaud SP, Parker CR, Lo WL, Weber KS, Allen PM. 46.  2014. Intrinsic CD4+ T cell sensitivity and response to a pathogen are set and sustained by avidity for thymic and peripheral complexes of self peptide and MHC. Nat. Immunol. 15:266–74 [Google Scholar]
  47. Altan-Bonnet G, Germain RN. 47.  2005. Modeling T cell antigen discrimination based on feedback control of digital ERK responses. PLOS Biol. 3:e356 [Google Scholar]
  48. Gough DJ, Messina NL, Clarke CJ, Johnstone RW, Levy DE. 48.  2012. Constitutive type I interferon modulates homeostatic balance through tonic signaling. Immunity 36:166–74 [Google Scholar]
  49. Zehn D, Lee SY, Bevan MJ. 49.  2009. Complete but curtailed T-cell response to very low-affinity antigen. Nature 458:211–14 [Google Scholar]
  50. Dushek O, van der Merwe PA. 50.  2014. An induced rebinding model of antigen discrimination. Trends Immunol. 35:153–58 [Google Scholar]
  51. Feinerman O, Germain RN, Altan-Bonnet G. 51.  2008. Quantitative challenges in understanding ligand discrimination by αβ T cells. Mol. Immunol. 45:619–31 [Google Scholar]
  52. Pierres A, Benoliel AM, Bongrand P. 52.  1996. Measuring bonds between surface-associated molecules. J. Immunol. Methods 196:105–20 [Google Scholar]
  53. Robert P, Benoliel AM, Pierres A, Bongrand P. 53.  2007. What is the biological relevance of the specific bond properties revealed by single-molecule studies?. J. Mol. Recognit. 20:432–47 [Google Scholar]
  54. Chen S, Springer TA. 54.  2001. Selectin receptor-ligand bonds: formation limited by shear rate and dissociation governed by the Bell model. PNAS 98:950–55 [Google Scholar]
  55. Liu B, Chen W, Evavold BD, Zhu C. 56.  2014. Accumulation of dynamic catch bonds between TCR and agonist peptide-MHC triggers T cell signaling. Cell 157:357–68 [Google Scholar]
  56. Marshall BT, Long M, Piper JW, Yago T, McEver RP, Zhu C. 55.  2003. Direct observation of catch bonds involving cell-adhesion molecules. Nature 423:190–93 [Google Scholar]
  57. Lou J, Zhu C. 57.  2007. A structure-based sliding-rebinding mechanism for catch bonds. Biophys. J. 92:1471–85 [Google Scholar]
  58. Pereverzev YV, Prezhdo E, Sokurenko EV. 58.  2011. The two-pathway model of the biological catch-bond as a limit of the allosteric model. Biophys. J. 101:2026–36 [Google Scholar]
  59. Rakshit S, Zhang Y, Manibog K, Shafraz O, Sivasankar S. 59.  2012. Ideal, catch, and slip bonds in cadherin adhesion. PNAS 109:18815–20 [Google Scholar]
  60. Pincet F, Husson J. 60.  2005. The solution to the streptavidin-biotin paradox: the influence of history on the strength of single molecular bonds. Biophys. J. 89:4374–81 [Google Scholar]
  61. Marshall BT, Sarangapani KK, Lou J, McEver RP, Zhu C. 61.  2005. Force history dependence of receptor-ligand dissociation. Biophys. J. 88:1458–66 [Google Scholar]
  62. Lo Schiavo V, Robert P, Limozin L, Bongrand P. 62.  2012. Quantitative modeling assesses the contribution of bond strengthening, rebinding and force sharing to the avidity of biomolecule interactions. PLOS ONE 7:e44070 [Google Scholar]
  63. Sabri S, Pierres A, Benoliel AM, Bongrand P. 63.  1995. Influence of surface charges on cell adhesion: difference between static and dynamic conditions. Biochem. Cell Biol. 73:411–20 [Google Scholar]
  64. Huppa JB, Axmann M, Mortelmaier MA, Lillemeier BF, Newell EW. 64.  et al. 2010. TCR-peptide-MHC interactions in situ show accelerated kinetics and increased affinity. Nature 463:963–67 [Google Scholar]
