1932

Abstract

Systemic autoimmune diseases are characterized by specific targeting of a limited group of ubiquitously expressed autoantigens by the immune system. This review examines the mechanisms underlying their selection as immune targets. Initiation of autoimmune responses likely reflects the presentation of antigens with a distinct structure not previously encountered by the immune system, in a proimmune context (injury, malignancy, or infection). Causes of modified structure include somatic mutation and posttranslational modifications (including citrullination and proteolysis). Many autoantigens are components of multimolecular complexes, and some of the other components may provide adjuvant activity. Propagation of autoimmune responses appears to reflect a bidirectional interaction between the immune response and the target tissues in a mutually reinforcing cycle: Immune effector pathways generate additional autoantigen, which feeds further immune response. We propose that this resonance may be a critical principle underlying disease propagation, with specific autoantigens functioning as the hubs around which amplification occurs.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-032414-112205
2016-05-20
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/immunol/34/1/annurev-immunol-032414-112205.html?itemId=/content/journals/10.1146/annurev-immunol-032414-112205&mimeType=html&fmt=ahah

Literature Cited

  1. Tan EM. 1.  1997. Autoantibodies and autoimmunity: a three-decade perspective; a tribute to Henry G. Kunkel. Ann. N.Y. Acad. Sci. 815:1–14 [Google Scholar]
  2. Suber TL, Casciola-Rosen L, Rosen A. 2.  2008. Mechanisms of disease: autoantigens as clues to the pathogenesis of myositis. Nat. Clin. Pract. Rheumatol. 4:201–9 [Google Scholar]
  3. Srikanta S, Eisenbarth GS. 3.  1986. Islet cell antigens: initial studies of their biology and function. Mol. Biol. Med. 3:113–27 [Google Scholar]
  4. Satyamurti S, Drachman DB, Slone F. 4.  1975. Blockade of acetylcholine receptors: a model of myasthenia gravis. Science 187:955–57 [Google Scholar]
  5. Tan EM. 5.  1989. Antinuclear antibodies: diagnostic markers for autoimmune diseases and probes for cell biology. Adv. Immunol. 44:93–151 [Google Scholar]
  6. Arbuckle MR, McClain MT, Rubertone MV, Scofield RH, Dennis GJ. 6.  et al. 2003. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N. Engl. J. Med. 349:1526–33 [Google Scholar]
  7. Gorsuch AN, Spencer KM, Lister J, McNally JM, Dean BM. 7.  et al. 1981. Evidence for a long prediabetic period in type I (insulin-dependent) diabetes mellitus. Lancet 2:1363–65 [Google Scholar]
  8. Bruining GJ, Molenaar JL, Grobbee DE, Hofman A, Scheffer GJ. 8.  et al. 1989. Ten-year follow-up study of islet-cell antibodies and childhood diabetes mellitus. Lancet 1:1100–3 [Google Scholar]
  9. Nielen MM, van Schaardenburg D, Reesink HW, van de Stadt RJ, van der Horst-Bruinsma IE. 9.  et al. 2004. Specific autoantibodies precede the symptoms of rheumatoid arthritis: a study of serial measurements in blood donors. Arthritis Rheum. 50:380–86 [Google Scholar]
  10. Kokkonen H, Mullazehi M, Berglin E, Hallmans G, Wadell G. 10.  et al. 2011. Antibodies of IgG, IgA and IgM isotypes against cyclic citrullinated peptide precede the development of rheumatoid arthritis. Arthritis Res. Ther. 13:R13 [Google Scholar]
  11. Gan RW, Trouw LA, Shi J, Toes RE, Huizinga TW. 11.  et al. 2015. Anti-carbamylated protein antibodies are present prior to rheumatoid arthritis and are associated with its future diagnosis. J. Rheumatol. 42:572–79 [Google Scholar]
  12. Sokolove J, Bromberg R, Deane KD, Lahey LJ, Derber LA. 12.  et al. 2012. Autoantibody epitope spreading in the pre-clinical phase predicts progression to rheumatoid arthritis. PLOS ONE 7:e35296 [Google Scholar]
