Receptors of the innate immune system detect conserved determinants of microbial and viral origin. Activation of these receptors initiates signaling events that culminate in an effective immune response. Recently, the view that innate immune signaling events rely on and operate within a complex cellular infrastructure has become an important framework for understanding the regulation of innate immunity. Compartmentalization within this infrastructure provides the cell with the ability to assign spatial information to microbial detection and regulate immune responses. Several cell biological processes play a role in the regulation of innate signaling responses; at the same time, innate signaling can engage cellular processes as a form of defense or to promote immunological memory. In this review, we highlight these aspects of cell biology in pattern-recognition receptor signaling by focusing on signals that originate from the cell surface, from endosomal compartments, and from within the cytosol.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Kumar H, Kawai T, Akira S. 1.  2011. Pathogen recognition by the innate immune system. Int. Rev. Immunol. 30:116–34 [Google Scholar]
  2. Janeway CA. 2.  1989. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 54:Pt. 11–13 [Google Scholar]
  3. Medzhitov R. 3.  2009. Approaching the asymptote: 20 years later. Immunity 30:6766–75 [Google Scholar]
  4. Zelensky AN, Gready JE. 4.  2005. The C-type lectin-like domain superfamily. FEBS J. 272:246179–217 [Google Scholar]
  5. Drummond RA, Brown GD. 5.  2011. The role of Dectin-1 in the host defence against fungal infections. Curr. Opin. Microbiol. 14:4392–99 [Google Scholar]
  6. Deretic V, Saitoh T, Akira S. 6.  2013. Autophagy in infection, inflammation and immunity. Nat. Rev. Immunol. 13:10722–37 [Google Scholar]
  7. Lamkanfi M, Dixit VM. 7.  2014. Mechanisms and functions of inflammasomes. Cell 157:51013–22 [Google Scholar]
  8. Palm NW, Medzhitov R. 8.  2009. Pattern recognition receptors and control of adaptive immunity. Immunol. Rev. 227:1221–33 [Google Scholar]
  9. Akira S, Takeda K. 9.  2004. Toll-like receptor signalling. Nat. Rev. Immunol. 4:7499–511 [Google Scholar]
  10. Geijtenbeek TBH, Gringhuis SI. 10.  2009. Signalling through C-type lectin receptors: shaping immune responses. Nat. Rev. Immunol. 9:7465–79 [Google Scholar]
  11. Chen G, Shaw MH, Kim Y-G, Núñez G. 11.  2009. NOD-like receptors: role in innate immunity and inflammatory disease. Annu. Rev. Pathol. Mech. Dis. 4:1365–98 [Google Scholar]
  12. Loo Y-M, Gale M. 12.  2011. Immune signaling by RIG-I-like receptors. Immunity 34:5680–92 [Google Scholar]
  13. Hornung V, Latz E. 13.  2010. Intracellular DNA recognition. Nat. Rev. Immunol. 10:2123–30 [Google Scholar]
  14. Barton GM, Kagan JC. 14.  2009. A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nat. Rev. Immunol. 9:8535–42 [Google Scholar]
  15. Everett H, McFadden G. 15.  1999. Apoptosis: an innate immune response to virus infection. Trends Microbiol. 7:4160–65 [Google Scholar]
  16. Mouchess ML, Arpaia N, Souza G, Barbalat R, Ewald SE. 16.  et al. 2011. Transmembrane mutations in Toll-like receptor 9 bypass the requirement for ectodomain proteolysis and induce fatal inflammation. Immunity 35:5721–32 [Google Scholar]
  17. Barbalat R, Ewald SE, Mouchess ML, Barton GM. 17.  2011. Nucleic acid recognition by the innate immune system. Annu. Rev. Immunol. 29:1185–214 [Google Scholar]
  18. Lafyatis R, Marshak-Rothstein A. 18.  2007. Toll-like receptors and innate immune responses in systemic lupus erythematosus. Arthritis Res. Ther. 9:6222 [Google Scholar]
  19. Lei Y, Moore CB, Liesman RM, O'Connor BP, Bergstralh DT. 19.  et al. 2009. MAVS-mediated apoptosis and its inhibition by viral proteins. PLOS ONE 4:5e5466 [Google Scholar]
  20. Medzhitov R, Preston-Hurlburt P, Kopp E, Stadlen A, Chen C. 20.  et al. 1998. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol. Cell 2:2253–58 [Google Scholar]
  21. Yamamoto M, Sato S, Mori K, Hoshino K, Takeuchi O. 21.  et al. 2002. Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-β promoter in the Toll-like receptor signaling. J. Immunol. 169:126668–72 [Google Scholar]
  22. Kagan JC, Medzhitov R. 22.  2006. Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell 125:5943–55 [Google Scholar]
  23. Kagan JC, Su T, Horng T, Chow A, Akira S, Medzhitov R. 23.  2008. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-β. Nat. Immunol. 9:4361–68 [Google Scholar]
  24. Seth RB, Sun L, Ea C-K, Chen ZJ. 24.  2005. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3. Cell 122:5669–82 [Google Scholar]
  25. Dixit E, Boulant S, Zhang Y, Lee ASY, Odendall C. 25.  et al. 2010. Peroxisomes are signaling platforms for antiviral innate immunity. Cell 141:4668–81 [Google Scholar]
  26. Horner SM, Liu HM, Park HS, Briley J, Gale M. 26.  2011. Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus. PNAS 108:3514590–95 [Google Scholar]
  27. Kobe B, Kajava AV. 27.  2001. The leucine-rich repeat as a protein recognition motif. Curr. Opin. Struct. Biol. 11:6725–32 [Google Scholar]
  28. Liu L, Botos I, Wang Y, Leonard JN, Shiloach J. 28.  et al. 2008. Structural basis of Toll-like receptor 3 signaling with double-stranded RNA. Science 320:5874379–81 [Google Scholar]
  29. Jin MS, Kim SE, Heo JY, Lee ME, Kim HM. 29.  et al. 2007. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130:61071–82 [Google Scholar]
  30. Park BS, Song DH, Kim HM, Choi B-S, Lee H, Lee J-O. 30.  2009. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458:72421191–95 [Google Scholar]
  31. Medzhitov R, Preston-Hurlburt P, Janeway CA. 31.  1997. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:6640394–97 [Google Scholar]