  65. Huang J, Zarnitsyna VI, Liu B, Edwards LJ, Jiang N. 65.  et al. 2010. The kinetics of two-dimensional TCR and pMHC interactions determine T-cell responsiveness. Nature 464:932–36 [Google Scholar]
  66. Hopfield JJ. 66.  1974. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. PNAS 71:4135–39 [Google Scholar]
  67. McKeithan TW. 67.  1995. Kinetic proofreading in T-cell receptor signal transduction. PNAS 92:5042–46 [Google Scholar]
  68. George AJ, Stark J, Chan C. 68.  2005. Understanding specificity and sensitivity of T-cell recognition. Trends Immunol. 26:653–59 [Google Scholar]
  69. Dushek O, Das R, Coombs D. 69.  2009. A role for rebinding in rapid and reliable T cell responses to antigen. PLOS Comput. Biol. 5:e1000578 [Google Scholar]
  70. He HT, Bongrand P. 70.  2012. Membrane dynamics shape TCR-generated signaling. Front. Immunol. 3:90 [Google Scholar]
  71. Klotzsch E, Schutz GJ. 71.  2013. Improved ligand discrimination by force-induced unbinding of the T cell receptor from peptide-MHC. Biophys. J. 104:1670–75 [Google Scholar]
  72. Krol A, Grinfeldt MG, Levin SV, Smilgavichus AD. 72.  1990. Local mechanical oscillations of the cell surface within the range 0.2–30 Hz. Eur. Biophys. J. 19:93–99 [Google Scholar]
  73. Dobereiner HG, Dubin-Thaler BJ, Hofman JM, Xenias HS, Sims TN. 73.  et al. 2006. Lateral membrane waves constitute a universal dynamic pattern of motile cells. Phys. Rev. Lett. 97:038102 [Google Scholar]
  74. Pierres A, Benoliel AM, Touchard D, Bongrand P. 74.  2008. How cells tiptoe on adhesive surfaces before sticking. Biophys. J. 94:4114–22 [Google Scholar]
  75. Zidovska A, Sackmann E. 75.  2006. Brownian motion of nucleated cell envelopes impedes adhesion. Phys. Rev. Lett. 96:048103 [Google Scholar]
  76. Brodovitch A, Limozin L, Bongrand P, Pierres A. 76.  2014. Use of TIRF to monitor T-lymphocyte membrane dynamics with submicrometer and subsecond resolution. Cell. Mol. Bioeng. In press. doi: 10.1007/s12195-014-0361-8 [Google Scholar]
  77. Bashour KT, Gondarenko A, Chen H, Shen K, Liu X. 77.  et al. 2014. CD28 and CD3 have complementary roles in T-cell traction forces. PNAS 111:2241–46 [Google Scholar]
  78. Husson J, Chemin K, Bohineust A, Hivroz C, Henry N. 78.  2011. Force generation upon T cell receptor engagement. PLOS ONE 6:e19680 [Google Scholar]
  79. Kim ST, Takeuchi K, Sun ZY, Touma M, Castro CE. 79.  et al. 2009. The αβ T cell receptor is an anisotropic mechanosensor. J. Biol. Chem. 284:31028–37 [Google Scholar]
  80. Li YC, Chen BM, Wu PC, Cheng TL, Kao LS. 80.  et al. 2010. Cutting edge: Mechanical forces acting on T cells immobilized via the TCR complex can trigger TCR signaling. J. Immunol. 184:5959–63 [Google Scholar]
  81. Krogsgaard M, Davis MM. 81.  2005. How T cells ‘see’ antigen. Nat. Immunol. 6:239–45 [Google Scholar]
  82. Ma Z, Janmey PA, Finkel TH. 82.  2008. The receptor deformation model of TCR triggering. FASEB J. 22:1002–8 [Google Scholar]
  83. Kim ST, Shin Y, Brazin K, Mallis RJ, Sun ZY. 83.  et al. 2012. TCR mechanobiology: torques and tunable structures linked to early T cell signaling. Front. Immunol. 3:76 [Google Scholar]
  84. Horoyan M, Benoliel AM, Capo C, Bongrand P. 84.  1990. Localization of calcium and microfilament changes in mechanically stressed cells. Cell Biophys. 17:243–56 http://www.hal.inserm.fr/inserm-00401740/fr/ [Google Scholar]
  85. Grashoff C, Hoffman BD, Brenner MD, Zhou R, Parsons M. 85.  et al. 2010. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466:263–66 [Google Scholar]
  86. del Rio A, Perez-Jimenez R, Liu R, Roca-Cusachs P, Fernandez JM, Sheetz MP. 86.  2009. Stretching single talin rod molecules activates vinculin binding. Science 323:638–41 [Google Scholar]