  13. Rosen A, Casciola-Rosen L. 13.  2009. Autoantigens in systemic autoimmunity: critical partner in pathogenesis. J. Intern. Med. 265:625–31 [Google Scholar]
  14. Stollar BD. 14.  1967. Studies on nucleoprotein determinants for systemic lupus erythematosus serum. J. Immunol. 99:959–65 [Google Scholar]
  15. Mohan C, Adams S, Stanik V, Datta SK. 15.  1993. Nucleosome: a major immunogen for pathogenic autoantibody-inducing T cells of lupus. J. Exp. Med. 177:1367–81 [Google Scholar]
  16. Targoff IN, Reichlin M. 16.  1985. The association between Mi-2 antibodies and dermatomyositis. Arthritis Rheum. 28:796–803 [Google Scholar]
  17. Reichlin M, Mattioli M. 17.  1972. Correlation of a precipitin reaction to an RNA-protein antigen and a low prevalence of nephritis in patients with systemic lupus erythematosus. N. Engl. J. Med. 286:908–11 [Google Scholar]
  18. Schur PH, Monroe M. 18.  1969. Antibodies to ribonucleic acid in systemic lupus erythematosus. PNAS 63:1108–12 [Google Scholar]
  19. Hardin JA, Craft JE. 19.  1987. Patterns of autoimmunity to nucleoproteins in patients with systemic lupus erythematosus. Rheum. Dis. Clin. North Am. 13:37–46 [Google Scholar]
  20. Bernstein RM, Morgan SH, Chapman J, Bunn CC, Mathews MB. 20.  et al. 1984. Anti-Jo-1 antibody: a marker for myositis with interstitial lung disease. Br. Med. J. 289:151–52 [Google Scholar]
  21. Harris EN, Gharavi AE, Hughes GR. 21.  1985. Anti-phospholipid antibodies. Clin. Rheum. Dis. 11:591–609 [Google Scholar]
  22. Gupta SK, Niles JL, McCluskey RT, Arnaout MA. 22.  1990. Identity of Wegener's autoantigen (p29) with proteinase 3 and myeloblastin. Blood 76:2162 [Google Scholar]
  23. Grader-Beck T, Boin F, von Gunten S, Smith D, Rosen A, Bochner BS. 23.  2011. Antibodies recognising sulfated carbohydrates are prevalent in systemic sclerosis and associated with pulmonary vascular disease. Ann. Rheum. Dis. 70:2218–24 [Google Scholar]
  24. Tan EM. 24.  1991. Autoantibodies in pathology and cell biology. Cell 67:841–42 [Google Scholar]
  25. van Venrooij WJ, van Beers JJ, Pruijn GJ. 25.  2011. Anti-CCP antibodies: the past, the present and the future. Nat. Rev. Rheumatol. 7:391–98 [Google Scholar]
  26. Koffler D, Carr R, Agnello V, Thoburn R, Kunkel HG. 26.  1971. Antibodies to polynucleotides in human sera: antigenic specificity and relation to disease. J. Exp. Med. 134:294–312 [Google Scholar]
  27. Hughes GR. 27.  1975. Frequency of anti-DNA antibodies in SLE, RA and other diseases: experience with the ammonium sulphate precipitation technique. Scand. J. Rheumatol. Suppl. 11:42–51 [Google Scholar]
  28. Malladi AS, Sack KE, Shiboski SC, Shiboski CH, Baer AN. 28.  et al. 2012. Primary Sjogren's syndrome as a systemic disease: a study of participants enrolled in an international Sjogren's syndrome registry. Arthritis Care Res. 64:911–18 [Google Scholar]
  29. Elkon KB, Gharavi AE, Hughes GR, Moutsoupoulos HM. 29.  1984. Autoantibodies in the sicca syndrome (primary Sjogren's syndrome). Ann. Rheum. Dis. 43:243–45 [Google Scholar]
  30. Kallenberg CG, Mulder AH, Tervaert JW. 30.  1992. Antineutrophil cytoplasmic antibodies: a still-growing class of autoantibodies in inflammatory disorders. Am. J. Med. 93:675–82 [Google Scholar]
  31. Jennette JC, Falk RJ. 31.  1990. Antineutrophil cytoplasmic autoantibodies and associated diseases: a review. Am. J. Kidney Dis. 15:517–29 [Google Scholar]
  32. Steen VD, Powell DL, Medsger TA Jr. 32.  1988. Clinical correlations and prognosis based on serum autoantibodies in patients with systemic sclerosis. Arthritis Rheum. 31:196–203 [Google Scholar]
  33. Eisenberg RA, Craven SY, Warren RW, Cohen PL. 33.  1987. Stochastic control of anti-SM autoantibodies in MRL/Mp-lpr/lpr mice. J. Clin. Investig. 80:691–97 [Google Scholar]