  32. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C. 32.  et al. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:53962085–88 [Google Scholar]
  33. Kawasaki K, Akashi S, Shimazu R, Yoshida T, Miyake K, Nishijima M. 33.  2000. Mouse Toll-like receptor 4·MD-2 complex mediates lipopolysaccharide-mimetic signal transduction by Taxol. J. Biol. Chem. 275:42251–54 [Google Scholar]
  34. Kurt-Jones EA, Popova L, Kwinn L, Haynes LM, Jones LP. 34.  et al. 2000. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat. Immunol. 1:5398–401 [Google Scholar]
  35. Rassa JC, Meyers JL, Zhang Y, Kudaravalli R, Ross SR. 35.  2002. Murine retroviruses activate B cells via interaction with Toll-like receptor 4. PNAS 99:42281–86 [Google Scholar]
  36. Bulut Y, Faure E, Thomas L, Karahashi H, Michelsen KS. 36.  et al. 2002. Chlamydial heat shock protein 60 activates macrophages and endothelial cells through Toll-like receptor 4 and MD2 in a MyD88-dependent pathway. J. Immunol. 168:31435–40 [Google Scholar]
  37. Millien VO, Lu W, Shaw J, Yuan X, Mak G. 37.  et al. 2013. Cleavage of fibrinogen by proteinases elicits allergic responses through Toll-like receptor 4. Science 341:6147792–96 [Google Scholar]
  38. Ohashi K, Burkart V, Flohé S, Kolb H. 38.  2000. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the Toll-like receptor-4 complex. J. Immunol. 164:2558–61 [Google Scholar]
  39. Vabulas RM, Ahmad-Nejad P, Ghose S, Kirschning CJ, Issels RD, Wagner H. 39.  2002. HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J. Biol. Chem. 277:1715107–12 [Google Scholar]
  40. Okamura Y, Watari M, Jerud ES, Young DW, Ishizaka ST. 40.  et al. 2001. The extra domain A of fibronectin activates Toll-like receptor 4. J. Biol. Chem. 276:1310229–33 [Google Scholar]
  41. Termeer C, Benedix F, Sleeman J, Fieber C, Voith U. 41.  et al. 2002. Oligosaccharides of hyaluronan activate dendritic cells via Toll-like receptor 4. J. Exp. Med. 195:199–111 [Google Scholar]
  42. Johnson GB, Brunn GJ, Kodaira Y, Platt JL. 42.  2002. Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by Toll-like receptor 4. J. Immunol. 168:105233–39 [Google Scholar]
  43. Jiang D, Liang J, Fan J, Yu S, Chen S. 43.  et al. 2005. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat. Med. 11:111173–79 [Google Scholar]
  44. Schaefer L, Babelova A, Kiss E, Hausser H-J, Baliova M. 44.  et al. 2005. The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. J. Clin. Investig. 115:82223–33 [Google Scholar]
  45. Tsung A, Sahai R, Tanaka H, Nakao A, Fink MP. 45.  et al. 2005. The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J. Exp. Med. 201:71135–43 [Google Scholar]
  46. Bald T, Quast T, Landsberg J, Rogava M, Glodde N. 46.  et al. 2014. Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature 507:7490109–13 [Google Scholar]
  47. Biragyn A, Ruffini PA, Leifer CA, Klyushnenkova E, Shakhov A. 47.  et al. 2002. Toll-like receptor 4-dependent activation of dendritic cells by β-defensin 2. Science 298:55951025–29 [Google Scholar]
  48. Miller YI, Viriyakosol S, Worrall DS, Boullier A, Butler S, Witztum JL. 48.  2005. Toll-like receptor 4-dependent and -independent cytokine secretion induced by minimally oxidized low-density lipoprotein in macrophages. Arterioscler. Thromb. Vasc. Biol. 25:61213–19 [Google Scholar]
  49. Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J. 49.  et al. 2010. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat. Immunol. 11:2155–61 [Google Scholar]
  50. Sheedy FJ, Grebe A, Rayner KJ, Kalantari P, Ramkhelawon B. 50.  et al. 2013. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat. Immunol. 14:8812–20 [Google Scholar]
  51. Bochkov VN, Kadl A, Huber J, Gruber F, Binder BR, Leitinger N. 51.  2002. Protective role of phospholipid oxidation products in endotoxin-induced tissue damage. Nature 419:690277–81 [Google Scholar]
  52. Guillot L, Balloy V, McCormack FX, Golenbock DT, Chignard M, Si-Tahar M. 52.  2002. Cutting edge: the immunostimulatory activity of the lung surfactant protein-A involves Toll-like receptor 4. J. Immunol. 168:125989–92 [Google Scholar]
  53. Vogl T, Tenbrock K, Ludwig S, Leukert N, Ehrhardt C. 53.  et al. 2007. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat. Med. 13:91042–49 [Google Scholar]
  54. Pal D, Dasgupta S, Kundu R, Maitra S, Das G. 54.  et al. 2012. Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat. Med. 18:81279–85 [Google Scholar]
  55. Qiang X, Yang W-L, Wu R, Zhou M, Jacob A. 55.  et al. 2013. Cold-inducible RNA-binding protein (CIRP) triggers inflammatory responses in hemorrhagic shock and sepsis. Nat. Med. 19:111489–95 [Google Scholar]
  56. Schumann RR, Leong SR, Flaggs GW, Gray PW, Wright SD. 56.  et al. 1990. Structure and function of lipopolysaccharide binding protein. Science 249:49751429–31 [Google Scholar]
  57. Eckert JK, Kim YJ, Kim JI, Gürtler K, Oh D-Y. 57.  et al. 2013. The crystal structure of lipopolysaccharide binding protein reveals the location of a frequent mutation that impairs innate immunity. Immunity 39:4647–60 [Google Scholar]
  58. da Silva Correia J, Soldau K, Christen U, Tobias PS, Ulevitch RJ. 58.  2001. Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex: transfer from CD14 to TLR4 and MD-2. J. Biol. Chem. 276:2421129–35 [Google Scholar]
  59. Gioannini TL, Weiss JP. 59.  2007. Regulation of interactions of Gram-negative bacterial endotoxins with mammalian cells. Immunol. Res. 39:1–3249–60 [Google Scholar]
  60. Nagai Y, Akashi S, Nagafuku M, Ogata M, Iwakura Y. 60.  et al. 2002. Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat. Immunol. 3:7667–72 [Google Scholar]
  61. Meng J, Gong M, Björkbacka H, Golenbock DT. 61.  2011. Genome-wide expression profiling and mutagenesis studies reveal that lipopolysaccharide responsiveness appears to be absolutely dependent on TLR4 and MD-2 expression and is dependent upon intermolecular ionic interactions. J. Immunol. 187:73683–93 [Google Scholar]