  87. Judokusumo E, Tabdanov E, Kumari S, Dustin ML, Kam LC. 87.  2012. Mechanosensing in T lymphocyte activation. Biophys. J. 102:L5–7 [Google Scholar]
  88. Antonny B. 88.  2011. Mechanisms of membrane curvature sensing. Annu. Rev. Biochem. 80:101–23 [Google Scholar]
  89. Schmick M, Bastiaens PI. 89.  2014. The interdependence of membrane shape and cellular signal processing. Cell 156:1132–38 [Google Scholar]
  90. O'Connor RS, Hao X, Shen K, Bashour K, Akimova T. 90.  et al. 2012. Substrate rigidity regulates human T cell activation and proliferation. J. Immunol. 189:1330–39 [Google Scholar]
  91. Xie J, Huppa JB, Newell EW, Huang J, Ebert PJ. 91.  et al. 2012. Photocrosslinkable pMHC monomers stain T cells specifically and cause ligand-bound TCRs to be ‘preferentially’ transported to the cSMAC. Nat. Immunol. 13:674–80 [Google Scholar]
  92. Spencer DM, Wandless TJ, Schreiber SL, Crabtree GR. 92.  1993. Controlling signal transduction with synthetic ligands. Science 262:1019–24 [Google Scholar]
  93. Tan YX, Manz BN, Freedman TS, Zhang C, Shokat KM, Weiss A. 93.  2014. Inhibition of the kinase Csk in thymocytes reveals a requirement for actin remodeling in the initiation of full TCR signaling. Nat. Immunol. 15:186–94 [Google Scholar]
  94. Casas J, Brzostek J, Zarnitsyna VI, Hong JS, Wei Q. 94.  et al. 2014. Ligand-engaged TCR is triggered by Lck not associated with CD8 coreceptor. Nat. Commun. 5:5624 [Google Scholar]
  95. Hoerter JA, Brzostek J, Artyomov MN, Abel SM, Casas J. 95.  et al. 2013. Coreceptor affinity for MHC defines peptide specificity requirements for TCR interaction with coagonist peptide-MHC. J. Exp. Med. 210:1807–21 [Google Scholar]
  96. Krogsgaard M, Li QJ, Sumen C, Huppa JB, Huse M, Davis MM. 96.  2005. Agonist/endogenous peptide-MHC heterodimers drive T cell activation and sensitivity. Nature 434:238–43 [Google Scholar]
  97. Huppa JB, Gleimer M, Sumen C, Davis MM. 97.  2003. Continuous T cell receptor signaling required for synapse maintenance and full effector potential. Nat. Immunol. 4:749–55 [Google Scholar]
  98. Moreau HD, Bousso P. 98.  2014. Visualizing how T cells collect activation signals in vivo. Curr. Opin. Immunol. 26:56–62 [Google Scholar]
  99. Ardman B, Sikorski MA, Staunton DE. 99.  1992. CD43 interferes with T-lymphocyte adhesion. PNAS 89:5001–5 [Google Scholar]
  100. Bentley D, Toroian-Raymond A. 100.  1986. Disoriented pathfinding by pioneer neurone growth cones deprived of filopodia by cytochalasin treatment. Nature 323:712–15 [Google Scholar]
  101. Faix J, Rottner K. 101.  2006. The making of filopodia. Curr. Opin. Cell Biol. 18:18–25 [Google Scholar]
  102. Leupin O, Zaru R, Laroche T, Muller S, Valitutti S. 102.  2000. Exclusion of CD45 from the T-cell receptor signaling area in antigen-stimulated T lymphocytes. Curr. Biol. 10:277–80 [Google Scholar]
  103. Soler M, Merant C, Servant C, Fraterno M, Allasia C. 103.  et al. 1997. Leukosialin (CD43) behavior during adhesion of human monocytic THP-1 cells to red blood cells. J. Leukocyte Biol. 61:609–18 [Google Scholar]
  104. Sage PT, Varghese LM, Martinelli R, Sciuto TE, Kamei M. 104.  et al. 2012. Antigen recognition is facilitated by invadosome-like protrusions formed by memory/effector T cells. J. Immunol. 188:3686–99 [Google Scholar]
  105. Yokosuka T, Kobayashi W, Sakata-Sogawa K, Takamatsu M, Hashimoto-Tane A. 105.  et al. 2008. Spatiotemporal regulation of T cell costimulation by TCR-CD28 microclusters and protein kinase Cθ translocation. Immunity 29:589–601 [Google Scholar]