  34. Sato S, Hoshino K, Satoh T, Fujita T, Kawakami Y. 34.  et al. 2009. RNA helicase encoded by melanoma differentiation–associated gene 5 is a major autoantigen in patients with clinically amyopathic dermatomyositis: association with rapidly progressive interstitial lung disease. Arthritis Rheum. 60:2193–200 [Google Scholar]
  35. Fiorentino D, Chung L, Zwerner J, Rosen A, Casciola-Rosen L. 35.  2011. The mucocutaneous and systemic phenotype of dermatomyositis patients with antibodies to MDA5 (CADM-140): a retrospective study. J. Am. Acad. Dermatol. 65:25–34 [Google Scholar]
  36. Targoff IN, Arnett FC. 36.  1990. Clinical manifestations in patients with antibody to PL-12 antigen (alanyl-tRNA synthetase). Am. J. Med. 88:241–51 [Google Scholar]
  37. Harley JB, Gaither KK. 37.  1988. Autoantibodies. Rheum. Dis. Clin. North Am. 14:43–56 [Google Scholar]
  38. Greidinger EL, Flaherty KT, White B, Rosen A, Wigley FM, Wise RA. 38.  1998. African-American race and antibodies to topoisomerase I are associated with increased severity of scleroderma lung disease. Chest 114:801–7 [Google Scholar]
  39. Targoff IN. 39.  2006. Myositis specific autoantibodies. Curr. Rheumatol. Rep. 8:196–203 [Google Scholar]
  40. Armistead J, Triggs-Raine B. 40.  2014. Diverse diseases from a ubiquitous process: the ribosomopathy paradox. FEBS Lett. 588:1491–500 [Google Scholar]
  41. White PJ, Gardner WD, Hoch SO. 41.  1981. Identification of the immunogenically active components of the Sm and RNP antigens. PNAS 78:626–30 [Google Scholar]
  42. Muller S, Briand JP, Barakat S, Lagueux J, Poirier GG. 42.  et al. 1994. Autoantibodies reacting with poly(ADP-ribose) and with a zinc-finger functional domain of poly(ADP-ribose) polymerase involved in the recognition of damaged DNA. Clin. Immunol. Immunopathol. 73:187–96 [Google Scholar]
  43. Mimori T, Akizuki M, Yamagata H, Inada S, Yoshida S, Homma M. 43.  1981. Characterization of a high molecular weight acidic nuclear protein recognized by autoantibodies in sera from patients with polymyositis-scleroderma overlap. J. Clin. Investig. 68:611–20 [Google Scholar]
  44. Casciola-Rosen LA, Pluta AF, Plotz PH, Cox AE, Morris S. 44.  et al. 2001. The DNA mismatch repair enzyme PMS1 is a myositis-specific autoantigen. Arthritis Rheum. 44:389–96 [Google Scholar]
  45. Reeves WH, Nigam SK, Blobel G. 45.  1986. Human autoantibodies reactive with the signal-recognition particle. PNAS 83:9507–11 [Google Scholar]
  46. Mathews MB, Bernstein RM. 46.  1983. Myositis autoantibody inhibits histidyl-tRNA synthetase: a model for autoimmunity. Nature 304:177–79 [Google Scholar]
  47. Bluthner M, Bautz FA. 47.  1992. Cloning and characterization of the cDNA coding for a polymyositis-scleroderma overlap syndrome-related nucleolar 100-kD protein. J. Exp. Med. 176:973–80 [Google Scholar]
  48. Reimer G, Rose KM, Scheer U, Tan EM. 48.  1987. Autoantibody to RNA polymerase I in scleroderma sera. J. Clin. Investig. 79:65–72 [Google Scholar]
  49. Satoh M, Ajmani AK, Ogasawara T, Langdon JJ, Hirakata M. 49.  et al. 1994. Autoantibodies to RNA polymerase II are common in systemic lupus erythematosus and overlap syndrome: Specific recognition of the phosphorylated (IIO) form by a subset of human sera. J. Clin. Investig. 94:1981–89 [Google Scholar]
  50. Kuwana M, Kaburaki J, Mimori T, Tojo T, Homma M. 50.  1993. Autoantibody reactive with three classes of RNA polymerases in sera from patients with systemic sclerosis. J. Clin. Investig. 91:1399–404 [Google Scholar]
  51. Earnshaw W, Bordwell B, Marino C, Rothfield N. 51.  1986. Three human chromosomal autoantigens are recognized by sera from patients with anti-centromere antibodies. J. Clin. Investig. 77:426–30 [Google Scholar]
  52. Deutscher SL, Keene JD. 52.  1988. A sequence-specific conformational epitope on U1 RNA is recognized by a unique autoantibody. PNAS 85:3299–303 [Google Scholar]