  62. Kim J-I, Lee CJ, Jin MS, Lee C-H, Paik S-G. 62.  et al. 2005. Crystal structure of CD14 and its implications for lipopolysaccharide signaling. J. Biol. Chem. 280:1211347–51 [Google Scholar]
  63. Simons K, Toomre D. 63.  2000. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1:131–39 [Google Scholar]
  64. Zanoni I, Ostuni R, Capuano G, Collini M, Caccia M. 64.  et al. 2009. CD14 regulates the dendritic cell life cycle after LPS exposure through NFAT activation. Nature 460:7252264–68 [Google Scholar]
  65. Zanoni I, Ostuni R, Barresi S. Gioia M, Broggi A. 65. , Di et al. 2012. CD14 and NFAT mediate lipopolysaccharide-induced skin edema formation in mice. J. Clin. Investig. 122:51747–57 [Google Scholar]
  66. Pugin J, Kravchenko VV, Lee JD, Kline L, Ulevitch RJ, Tobias PS. 66.  1998. Cell activation mediated by glycosylphosphatidylinositol-anchored or transmembrane forms of CD14. Infect. Immun. 66:31174–80 [Google Scholar]
  67. Zanoni I, Ostuni R, Marek LR, Barresi S, Barbalat R. 67.  et al. 2011. CD14 controls the LPS-induced endocytosis of Toll-like receptor 4. Cell 147:4868–80 [Google Scholar]
  68. Lin Y-C, Huang D-Y, Chu C-L, Lin Y-L, Lin W-W. 68.  2013. The tyrosine kinase Syk differentially regulates Toll-like receptor signaling downstream of the adaptor molecules TRAF6 and TRAF3. Sci. Signal. 6:289ra71 [Google Scholar]
  69. Roy S, Karmakar M, Pearlman E. 69.  2014. CD14 mediates Toll-like receptor 4 (TLR4) endocytosis and spleen tyrosine kinase (Syk) and interferon regulatory transcription factor 3 (IRF3) activation in epithelial cells and impairs neutrophil infiltration and Pseudomonas aeruginosa killing in vivo. J. Biol. Chem. 289:21174–82 [Google Scholar]
  70. Chiang C-Y, Veckman V, Limmer K, David M. 70.  2012. Phospholipase Cγ-2 and intracellular calcium are required for lipopolysaccharide-induced Toll-like receptor 4 (TLR4) endocytosis and interferon regulatory factor 3 (IRF3) activation. J. Biol. Chem. 287:63704–9 [Google Scholar]
  71. Tanimura N, Saitoh S, Matsumoto F, Akashi-Takamura S, Miyake K. 71.  2008. Roles for LPS-dependent interaction and relocation of TLR4 and TRAM in TRIF-signaling. Biochem. Biophys. Res. Commun. 368:194–99 [Google Scholar]
  72. Jiang Z, Georgel P, Du X, Shamel L, Sovath S. 72.  et al. 2005. CD14 is required for MyD88-independent LPS signaling. Nat. Immunol. 6:6565–70 [Google Scholar]
  73. Ling GS, Bennett J, Woollard KJ, Szajna M, Fossati-Jimack L. 73.  et al. 2014. Integrin CD11b positively regulates TLR4-induced signalling pathways in dendritic cells but not in macrophages. Nat. Commun. 5:3039 [Google Scholar]
  74. Husebye H, Aune MH, Stenvik J, Samstad E, Skjeldal F. 74.  et al. 2010. The Rab11a GTPase controls Toll-like receptor 4-induced activation of interferon regulatory factor-3 on phagosomes. Immunity 33:4583–96 [Google Scholar]
  75. Van Acker T, Eyckerman S, Vande Walle L, Gerlo S, Goethals M. 75.  et al. 2014. The small GTPase Arf6 is essential for the Tram/Trif pathway in TLR4 signaling. J. Biol. Chem. 289:31364–76 [Google Scholar]
  76. Aksoy E, Taboubi S, Torres D, Delbauve S, Hachani A. 76.  et al. 2012. The p110δ isoform of the kinase PI(3)K controls the subcellular compartmentalization of TLR4 signaling and protects from endotoxic shock. Nat. Immunol. 13:111045–54 [Google Scholar]
  77. Horng T, Barton GM, Medzhitov R. 77.  2001. TIRAP: an adapter molecule in the Toll signaling pathway. Nat. Immunol. 2:9835–41 [Google Scholar]
  78. Fitzgerald KA, Palsson-McDermott EM, Bowie AG, Jefferies CA, Mansell AS. 78.  et al. 2001. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413:685178–83 [Google Scholar]
  79. Horng T, Barton GM, Flavell RA, Medzhitov R. 79.  2002. The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature 420:6913329–33 [Google Scholar]
  80. Yamamoto M, Sato S, Hemmi H, Sanjo H, Uematsu S. 80.  et al. 2002. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 420:6913324–29 [Google Scholar]
  81. Bonham KS, Orzalli MH, Hayashi K, Wolf AI, Glanemann C. 81.  et al. 2014. A promiscuous lipid-binding protein diversifies the subcellular sites of Toll-like receptor signal transduction. Cell 156:4705–16 [Google Scholar]
  82. Fruman DA, Meyers RE, Cantley LC. 82.  1998. Phosphoinositide kinases. Annu. Rev. Biochem. 67:1481–507 [Google Scholar]
  83. Motshwene PG, Moncrieffe MC, Grossmann JG, Kao C, Ayaluru M. 83.  et al. 2009. An oligomeric signaling platform formed by the Toll-like receptor signal transducers MyD88 and IRAK-4. J. Biol. Chem. 284:3725404–11 [Google Scholar]
  84. Lin S-C, Lo Y-C, Wu H. 84.  2010. Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature 465:7300885–90 [Google Scholar]
  85. Suzuki N, Suzuki S, Duncan GS, Millar DG, Wada T. 85.  et al. 2002. Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4. Nature 416:6882750–56 [Google Scholar]
  86. Kawagoe T, Sato S, Matsushita K, Kato H, Matsui K. 86.  et al. 2008. Sequential control of Toll-like receptor-dependent responses by IRAK1 and IRAK2. Nat. Immunol. 9:6684–91 [Google Scholar]
  87. Cao Z, Xiong J, Takeuchi M, Kurama T, Goeddel DV. 87.  1996. TRAF6 is a signal transducer for interleukin-1. Nature 383:6599443–46 [Google Scholar]
  88. Muzio M, Ni J, Feng P, Dixit VM. 88.  1997. IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science 278:53431612–15 [Google Scholar]
  89. Deng L, Wang C, Spencer E, Yang L, Braun A. 89.  et al. 2000. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103:2351–61 [Google Scholar]
  90. Emmerich CH, Ordureau A, Strickson S, Arthur JSC, Pedrioli PGA. 90.  et al. 2013. Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains. PNAS 110:3815247–52 [Google Scholar]