  106. Dustin ML. 106.  2009. The cellular context of T cell signaling. Immunity 30:482–92 [Google Scholar]
  107. Vardhana S, Choudhuri K, Varma R, Dustin ML. 107.  2010. Essential role of ubiquitin and TSG101 protein in formation and function of the central supramolecular activation cluster. Immunity 32:531–40 [Google Scholar]
  108. Choudhuri K, Llodra J, Roth EW, Tsai J, Gordo S. 108.  et al. 2014. Polarized release of T-cell-receptor-enriched microvesicles at the immunological synapse. Nature 507:118–23 [Google Scholar]
  109. Brossard C, Feuillet V, Schmitt A, Randriamampita C, Romao M. 109.  et al. 2005. Multifocal structure of the T cell–dendritic cell synapse. Eur. J. Immunol. 35:1741–53 [Google Scholar]
  110. Ueda H, Morphew MK, McIntosh JR, Davis MM. 110.  2011. CD4+ T-cell synapses involve multiple distinct stages. PNAS 108:17099–104 [Google Scholar]
  111. Roybal KT, Sinai P, Verkade P, Murphy RF, Wulfing C. 111.  2013. The actin-driven spatiotemporal organization of T-cell signaling at the system scale. Immunol. Rev. 256:133–47 [Google Scholar]
  112. Sanderson CJ, Glauert AM. 112.  1979. The mechanism of T-cell mediated cytotoxicity. VI. T-cell projections and their role in target cell killing. Immunology 36:119–29 [Google Scholar]
  113. Pratama A, Ramiscal RR, Silva DG, Das SK, Athanasopoulos V. 113.  et al. 2013. Roquin-2 shares functions with its paralog Roquin-1 in the repression of mRNAs controlling T follicular helper cells and systemic inflammation. Immunity 38:669–80 [Google Scholar]
  114. Liang Y, Cucchetti M, Roncagalli R, Yokosuka T, Malzac A. 114.  et al. 2013. The lymphoid lineage-specific actin-uncapping protein Rltpr is essential for costimulation via CD28 and the development of regulatory T cells. Nat. Immunol. 14:858–66 [Google Scholar]
  115. Fu G, Casas J, Rigaud S, Rybakin V, Lambolez F. 115.  et al. 2013. Themis sets the signal threshold for positive and negative selection in T-cell development. Nature 504:441–45 [Google Scholar]
  116. Roncagalli R, Hauri S, Fiore F, Liang Y, Chen Z. 116.  et al. 2014. Quantitative proteomics analysis of signalosome dynamics in primary T cells identifies the surface receptor CD6 as a Lat adaptor-independent TCR signaling hub. Nat. Immunol. 15:384–92 [Google Scholar]
  117. Malissen B, Gregoire C, Malissen M, Roncagalli R. 117.  2014. Integrative biology of T cell activation. Nat. Immunol. 15:790–97 [Google Scholar]
  118. Houtman JC, Yamaguchi H, Barda-Saad M, Braiman A, Bowden B. 118.  et al. 2006. Oligomerization of signaling complexes by the multipoint binding of GRB2 to both LAT and SOS1. Nat. Struct. Mol. Biol. 13:798–805 [Google Scholar]
  119. Sherman E, Barr V, Manley S, Patterson G, Balagopalan L. 119.  et al. 2011. Functional nanoscale organization of signaling molecules downstream of the T cell antigen receptor. Immunity 35:705–20 [Google Scholar]
  120. Kortum RL, Balagopalan L, Alexander CP, Garcia J, Pinski JM. 120.  et al. 2013. The ability of Sos1 to oligomerize the adaptor protein LAT is separable from its guanine nucleotide exchange activity in vivo. Sci. Signal. 6:ra99 [Google Scholar]
  121. Kleiman LB, Maiwald T, Conzelmann H, Lauffenburger DA, Sorger PK. 121.  2011. Rapid phospho-turnover by receptor tyrosine kinases impacts downstream signaling and drug binding. Mol. Cell 43:723–37 [Google Scholar]
  122. Woitt P. 122.  2006. Not Even Wrong. The Failure of String Theory and the Search for Unity in Physical Law New York: Basic Books [Google Scholar]
  123. Ellis G, Silk J. 123.  2014. Scientific method: Defend the integrity of physics. Nature 516:321–23 [Google Scholar]