  53. Burke KP, Cox AL. 53.  2010. Hepatitis C virus evasion of adaptive immune responses: a model for viral persistence. Immunol. Res. 47:216–27 [Google Scholar]
  54. Joseph CG, Darrah E, Shah AA, Skora AD, Casciola-Rosen LA. 54.  et al. 2014. Association of the autoimmune disease scleroderma with an immunologic response to cancer. Science 343:152–57 [Google Scholar]
  55. Casciola-Rosen LA, Anhalt G, Rosen A. 55.  1994. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J. Exp. Med. 179:1317–30 [Google Scholar]
  56. Garcia-Romo GS, Caielli S, Vega B, Connolly J, Allantaz F. 56.  et al. 2011. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci. Transl. Med. 3:73ra20 [Google Scholar]
  57. Kaplan MJ. 57.  2011. Neutrophils in the pathogenesis and manifestations of SLE. Nat. Rev. Rheumatol. 7:691–99 [Google Scholar]
  58. Bennett L, Palucka AK, Arce E, Cantrell V, Borvak J. 58.  et al. 2003. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J. Exp. Med. 197:711–23 [Google Scholar]
  59. Leadbetter EA, Rifkin IR, Hohlbaum AM, Beaudette BC, Shlomchik MJ, Marshak-Rothstein A. 59.  2002. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416:603–7 [Google Scholar]
  60. Lau CM, Broughton C, Tabor AS, Akira S, Flavell RA. 60.  et al. 2005. RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J. Exp. Med. 202:1171–77 [Google Scholar]
  61. Christensen SR, Shupe J, Nickerson K, Kashgarian M, Flavell RA, Shlomchik MJ. 61.  2006. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 25:417–28 [Google Scholar]
  62. Ehlers M, Fukuyama H, McGaha TL, Aderem A, Ravetch JV. 62.  2006. TLR9/MyD88 signaling is required for class switching to pathogenic IgG2a and 2b autoantibodies in SLE. J. Exp. Med. 203:553–61 [Google Scholar]
  63. Nundel K, Green NM, Shaffer AL, Moody KL, Busto P. 63.  et al. 2015. Cell-intrinsic expression of TLR9 in autoreactive B cells constrains BCR/TLR7-dependent responses. J. Immunol. 194:2504–12 [Google Scholar]
  64. McCartney SA, Vermi W, Lonardi S, Rossini C, Otero K. 64.  et al. 2011. RNA sensor-induced type I IFN prevents diabetes caused by a beta cell-tropic virus in mice. J. Clin. Investig. 121:1497–507 [Google Scholar]
  65. Funabiki M, Kato H, Miyachi Y, Toki H, Motegi H. 65.  et al. 2014. Autoimmune disorders associated with gain of function of the intracellular sensor MDA5. Immunity 40:199–212 [Google Scholar]
  66. Gehrke N, Mertens C, Zillinger T, Wenzel J, Bald T. 66.  et al. 2013. Oxidative damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and potentiates STING-dependent immune sensing. Immunity 39:482–95 [Google Scholar]
  67. Kim SJ, Gershov D, Ma X, Brot N, Elkon KB. 67.  2002. I-PLA2 activation during apoptosis promotes the exposure of membrane lysophosphatidylcholine leading to binding by natural immunoglobulin M antibodies and complement activation. J. Exp. Med. 196:655–65 [Google Scholar]
  68. Korb LC, Ahearn JM. 68.  1997. C1q binds directly and specifically to surface blebs of apoptotic human keratinocytes: complement deficiency and systemic lupus erythematosus revisited. J. Immunol. 158:4525–28 [Google Scholar]
  69. Botto M, Dell’Agnola C, Bygrave AE, Thompson EM, Cook HT. 69.  et al. 1998. Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat. Genet. 19:56–59 [Google Scholar]
  70. Pawaria S, Moody K, Busto P, Nundel K, Choi CH. 70.  et al. 2015. Cutting edge: DNase II deficiency prevents activation of autoreactive B cells by double-stranded DNA endogenous ligands. J. Immunol. 194:1403–7 [Google Scholar]
  71. Pogue GP, Hofmann J, Duncan R, Best JM, Etherington J. 71.  et al. 1996. Autoantigens interact with cis-acting elements of rubella virus RNA. J. Virol. 70:6269–77 [Google Scholar]
  72. Vashist S, Bhullar D, Vrati S. 72.  2011. La protein can simultaneously bind to both 3′- and 5′-noncoding regions of Japanese encephalitis virus genome. DNA Cell Biol. 30:339–46 [Google Scholar]