  91. Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ. 91.  2001. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412:6844346–51 [Google Scholar]
  92. Rahighi S, Ikeda F, Kawasaki M, Akutsu M, Suzuki N. 92.  et al. 2009. Specific recognition of linear ubiquitin chains by NEMO is important for NF-κB activation. Cell 136:61098–109 [Google Scholar]
  93. Laplantine E, Fontan E, Chiaravalli J, Lopez T, Lakisic G. 93.  et al. 2009. NEMO specifically recognizes K63-linked poly-ubiquitin chains through a new bipartite ubiquitin-binding domain. EMBO J. 28:192885–95 [Google Scholar]
  94. Xia Z-P, Sun L, Chen X, Pineda G, Jiang X. 94.  et al. 2009. Direct activation of protein kinases by unanchored polyubiquitin chains. Nature 461:7260114–19 [Google Scholar]
  95. Tseng P-H, Matsuzawa A, Zhang W, Mino T, Vignali DAA, Karin M. 95.  2010. Different modes of ubiquitination of the adaptor TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines. Nat. Immunol. 11:170–75 [Google Scholar]
  96. Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD. 96.  et al. 2000. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. PNAS 97:2513766–71 [Google Scholar]
  97. Hoebe K, Georgel P, Rutschmann S, Du X, Mudd S. 97.  et al. 2005. CD36 is a sensor of diacylglycerides. Nature 433:7025523–27 [Google Scholar]
  98. Manukyan M, Triantafilou K, Triantafilou M, Mackie A, Nilsen N. 98.  et al. 2005. Binding of lipopeptide to CD14 induces physical proximity of CD14, TLR2 and TLR1. Eur. J. Immunol. 35:3911–21 [Google Scholar]
  99. Kang JY, Nan X, Jin MS, Youn S-J, Ryu YH. 99.  et al. 2009. Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer. Immunity 31:6873–84 [Google Scholar]
  100. Buwitt-Beckmann U, Heine H, Wiesmüller K-H, Jung G, Brock R. 100.  et al. 2006. TLR1- and TLR6-independent recognition of bacterial lipopeptides. J. Biol. Chem. 281:149049–57 [Google Scholar]
  101. Boehme KW, Guerrero M, Compton T. 101.  2006. Human cytomegalovirus envelope glycoproteins B and H are necessary for TLR2 activation in permissive cells. J. Immunol. 177:107094–102 [Google Scholar]
  102. Szomolanyi-Tsuda E, Liang X, Welsh RM, Kurt-Jones EA, Finberg RW. 102.  2006. Role for TLR2 in NK cell-mediated control of murine cytomegalovirus in vivo. J. Virol. 80:94286–91 [Google Scholar]
  103. Kurt-Jones EA, Chan M, Zhou S, Wang J, Reed G. 103.  et al. 2004. Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis. PNAS 101:51315–20 [Google Scholar]
  104. Chang S, Dolganiuc A, Szabo G. 104.  2007. Toll-like receptors 1 and 6 are involved in TLR2-mediated macrophage activation by hepatitis C virus core and NS3 proteins. J. Leukoc. Biol. 82:3479–87 [Google Scholar]
  105. Erridge C. 105.  2010. Endogenous ligands of TLR2 and TLR4: agonists or assistants?. J. Leukoc. Biol. 87:6989–99 [Google Scholar]
  106. Kenny EF, Talbot S, Gong M, Golenbock DT, Bryant CE, O'Neill LAJ. 106.  2009. MyD88 adaptor-like is not essential for TLR2 signaling and inhibits signaling by TLR3. J. Immunol. 183:63642–51 [Google Scholar]
  107. Couture LA, Piao W, Ru LW, Vogel SN, Toshchakov VY. 107.  2012. Targeting Toll-like receptor (TLR) signaling by Toll/interleukin-1 receptor (TIR) domain-containing adapter protein/MyD88 adapter-like (TIRAP/Mal)-derived decoy peptides. J. Biol. Chem. 287:2924641–48 [Google Scholar]
  108. Santos-Sierra S, Deshmukh SD, Kalnitski J, Küenzi P, Wymann MP. 108.  et al. 2009. Mal connects TLR2 to PI3Kinase activation and phagocyte polarization. EMBO J. 28:142018–27 [Google Scholar]
  109. Triantafilou M, Morath S, Mackie A, Hartung T, Triantafilou K. 109.  2004. Lateral diffusion of Toll-like receptors reveals that they are transiently confined within lipid rafts on the plasma membrane. J. Cell Sci. 117:Pt. 174007–14 [Google Scholar]
  110. Triantafilou M, Gamper FGJ, Haston RM, Mouratis MA, Morath S. 110.  et al. 2006. Membrane sorting of Toll-like receptor (TLR)-2/6 and TLR2/1 heterodimers at the cell surface determines heterotypic associations with CD36 and intracellular targeting. J. Biol. Chem. 281:4131002–11 [Google Scholar]
  111. Heit B, Kim H, Cosío G, Castaño D, Collins R. 111.  et al. 2013. Multimolecular signaling complexes enable Syk-mediated signaling of CD36 internalization. Dev. Cell 24:4372–83 [Google Scholar]
  112. Barbalat R, Lau L, Locksley RM, Barton GM. 112.  2009. Toll-like receptor 2 on inflammatory monocytes induces type I interferon in response to viral but not bacterial ligands. Nat. Immunol. 10:111200–7 [Google Scholar]
  113. Dietrich N, Lienenklaus S, Weiss S, Gekara NO. 113.  2010. Murine Toll-like receptor 2 activation induces type I interferon responses from endolysosomal compartments. PLOS ONE 5:4e10250 [Google Scholar]
  114. Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC. 114.  et al. 2001. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:68321099–103 [Google Scholar]
  115. Smith KD, Andersen-Nissen E, Hayashi F, Strobe K, Bergman MA. 115.  et al. 2003. Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat. Immunol. 4:121247–53 [Google Scholar]
  116. Shibata T, Takemura N, Motoi Y, Goto Y, Karuppuchamy T. 116.  et al. 2012. PRAT4A-dependent expression of cell surface TLR5 on neutrophils, classical monocytes and dendritic cells. Int. Immunol. 24:10613–23 [Google Scholar]
  117. Gewirtz AT, Navas TA, Lyons S, Godowski PJ, Madara JL. 117.  2001. Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J. Immunol. 167:41882–85 [Google Scholar]
  118. Yoon S-I, Kurnasov O, Natarajan V, Hong M, Gudkov AV. 118.  et al. 2012. Structural basis of TLR5-flagellin recognition and signaling. Science 335:6070859–64 [Google Scholar]
  119. Huh J-W, Shibata T, Hwang M, Kwon E-H, Jang MS. 119.  et al. 2014. UNC93B1 is essential for the plasma membrane localization and signaling of Toll-like receptor 5. PNAS 111:197072–77 [Google Scholar]