  124. Purcell EM. 124.  1977. Life at low Reynolds number. Am. J. Phys. 45:3–11 [Google Scholar]
  125. Kemp ML, Wille L, Lewis CL, Nicholson LB, Lauffenburger DA. 125.  2007. Quantitative network signal combinations downstream of TCR activation can predict IL-2 production response. J. Immunol. 178:4984–92 [Google Scholar]
  126. van Panhuys N, Klauschen F, Germain RN. 126.  2014. T cell receptor-dependent signal intensity dominantly controls CD4+ T cell polarization in vivo. Immunity 41:63–74 [Google Scholar]
  127. Keller HU, Bessis M. 127.  1975. Migration and chemotaxis of anucleate cytoplasmic leukocyte fragments. Nature 258:723–24 [Google Scholar]
  128. Malawista SE, De Boisfleury Chevance A. 128.  1982. The cytokineplast: purified, stable, and functional motile machinery from human blood polymorphonuclear leukocytes. J. Cell Biol. 95:960–73 [Google Scholar]
  129. Ofer N, Mogilner A, Keren K. 129.  2011. Actin disassembly clock determines shape and speed of lamellipodial fragments. PNAS 108:20394–99 [Google Scholar]
  130. Na S, Collin O, Chowdhury F, Tay B, Ouyang M. 130.  et al. 2008. Rapid signal transduction in living cells is a unique feature of mechanotransduction. PNAS 105:6626–31 [Google Scholar]
  131. Randriamampita C, Mouchacca P, Malissen B, Marguet D, Trautmann A, Lellouch AC. 131.  2008. A novel ZAP-70 dependent FRET based biosensor reveals kinase activity at both the immunological synapse and the antisynapse. PLOS ONE 3:e1521 [Google Scholar]
  132. Brown GC, Kholodenko BN. 132.  1999. Spatial gradients of cellular phospho-proteins. FEBS Lett. 457:452–54 [Google Scholar]
  133. Vernay A, Schaub S, Guillas I, Bassilana M, Arkowitz RA. 133.  2012. A steep phosphoinositide bis-phosphate gradient forms during fungal filamentous growth. J. Cell Biol. 198:711–30 [Google Scholar]
  134. Mitrossilis D, Fouchard J, Pereira D, Postic F, Richert A. 134.  et al. 2010. Real-time single-cell response to stiffness. PNAS 107:16518–23 [Google Scholar]
  135. Grabovsky V, Feigelson S, Chen C, Bleijs DA, Peled A. 135.  et al. 2000. Subsecond induction of α4 integrin clustering by immobilized chemokines stimulates leukocyte tethering and rolling on endothelial vascular cell adhesion molecule 1 under flow conditions. J. Exp. Med. 192:495–506 [Google Scholar]
  136. Natarajan M, Lin KM, Hsueh RC, Sternweis PC, Ranganathan R. 136.  2006. A global analysis of cross-talk in a mammalian cellular signalling network. Nat. Cell Biol. 8:571–80 [Google Scholar]
  137. Purvis JE, Lahav G. 137.  2013. Encoding and decoding cellular information through signaling dynamics. Cell 152:945–56 [Google Scholar]
  138. Kedl RM, Kappler JW, Marrack P. 138.  2003. Epitope dominance, competition and T cell affinity maturation. Curr. Opin. Immunol. 15:120–27 [Google Scholar]
  139. Milner JD, Fazilleau N, McHeyzer-Williams M, Paul W. 139.  2010. Cutting edge: lack of high affinity competition for peptide in polyclonal CD4+ responses unmasks IL-4 production. J. Immunol. 184:6569–73 [Google Scholar]
  140. Huang S. 140.  2009. Reprogramming cell fates: reconciling rarity with robustness. BioEssays 31:546–60 [Google Scholar]
  141. Naldi A, Carneiro J, Chaouiya C, Thieffry D. 141.  2010. Diversity and plasticity of Th cell types predicted from regulatory network modelling. PLOS Comput. Biol. 6:e1000912 [Google Scholar]
  142. Bhalla US, Iyengar R. 142.  1999. Emergent properties of networks of biological signaling pathways. Science 283:381–87 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error