  73. Gross H, Hennard C, Masouris I, Cassel C, Barth S. 73.  et al. 2012. Binding of the heterogeneous ribonucleoprotein K (hnRNP K) to the Epstein-Barr virus nuclear antigen 2 (EBNA2) enhances viral LMP2A expression. PLOS ONE 7:e42106 [Google Scholar]
  74. Nakhasi HL, Ramanujam M, Atreya CD, Hobman TC, Lee N. 74.  et al. 2001. Rubella virus glycoprotein interaction with the endoplasmic reticulum calreticulin and calnexin. Arch. Virol. 146:1–14 [Google Scholar]
  75. Khadka S, Vangeloff AD, Zhang C, Siddavatam P, Heaton NS. 75.  et al. 2011. A physical interaction network of dengue virus and human proteins. Mol. Cell Proteomics 10:M111.012187 [Google Scholar]
  76. Content J, De Wit L, Poupart P, Opdenakker G, Van Damme J, Billiau A. 76.  1985. Induction of a 26-kDa-protein mRNA in human cells treated with an interleukin-1-related, leukocyte-derived factor. Eur. J. Biochem. 152:253–57 [Google Scholar]
  77. Unterholzner L, Keating SE, Baran M, Horan KA, Jensen SB. 77.  et al. 2010. IFI16 is an innate immune sensor for intracellular DNA. Nat. Immunol. 11:997–1004 [Google Scholar]
  78. Baer AN, Petri M, Sohn J, Rosen A, Casciola-Rosen L. 78.  2016. Association of antibodies to interferon-inducible protein-16 with markers of more severe disease in primary Sjögren's syndrome. Arthritis Care Res. 68:254–60
  79. Ansari MA, Singh VV, Dutta S, Veettil MV, Dutta D. 79.  et al. 2013. Constitutive interferon-inducible protein 16-inflammasome activation during Epstein-Barr virus latency I, II, and III in B and epithelial cells. J. Virol. 87:8606–23 [Google Scholar]
  80. Dutta D, Dutta S, Veettil MV, Roy A, Ansari MA. 80.  et al. 2015. BRCA1 regulates IFI16 mediated nuclear innate sensing of herpes viral DNA and subsequent induction of the innate inflammasome and interferon-beta responses. PLOS Pathog. 11:e1005030 [Google Scholar]
  81. Ansari MA, Dutta S, Veettil MV, Dutta D, Iqbal J. 81.  et al. 2015. Herpesvirus genome recognition induced acetylation of nuclear IFI16 is essential for its cytoplasmic translocation, inflammasome and IFN-β responses. PLOS Pathog. 11:e1005019 [Google Scholar]
  82. Hara T, Ogawa F, Muroi E, Komura K, Takenaka M. 82.  et al. 2008. Anti-p53 autoantibody in systemic sclerosis: association with limited cutaneous systemic sclerosis. J. Rheumatol. 35:451–57 [Google Scholar]
  83. Mimura Y, Yazawa N, Tada Y, Ihn H, Tamaki K. 83.  2007. Anti-p53 antibodies in patients with systemic sclerosis. Int. J. Dermatol. 46:549–50 [Google Scholar]
  84. Herkel J, Mimran A, Erez N, Kam N, Lohse AW. 84.  et al. 2001. Autoimmunity to the p53 protein is a feature of systemic lupus erythematosus (SLE) related to anti-DNA antibodies. J. Autoimmun. 17:63–69 [Google Scholar]
  85. Tan TH, Wallis J, Levine AJ. 85.  1986. Identification of the p53 protein domain involved in formation of the simian virus 40 large T-antigen-p53 protein complex. J. Virol. 59:574–83 [Google Scholar]
  86. Werness BA, Levine AJ, Howley PM. 86.  1990. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248:76–79 [Google Scholar]
  87. Dong X, Hamilton KJ, Satoh M, Wang J, Reeves WH. 87.  1994. Initiation of autoimmunity to the p53 tumor suppressor protein by complexes of p53 and SV40 large T antigen. J. Exp. Med. 179:1243–52 [Google Scholar]
  88. Yang DC, Dang CV, Arnett FC. 88.  1984. Rat liver histidyl-tRNA synthetase: purification and inhibition by the myositis-specific anti-Jo-1 autoantibody. Biochem. Biophys. Res. Commun. 120:15–21 [Google Scholar]
  89. Neugebauer KM, Merrill JT, Wener MH, Lahita RG, Roth MB. 89.  2000. SR proteins are autoantigens in patients with systemic lupus erythematosus: importance of phosphoepitopes. Arthritis Rheumatol. 43:1768–78 [Google Scholar]
  90. Kamachi M, Le TM, Kim SJ, Geiger ME, Anderson P, Utz PJ. 90.  2002. Human autoimmune sera as molecular probes for the identification of an autoantigen kinase signaling pathway. J. Exp. Med. 196:1213–25 [Google Scholar]