  120. Choi YJ, Jung J, Chung HK, Im E, Rhee SH. 120.  2013. PTEN regulates TLR5-induced intestinal inflammation by controlling Mal/TIRAP recruitment. FASEB J. 27:1243–54 [Google Scholar]
  121. Letran SE, Lee S-J, Atif SM, Uematsu S, Akira S, McSorley SJ. 121.  2011. TLR5 functions as an endocytic receptor to enhance flagellin-specific adaptive immunity. Eur. J. Immunol. 41:129–38 [Google Scholar]
  122. Rogers NC, Slack EC, Edwards AD, Nolte MA, Schulz O. 122.  et al. 2005. Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 22:4507–17 [Google Scholar]
  123. Taylor PR, Tsoni SV, Willment JA, Dennehy KM, Rosas M. 123.  et al. 2007. Dectin-1 is required for β-glucan recognition and control of fungal infection. Nat. Immunol. 8:131–38 [Google Scholar]
  124. Ferwerda B, Ferwerda G, Plantinga TS, Willment JA, van Spriel AB. 124.  et al. 2009. Human dectin-1 deficiency and mucocutaneous fungal infections. N. Engl. J. Med. 361:181760–67 [Google Scholar]
  125. Rochereau N, Drocourt D, Perouzel E, Pavot V, Redelinghuys P. 125.  et al. 2013. Dectin-1 is essential for reverse transcytosis of glycosylated SIgA-antigen complexes by intestinal M cells. PLOS Biol. 11:9e1001658 [Google Scholar]
  126. Shan M, Gentile M, Yeiser JR, Walland AC, Bornstein VU. 126.  et al. 2013. Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science 342:6157447–53 [Google Scholar]
  127. Hoving JC, Wilson GJ, Brown GD. 127.  2014. Signalling C-type lectin receptors, microbial recognition and immunity. Cell. Microbiol. 16:2185–94 [Google Scholar]
  128. Xu S, Huo J, Gunawan M, Su I-H, Lam K-P. 128.  2009. Activated dectin-1 localizes to lipid raft microdomains for signaling and activation of phagocytosis and cytokine production in dendritic cells. J. Biol. Chem. 284:3322005–11 [Google Scholar]
  129. Fuller GLJ, Williams JAE, Tomlinson MG, Eble JA, Hanna SL. 129.  et al. 2007. The C-type lectin receptors CLEC-2 and Dectin-1, but not DC-SIGN, signal via a novel YXXL-dependent signaling cascade. J. Biol. Chem. 282:1712397–409 [Google Scholar]
  130. Tassi I, Cella M, Castro I, Gilfillan S, Khan WN, Colonna M. 130.  2009. Requirement of phospholipase C-γ2 (PLCγ2) for Dectin-1-induced antigen presentation and induction of TH1/TH17 polarization. Eur. J. Immunol. 39:51369–78 [Google Scholar]
  131. Goodridge HS, Simmons RM, Underhill DM. 131.  2007. Dectin-1 stimulation by Candida albicans yeast or zymosan triggers NFAT activation in macrophages and dendritic cells. J. Immunol. 178:53107–15 [Google Scholar]
  132. Strasser D, Neumann K, Bergmann H, Marakalala MJ, Guler R. 132.  et al. 2012. Syk kinase-coupled C-type lectin receptors engage protein kinase C-σ to elicit Card9 adaptor-mediated innate immunity. Immunity 36:132–42 [Google Scholar]
  133. Gorjestani S, Darnay BG, Lin X. 133.  2012. Tumor necrosis factor receptor-associated factor 6 (TRAF6) and TGFβ-activated kinase 1 (TAK1) play essential roles in the C-type lectin receptor signaling in response to Candida albicans infection. J. Biol. Chem. 287:5344143–50 [Google Scholar]
  134. Gringhuis SI, Wevers BA, Kaptein TM, van Capel TMM, Theelen B. 134.  et al. 2011. Selective C-Rel activation via Malt1 controls anti-fungal TH-17 immunity by dectin-1 and dectin-2. PLOS Pathog. 7:1e1001259 [Google Scholar]
  135. Gringhuis SI. Dunnen J, Litjens M, van der Vlist M, Wevers B. 135. , den et al. 2009. Dectin-1 directs T helper cell differentiation by controlling noncanonical NF-κB activation through Raf-1 and Syk. Nat. Immunol. 10:2203–13 [Google Scholar]
  136. Goodridge HS, Reyes CN, Becker CA, Katsumoto TR, Ma J. 136.  et al. 2011. Activation of the innate immune receptor Dectin-1 upon formation of a ‘phagocytic synapse.’. Nature 472:7344471–75 [Google Scholar]
  137. Herre J, Marshall ASJ, Caron E, Edwards AD, Williams DL. 137.  et al. 2004. Dectin-1 uses novel mechanisms for yeast phagocytosis in macrophages. Blood 104:134038–45 [Google Scholar]
  138. Botelho RJ, Teruel M, Dierckman R, Anderson R, Wells A. 138.  et al. 2000. Localized biphasic changes in phosphatidylinositol-4,5-bisphosphate at sites of phagocytosis. J. Cell Biol. 151:71353–68 [Google Scholar]
  139. Underhill DM, Ozinsky A. 139.  2002. Phagocytosis of microbes: complexity in action. Annu. Rev. Immunol. 20:1825–52 [Google Scholar]
  140. Underhill DM, Rossnagle E, Lowell CA, Simmons RM. 140.  2005. Dectin-1 activates Syk tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production. Blood 106:72543–50 [Google Scholar]
  141. Ma J, Becker C, Lowell CA, Underhill DM. 141.  2012. Dectin-1-triggered recruitment of light chain 3 protein to phagosomes facilitates major histocompatibility complex class II presentation of fungal-derived antigens. J. Biol. Chem. 287:4134149–56 [Google Scholar]
  142. Mansour MK, Tam JM, Khan NS, Seward M, Davids PJ. 142.  et al. 2013. Dectin-1 activation controls maturation of β-1,3-glucan-containing phagosomes. J. Biol. Chem. 288:2216043–54 [Google Scholar]
  143. Ma J, Becker C, Reyes C, Underhill DM. 143.  2014. Cutting edge: FYCO1 recruitment to dectin-1 phagosomes is accelerated by light chain 3 protein and regulates phagosome maturation and reactive oxygen production. J. Immunol. 192:41356–60 [Google Scholar]
  144. LeibundGut-Landmann S, Gross O, Robinson MJ, Osorio F, Slack EC. 144.  et al. 2007. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat. Immunol. 8:6630–38 [Google Scholar]
  145. Gringhuis SI, Kaptein TM, Wevers BA, Theelen B, van der Vlist M. 145.  et al. 2012. Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1β via a noncanonical caspase-8 inflammasome. Nat. Immunol. 13:3246–54 [Google Scholar]