  91. Liu CL, Tangsombatvisit S, Rosenberg JM, Mandelbaum G, Gillespie EC. 91.  et al. 2012. Specific post-translational histone modifications of neutrophil extracellular traps as immunogens and potential targets of lupus autoantibodies. Arthritis Res. Ther. 14:R25 [Google Scholar]
  92. Pieterse E, Hofstra J, Berden J, Herrmann M, Dieker J, van der Vlag J. 92.  2015. Acetylated histones contribute to the immunostimulatory potential of neutrophil extracellular traps in systemic lupus erythematosus. Clin. Exp. Immunol. 179:68–74 [Google Scholar]
  93. Doyle HA, Aswad DW, Mamula MJ. 93.  2013. Autoimmunity to isomerized histone H2B in systemic lupus erythematosus. Autoimmunity 46:6–13 [Google Scholar]
  94. Schellekens GA, Visser H, de Jong BA, van den Hoogen FH, Hazes JM. 94.  et al. 2000. The diagnostic properties of rheumatoid arthritis antibodies recognizing a cyclic citrullinated peptide. Arthritis Rheum. 43:155–63 [Google Scholar]
  95. Nogueira L, Sebbag M, Vincent C, Arnaud M, Fournie B. 95.  et al. 2001. Performance of two ELISAs for antifilaggrin autoantibodies, using either affinity purified or deiminated recombinant human filaggrin, in the diagnosis of rheumatoid arthritis. Ann. Rheum. Dis. 60:882–87 [Google Scholar]
  96. Shi J, van de Stadt LA, Levarht EW, Huizinga TW, Hamann D. 96.  et al. 2014. Anti-carbamylated protein (anti-CarP) antibodies precede the onset of rheumatoid arthritis. Ann. Rheum. Dis. 73:780–3 [Google Scholar]
  97. Sercarz EE, Lehmann PV, Ametani A, Benichou G, Miller A, Moudgil K. 97.  1993. Dominance and crypticity of T cell antigenic determinants. Annu. Rev. Immunol. 11:729–66 [Google Scholar]
  98. Lanzavecchia A. 98.  1995. How can cryptic epitopes trigger autoimmunity?. J. Exp. Med. 181:1945–8 [Google Scholar]
  99. Mamula MJ, Lin RH, Janeway CA Jr, Hardin JA. 99.  1992. Breaking T cell tolerance with foreign and self co-immunogens. A study of autoimmune B and T cell epitopes of cytochrome c. J. Immunol. 149:789–95 [Google Scholar]
  100. Mamula MJ. 100.  1993. The inability to process a self-peptide allows autoreactive T cells to escape tolerance. J. Exp. Med. 177:567–71 [Google Scholar]
  101. Lin RH, Mamula MJ, Hardin JA, Janeway CA Jr. 101.  1991. Induction of autoreactive B cells allows priming of autoreactive T cells. J. Exp. Med. 173:1433–9 [Google Scholar]
  102. Manoury B, Mazzeo D, Fugger L, Viner N, Ponsford M. 102.  et al. 2002. Destructive processing by asparagine endopeptidase limits presentation of a dominant T cell epitope in MBP. Nat. Immunol. 3:169–74 [Google Scholar]
  103. Salemi S, Caporossi AP, Boffa L, Longobardi MG, Barnaba V. 103.  1995. HIVgp120 activates autoreactive CD4-specific T cell responses by unveiling of hidden CD4 peptides during processing. J. Exp. Med. 181:2253–7 [Google Scholar]
  104. Doyle HA, Yang ML, Raycroft MT, Gee RJ, Mamula MJ. 104.  2014. Autoantigens: Novel forms and presentation to the immune system. Autoimmunity 47:220–33 [Google Scholar]
  105. Mamula MJ, Gee RJ, Elliott JI, Sette A, Southwood S. 105.  et al. 1999. Isoaspartyl post-translational modification triggers autoimmune responses to self-proteins. J. Biol. Chem. 274:22321–7 [Google Scholar]
  106. Hill CL, Zhang Y, Sigurgeirsson B, Pukkala E, Mellemkjaer L. 106.  et al. 2001. Frequency of specific cancer types in dermatomyositis and polymyositis: A population-based study. Lancet 357:96–100 [Google Scholar]
  107. Buchbinder R, Forbes A, Hall S, Dennett X, Giles G. 107.  2001. Incidence of malignant disease in biopsy-proven inflammatory myopathy. A population-based cohort study. Ann. Intern. Med. 134:1087–95 [Google Scholar]
  108. Nishikai M, Sato A. 108.  1990. Low incidence of antinuclear antibodies in dermatomyositis with malignancy. Ann. Rheum. Dis. 49:422 [Google Scholar]