  146. Saijo S, Ikeda S, Yamabe K, Kakuta S, Ishigame H. 146.  et al. 2010. Dectin-2 recognition of alpha-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity 32:5681–91 [Google Scholar]
  147. Zhu L-L, Zhao X-Q, Jiang C, You Y, Chen X-P. 147.  et al. 2013. C-type lectin receptors Dectin-3 and Dectin-2 form a heterodimeric pattern-recognition receptor for host defense against fungal infection. Immunity 39:2324–34 [Google Scholar]
  148. Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T. 148.  et al. 2003. Role of adaptor TRIF in the MyD88-independent Toll-like receptor signaling pathway. Science 301:5633640–43 [Google Scholar]
  149. Yamamoto M, Sato S, Hemmi H, Uematsu S, Hoshino K. 149.  et al. 2003. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat. Immunol. 4:111144–50 [Google Scholar]
  150. Rowe DC, McGettrick AF, Latz E, Monks BG, Gay NJ. 150.  et al. 2006. The myristoylation of TRIF-related adaptor molecule is essential for Toll-like receptor 4 signal transduction. PNAS 103:166299–304 [Google Scholar]
  151. Enokizono Y, Kumeta H, Funami K, Horiuchi M, Sarmiento J. 151.  et al. 2013. Structures and interface mapping of the TIR domain-containing adaptor molecules involved in interferon signaling. PNAS 110:4919908–13 [Google Scholar]
  152. Piao W, Ru LW, Piepenbrink KH, Sundberg EJ, Vogel SN, Toshchakov VY. 152.  2013. Recruitment of TLR adapter TRIF to TLR4 signaling complex is mediated by the second helical region of TRIF TIR domain. PNAS 110:4719036–41 [Google Scholar]
  153. Häcker H, Redecke V, Blagoev B, Kratchmarova I, Hsu L-C. 153.  et al. 2006. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 439:7073204–7 [Google Scholar]
  154. Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E. 154.  et al. 2003. IKKε and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4:5491–96 [Google Scholar]
  155. Hemmi H, Takeuchi O, Sato S, Yamamoto M, Kaisho T. 155.  et al. 2004. The roles of two IκB kinase-related kinases in lipopolysaccharide and double stranded RNA signaling and viral infection. J. Exp. Med. 199:121641–50 [Google Scholar]
  156. McWhirter SM, Fitzgerald KA, Rosains J, Rowe DC, Golenbock DT, Maniatis T. 156.  2004. IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts. PNAS 101:1233–38 [Google Scholar]
  157. Thomas KE, Galligan CL, Newman RD, Fish EN, Vogel SN. 157.  2006. Contribution of interferon-β to the murine macrophage response to the Toll-like receptor 4 agonist, lipopolysaccharide. J. Biol. Chem. 281:4131119–30 [Google Scholar]
  158. Zanoni I, Spreafico R, Bodio C, Di Gioia M, Cigni C. 158.  et al. 2013. IL-15 cis presentation is required for optimal NK cell activation in lipopolysaccharide-mediated inflammatory conditions. Cell Rep. 4:61235–49 [Google Scholar]
  159. Fitzgerald KA, Rowe DC, Barnes BJ, Caffrey DR, Visintin A. 159.  et al. 2003. LPS-TLR4 signaling to IRF-3/7 and NF-κB involves the Toll adapters TRAM and TRIF. J. Exp. Med. 198:71043–55 [Google Scholar]
  160. Brown V, Brown RA, Ozinsky A, Hesselberth JR, Fields S. 160.  2006. Binding specificity of Toll-like receptor cytoplasmic domains. Eur. J. Immunol. 36:3742–53 [Google Scholar]
  161. Ulrichts P, Peelman F, Beyaert R, Tavernier J. 161.  2007. MAPPIT analysis of TLR adaptor complexes. FEBS Lett. 581:4629–36 [Google Scholar]
  162. Verstak B, Arnot CJ, Gay NJ. 162.  2013. An alanine-to-proline mutation in the BB-loop of TLR3 Toll/IL-1R domain switches signalling adaptor specificity from TRIF to MyD88. J. Immunol. 191:126101–9 [Google Scholar]
  163. Kerkmann M, Rothenfusser S, Hornung V, Towarowski A, Wagner M. 163.  et al. 2003. Activation with CpG-A and CpG-B oligonucleotides reveals two distinct regulatory pathways of type I IFN synthesis in human plasmacytoid dendritic cells. J. Immunol. 170:94465–74 [Google Scholar]
  164. Cao W, Manicassamy S, Tang H, Kasturi SP, Pirani A. 164.  et al. 2008. Toll-like receptor-mediated induction of type I interferon in plasmacytoid dendritic cells requires the rapamycin-sensitive PI(3)K-mTOR-p70S6K pathway. Nat. Immunol. 9:101157–64 [Google Scholar]
  165. Honda K, Yanai H, Negishi H, Asagiri M, Sato M. 165.  et al. 2005. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434:772–77 [Google Scholar]
  166. Sasai M, Linehan MM, Iwasaki A. 166.  2010. Bifurcation of Toll-like receptor 9 signaling by adaptor protein 3. Science 329:59981530–34 [Google Scholar]
  167. Uematsu S, Sato S, Yamamoto M, Hirotani T, Kato H. 167.  et al. 2005. Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7- and TLR9-mediated interferon-α induction. J. Exp. Med. 201:6915–23 [Google Scholar]
  168. Wan Y, Kim TW, Yu M, Zhou H, Yamashita M. 168.  et al. 2011. The dual functions of IL-1 receptor-associated kinase 2 in TLR9-mediated IFN and proinflammatory cytokine production. J. Immunol. 186:53006–14 [Google Scholar]
  169. Honda K, Ohba Y, Yanai H, Negishi H, Mizutani T. 169.  et al. 2005. Spatiotemporal regulation of MyD88-IRF-7 signalling for robust type-I interferon induction. Nature 434:70361035–40 [Google Scholar]
  170. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S. 170.  et al. 2000. A Toll-like receptor recognizes bacterial DNA. Nature 408:6813740–45 [Google Scholar]
  171. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. 171.  2001. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413:6857732–38 [Google Scholar]
  172. Ewald SE, Lee BL, Lau L, Wickliffe KE, Shi G-P. 172.  et al. 2008. The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor. Nature 456:7222658–62 [Google Scholar]
  173. Park B, Brinkmann MM, Spooner E, Lee CC, Kim Y-M, Ploegh HL. 173.  2008. Proteolytic cleavage in an endolysosomal compartment is required for activation of Toll-like receptor 9. Nat. Immunol. 9:121407–14 [Google Scholar]
  174. Ewald SE, Engel A, Lee J, Wang M, Bogyo M, Barton GM. 174.  2011. Nucleic acid recognition by Toll-like receptors is coupled to stepwise processing by cathepsins and asparagine endopeptidase. J. Exp. Med. 208:4643–51 [Google Scholar]
  175. Sepulveda FE, Maschalidi S, Colisson R, Heslop L, Ghirelli C. 175.  et al. 2009. Critical role for asparagine endopeptidase in endocytic Toll-like receptor signaling in dendritic cells. Immunity 31:5737–48 [Google Scholar]
  176. Brinkmann MM, Spooner E, Hoebe K, Beutler B, Ploegh HL, Kim Y-M. 176.  2007. The interaction between the ER membrane protein UNC93B and TLR3, 7, and 9 is crucial for TLR signaling. J. Cell Biol. 177:2265–75 [Google Scholar]
  177. Kim Y-M, Brinkmann MM, Paquet M-E, Ploegh HL. 177.  2008. UNC93B1 delivers nucleotide-sensing Toll-like receptors to endolysosomes. Nature 452:7184234–38 [Google Scholar]
  178. Lee BL, Moon JE, Shu JH, Yuan L, Newman ZR. 178.  et al. 2013. UNC93B1 mediates differential trafficking of endosomal TLRs. Elife 2:0e00291–91 [Google Scholar]
  179. Saleh M. 179.  2011. The machinery of Nod-like receptors: refining the paths to immunity and cell death. Immunol. Rev. 243:1235–46 [Google Scholar]
  180. Girardin SE, Boneca IG, Carneiro LAM, Antignac A, Jéhanno M. 180.  et al. 2003. Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300:56251584–87 [Google Scholar]
  181. Chamaillard M, Hashimoto M, Horie Y, Masumoto J, Qiu S. 181.  et al. 2003. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat. Immunol. 4:7702–7 [Google Scholar]
  182. Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A. 182.  et al. 2003. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 278:118869–72 [Google Scholar]
  183. Inohara N, Koseki T, Lin J, del Peso L, Lucas PC. 183.  et al. 2000. An induced proximity model for NF-κB activation in the Nod1/RICK and RIP signaling pathways. J. Biol. Chem. 275:3627823–31 [Google Scholar]
  184. Park J-H, Kim Y-G, McDonald C, Kanneganti T-D, Hasegawa M. 184.  et al. 2007. RICK/RIP2 mediates innate immune responses induced through Nod1 and Nod2 but not TLRs. J. Immunol. 178:42380–86 [Google Scholar]
  185. Barnich N, Aguirre JE, Reinecker H-C, Xavier R, Podolsky DK. 185.  2005. Membrane recruitment of NOD2 in intestinal epithelial cells is essential for nuclear factor-κB activation in muramyl dipeptide recognition. J. Cell Biol. 170:121–26 [Google Scholar]
  186. Irving AT, Mimuro H, Kufer TA, Lo C, Wheeler R. 186.  et al. 2014. The immune receptor NOD1 and kinase RIP2 interact with bacterial peptidoglycan on early endosomes to promote autophagy and inflammatory signaling. Cell Host Microbe 15:5623–35 [Google Scholar]
  187. Nakamura N, Lill JR, Phung Q, Jiang Z, Bakalarski C. 187.  et al. 2014. Endosomes are specialized platforms for bacterial sensing and NOD2 signalling. Nature 509:7499240–44 [Google Scholar]
  188. Travassos LH, Carneiro LAM, Ramjeet M, Hussey S, Kim Y-G. 188.  et al. 2010. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol. 11:155–62 [Google Scholar]
  189. Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T. 189.  et al. 2004. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 5:7730–37 [Google Scholar]
  190. Yoneyama M, Kikuchi M, Matsumoto K, Imaizumi T, Miyagishi M. 190.  et al. 2005. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J. Immunol. 175:52851–58 [Google Scholar]
  191. Hornung V, Ellegast J, Kim S, Brzózka K, Jung A. 191.  et al. 2006. 5′-Triphosphate RNA is the ligand for RIG-I. Science 314:5801994–97 [Google Scholar]
  192. Pichlmair A, Schulz O, Tan CP, Näslund TI, Liljeström P. 192.  et al. 2006. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314:5801997–1001 [Google Scholar]
  193. Kato H, Takeuchi O, Mikamo-Satoh E, Hirai R, Kawai T. 193.  et al. 2008. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J. Exp. Med. 205:71601–10 [Google Scholar]
  194. Pichlmair A, Schulz O, Tan CP, Rehwinkel J, Kato H. 194.  et al. 2009. Activation of MDA5 requires higher-order RNA structures generated during virus infection. J. Virol. 83:2010761–69 [Google Scholar]
  195. Saito T, Owen DM, Jiang F, Marcotrigiano J, Gale M. 195.  2008. Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature 454:7203523–27 [Google Scholar]
  196. Uzri D, Gehrke L. 196.  2009. Nucleotide sequences and modifications that determine RIG-I/RNA binding and signaling activities. J. Virol. 83:94174–84 [Google Scholar]
  197. Chiu Y-H, Macmillan JB, Chen ZJ. 197.  2009. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138:3576–91 [Google Scholar]
  198. Kawai T, Takahashi K, Sato S, Coban C, Kumar H. 198.  et al. 2005. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat. Immunol. 6:10981–88 [Google Scholar]
  199. Meylan E, Curran J, Hofmann K, Moradpour D, Binder M. 199.  et al. 2005. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437:70621167–72 [Google Scholar]
  200. Xu L-G, Wang Y-Y, Han K-J, Li L-Y, Zhai Z, Shu H-B. 200.  2005. VISA is an adapter protein required for virus-triggered IFN-β signaling. Mol. Cell 19:6727–40 [Google Scholar]
  201. Gack MU, Shin YC, Joo C-H, Urano T, Liang C. 201.  et al. 2007. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446:7138916–20 [Google Scholar]
  202. Oshiumi H, Matsumoto M, Hatakeyama S, Seya T. 202.  2009. Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-β induction during the early phase of viral infection. J. Biol. Chem. 284:2807–17 [Google Scholar]
  203. Oshiumi H, Miyashita M, Inoue N, Okabe M, Matsumoto M, Seya T. 203.  2010. The ubiquitin ligase Riplet is essential for RIG-I-dependent innate immune responses to RNA virus infection. Cell Host Microbe 8:6496–509 [Google Scholar]
  204. Hou F, Sun L, Zheng H, Skaug B, Jiang Q-X, Chen ZJ. 204.  2011. MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146:3448–61 [Google Scholar]