  109. Troyanov Y, Targoff IN, Tremblay JL, Goulet JR, Raymond Y. 109.  et al. 2005. Novel classification of idiopathic inflammatory myopathies based on overlap syndrome features and autoantibodies: analysis of 100 French Canadian patients. Medicine 84:231–49 [Google Scholar]
  110. Fujimoto M, Hamaguchi Y, Kaji K, Matsushita T, Ichimura Y. 110.  et al. 2012. Myositis-specific anti-155/140 autoantibodies target transcription intermediary factor 1 family proteins. Arthritis Rheum. 64:513–22 [Google Scholar]
  111. Fiorentino DF, Chung LS, Christopher-Stine L, Zaba L, Li S. 111.  et al. 2013. Most patients with cancer-associated dermatomyositis have antibodies to nuclear matrix protein NXP-2 or transcription intermediary factor 1γ. Arthritis Rheumatol. 65:2954–62 [Google Scholar]
  112. Shah AA, Rosen A, Hummers L, Wigley F, Casciola-Rosen L. 112.  2010. Close temporal relationship between onset of cancer and scleroderma in patients with RNA polymerase I/III antibodies. Arthritis Rheum. 62:2787–95 [Google Scholar]
  113. Kreiter S, Vormehr M, van de Roemer N, Diken M, Lower M. 113.  et al. 2015. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520:692–96 [Google Scholar]
  114. Shen W, Clemente MJ, Hosono N, Yoshida K, Przychodzen B. 114.  et al. 2014. Deep sequencing reveals stepwise mutation acquisition in paroxysmal nocturnal hemoglobinuria. J. Clin. Investig. 124:4529–38 [Google Scholar]
  115. Poduri A, Evrony GD, Cai X, Walsh CA. 115.  2013. Somatic mutation, genomic variation, and neurological disease. Science 341:1237758 [Google Scholar]
  116. Schreiber RD, Old LJ, Smyth MJ. 116.  2011. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 331:1565–70 [Google Scholar]
  117. Scally SW, Petersen J, Law SC, Dudek NL, Nel HJ. 117.  et al. 2013. A molecular basis for the association of the HLA-DRB1 locus, citrullination, and rheumatoid arthritis. J. Exp. Med. 210:2569–82 [Google Scholar]
  118. Gregersen PK, Silver J, Winchester RJ. 118.  1987. The shared epitope hypothesis: an approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum. 30:1205–13 [Google Scholar]
  119. Raychaudhuri S, Sandor C, Stahl EA, Freudenberg J, Lee HS. 119.  et al. 2012. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat. Genet. 44:291–96 [Google Scholar]
  120. Schellekens GA, de Jong BA, van den Hoogen FH, van de Putte LB, van Venrooij WJ. 120.  1998. Citrulline is an essential constituent of antigenic determinants recognized by rheumatoid arthritis-specific autoantibodies. J. Clin. Investig. 101:273–81 [Google Scholar]
  121. Romero V, Fert-Bober J, Nigrovic PA, Darrah E, Haque UJ. 121.  et al. 2013. Immune-mediated pore-forming pathways induce cellular hypercitrullination and generate citrullinated autoantigens in rheumatoid arthritis. Sci. Transl. Med. 5:209ra150 [Google Scholar]
  122. Casciola-Rosen L, Andrade F, Ulanet D, Wong WB, Rosen A. 122.  1999. Cleavage by granzyme B is strongly predictive of autoantigen status: Implications for initiation of autoimmunity. J. Exp. Med. 190:815–26 [Google Scholar]
  123. Darrah E, Rosen A. 123.  2010. Granzyme B cleavage of autoantigens in autoimmunity. Cell Death Differ. 17:624–32 [Google Scholar]
  124. Casciola-Rosen L, Garcia-Calvo M, Bull HG, Becker JW, Hines T. 124.  et al. 2007. Mouse and human granzyme B have distinct tetrapeptide specificities and abilities to recruit the bid pathway. J. Biol. Chem. 282:4545–52 [Google Scholar]
  125. Casciola-Rosen L, Nagaraju K, Plotz P, Wang K, Levine S. 125.  et al. 2005. Enhanced autoantigen expression in regenerating muscle cells in idiopathic inflammatory myopathy. J. Exp. Med. 201:591–601 [Google Scholar]
  126. Englund P, Nennesmo I, Klareskog L, Lundberg IE. 126.  2002. Interleukin-1α expression in capillaries and major histocompatibility complex class I expression in type II muscle fibers from polymyositis and dermatomyositis patients: important pathogenic features independent of inflammatory cell clusters in muscle tissue. Arthritis Rheum. 46:1044–55 [Google Scholar]
  127. Greenberg SA, Pinkus JL, Pinkus GS, Burleson T, Sanoudou D. 127.  et al. 2005. Interferon-alpha/beta-mediated innate immune mechanisms in dermatomyositis. Ann. Neurol 57:664–78 [Google Scholar]
  128. Hall JC, Casciola-Rosen L, Berger AE, Kapsogeorgou EK, Cheadle C. 128.  et al. 2012. Precise probes of type II interferon activity define the origin of interferon signatures in target tissues in rheumatic diseases. PNAS 109:17609–14 [Google Scholar]
  129. Cottrell TR, Hall JC, Rosen A, Casciola-Rosen L. 129.  2012. Identification of novel autoantigens by a triangulation approach. J. Immunol. Methods 385:35–44 [Google Scholar]
  130. Mammen AL, Chung T, Christopher-Stine L, Rosen P, Rosen A. 130.  et al. 2011. Autoantibodies against 3-hydroxy-3-methylglutaryl-coenzyme A reductase in patients with statin-associated autoimmune myopathy. Arthritis Rheum. 63:713–21 [Google Scholar]
  131. Mammen AL, Gaudet D, Brisson D, Christopher-Stine L, Lloyd TE. 131.  et al. 2012. Increased frequency of DRB1*11:01 in anti-hydroxymethylglutaryl-coenzyme A reductase-associated autoimmune myopathy. Arthritis Care. Res. 64:1233–37 [Google Scholar]
  132. Foulquier C, Sebbag M, Clavel C, Chapuy-Regaud S, Al Badine R. 132.  et al. 2007. Peptidyl arginine deiminase type 2 (PAD-2) and PAD-4 but not PAD-1, PAD-3, and PAD-6 are expressed in rheumatoid arthritis synovium in close association with tissue inflammation. Arthritis Rheum. 56:3541–53 [Google Scholar]
  133. Smeets TJ, Dolhain RJ, Breedveld FC, Tak PP. 133.  1998. Analysis of the cellular infiltrates and expression of cytokines in synovial tissue from patients with rheumatoid arthritis and reactive arthritis. J. Pathol. 186:75–81 [Google Scholar]
  134. Halvorsen EH, Haavardsholm EA, Pollmann S, Boonen A, van der Heijde D. 134.  et al. 2009. Serum IgG antibodies to peptidylarginine deiminase 4 predict radiographic progression in patients with rheumatoid arthritis treated with tumour necrosis factor-alpha blocking agents. Ann. Rheum. Dis. 68:249–52 [Google Scholar]
  135. Harris ML, Darrah E, Lam GK, Bartlett SJ, Giles JT. 135.  et al. 2008. Association of autoimmunity to peptidyl arginine deiminase type 4 with genotype and disease severity in rheumatoid arthritis. Arthritis Rheum. 58:1958–67 [Google Scholar]
  136. Arita K, Hashimoto H, Shimizu T, Nakashima K, Yamada M, Sato M. 136.  2004. Structural basis for Ca2+-induced activation of human PAD4. Nat. Struct. Mol. Biol. 11:777–83 [Google Scholar]
  137. Darrah E, Giles JT, Ols ML, Bull HG, Andrade F, Rosen A. 137.  2013. Erosive rheumatoid arthritis is associated with antibodies that activate PAD4 by increasing calcium sensitivity. Sci. Transl. Med. 5:186ra65 [Google Scholar]
  138. DeGiorgio LA, Konstantinov KN, Lee SC, Hardin JA, Volpe BT, Diamond B. 138.  2001. A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus. Nat. Med. 7:1189–93 [Google Scholar]
  139. Huerta PT, Kowal C, DeGiorgio LA, Volpe BT, Diamond B. 139.  2006. Immunity and behavior: Antibodies alter emotion. PNAS 103:678–83 [Google Scholar]
  140. Faust TW, Chang EH, Kowal C, Berlin R, Gazaryan IG. 140.  et al. 2010. Neurotoxic lupus autoantibodies alter brain function through two distinct mechanisms. PNAS 107:18569–74 [Google Scholar]
  141. Kowal C, Degiorgio LA, Lee JY, Edgar MA, Huerta PT. 141.  et al. 2006. Human lupus autoantibodies against NMDA receptors mediate cognitive impairment. PNAS 103:19854–59 [Google Scholar]
/content/journals/10.1146/annurev-immunol-032414-112205
Loading
/content/journals/10.1146/annurev-immunol-032414-112205
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error