  205. Liu S, Chen J, Cai X, Wu J, Chen X. 205.  et al. 2013. MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades. Elife 2:0e00785 [Google Scholar]
  206. Liu HM, Loo Y-M, Horner SM, Zornetzer GA, Katze MG, Gale M. 206.  2012. The mitochondrial targeting chaperone 14-3-3ε regulates a RIG-I translocon that mediates membrane association and innate antiviral immunity. Cell Host Microbe 11:5528–37 [Google Scholar]
  207. Odendall C, Dixit E, Stavru F, Bierne H, Franz KM. 207.  et al. 2014. Diverse intracellular pathogens activate type III interferon expression from peroxisomes. Nat. Immunol. 5:717–26 [Google Scholar]
  208. Rowland AA, Voeltz GK. 208.  2012. Endoplasmic reticulum-mitochondria contacts: function of the junction. Nat. Rev. Mol. Cell Biol. 13:10607–25 [Google Scholar]
  209. Castanier C, Garcin D, Vazquez A, Arnoult D. 209.  2010. Mitochondrial dynamics regulate the RIG-I-like receptor antiviral pathway. EMBO Rep. 11:2133–38 [Google Scholar]
  210. Onoguchi K, Onomoto K, Takamatsu S, Jogi M, Takemura A. 210.  et al. 2010. Virus-infection or 5′ppp-RNA activates antiviral signal through redistribution of IPS-1 mediated by MFN1. PLOS Pathog. 6:7e1001012 [Google Scholar]
  211. Koshiba T, Yasukawa K, Yanagi Y, Kawabata S-I. 211.  2011. Mitochondrial membrane potential is required for MAVS-mediated antiviral signaling. Sci. Signal. 4:158ra7 [Google Scholar]
  212. Chen H, Chomyn A, Chan DC. 212.  2005. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J. Biol. Chem. 280:2826185–92 [Google Scholar]
  213. Yasukawa K, Oshiumi H, Takeda M, Ishihara N, Yanagi Y. 213.  et al. 2009. Mitofusin 2 inhibits mitochondrial antiviral signaling. Sci. Signal. 2:84ra47 [Google Scholar]
  214. Sacksteder KA, Jones JM, South ST, Li X, Liu Y, Gould SJ. 214.  2000. PEX19 binds multiple peroxisomal membrane proteins, is predominantly cytoplasmic, and is required for peroxisome membrane synthesis. J. Cell Biol. 148:5931–44 [Google Scholar]
  215. Xia M, Gonzalez P, Li C, Meng G, Jiang A. 215.  et al. 2014. Mitophagy enhances oncolytic measles virus replication by mitigating DDX58/RIG-I-like receptor signaling. J. Virol. 88:95152–64 [Google Scholar]
  216. Jounai N, Takeshita F, Kobiyama K, Sawano A, Miyawaki A. 216.  et al. 2007. The Atg5 Atg12 conjugate associates with innate antiviral immune responses. PNAS 104:3514050–55 [Google Scholar]
  217. Zhao Y, Sun X, Nie X, Sun L, Tang T-S. 217.  et al. 2012. COX5B regulates MAVS-mediated antiviral signaling through interaction with ATG5 and repressing ROS production. PLOS Pathog. 8:12e1003086 [Google Scholar]
  218. Lei Y, Wen H, Yu Y, Taxman DJ, Zhang L. 218.  et al. 2012. The mitochondrial proteins NLRX1 and TUFM form a complex that regulates type I interferon and autophagy. Immunity 36:6933–46 [Google Scholar]
  219. Holm GH, Zurney J, Tumilasci V, Leveille S, Danthi P. 219.  et al. 2007. Retinoic acid-inducible gene-I and interferon-β promoter stimulator-1 augment proapoptotic responses following mammalian reovirus infection via interferon regulatory factor-3. J. Biol. Chem. 282:3021953–61 [Google Scholar]
  220. Huang Y, Liu H, Li S, Tang Y, Wei B. 220.  et al. 2014. MAVS-MKK7-JNK2 defines a novel apoptotic signaling pathway during viral infection. PLOS Pathog. 10:3e1004020 [Google Scholar]
  221. Brubaker SW, Gauthier AE, Mills EW, Ingolia NT, Kagan JC. 221.  2014. A bicistronic MAVS transcript highlights a class of truncated variants in antiviral immunity. Cell 156:4800–811 [Google Scholar]
  222. Yu C-Y, Chiang R-L, Chang T-H, Liao C-L, Lin Y-L. 222.  2010. The interferon stimulator mitochondrial antiviral signaling protein facilitates cell death by disrupting the mitochondrial membrane potential and by activating caspases. J. Virol. 84:52421–31 [Google Scholar]
  223. Michallet M-C, Meylan E, Ermolaeva MA, Vazquez J, Rebsamen M. 223.  et al. 2008. TRADD protein is an essential component of the RIG-like helicase antiviral pathway. Immunity 28:5651–61 [Google Scholar]
  224. El S, Faletti L, Berg B, Wenzl C, Wieland K. 224.  Maadidi et al. 2014. A novel mitochondrial MAVS/Caspase-8 platform links RNA virus-induced innate antiviral signaling to Bax/Bak-independent apoptosis. J. Immunol. 192:31171–83 [Google Scholar]
  225. Guan K, Zheng Z, Song T, He X, Xu C. 225.  et al. 2013. MAVS regulates apoptotic cell death by decreasing K48-linked ubiquitination of voltage-dependent anion channel 1. Mol. Cell. Biol. 33:163137–49 [Google Scholar]
  226. Unterholzner L. 226.  2013. The interferon response to intracellular DNA: why so many receptors?. Immunobiology 218:111312–21 [Google Scholar]
  227. Ishikawa H, Barber GN. 227.  2008. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455:7213674–78 [Google Scholar]
  228. Zhong B, Yang Y, Li S, Wang Y-Y, Li Y. 228.  et al. 2008. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29:4538–50 [Google Scholar]
  229. Sun W, Li Y, Chen L, Chen H, You F. 229.  et al. 2009. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. PNAS 106:218653–58 [Google Scholar]
  230. Ishikawa H, Ma Z, Barber GN. 230.  2009. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461:7265788–92 [Google Scholar]
  231. Unterholzner L, Keating SE, Baran M, Horan KA, Jensen SB. 231.  et al. 2010. IFI16 is an innate immune sensor for intracellular DNA. Nat. Immunol. 11:11997–1004 [Google Scholar]
  232. Zhang Z, Yuan B, Bao M, Lu N, Kim T, Liu Y-J. 232.  2011. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat. Immunol. 12:10959–65 [Google Scholar]
  233. Burdette DL, Monroe KM, Sotelo-Troha K, Iwig JS, Eckert B. 233.  et al. 2011. STING is a direct innate immune sensor of cyclic di-GMP. Nature 478:7370515–18 [Google Scholar]
  234. Yin Q, Tian Y, Kabaleeswaran V, Jiang X, Tu D. 234.  et al. 2012. Cyclic di-GMP sensing via the innate immune signaling protein STING. Mol. Cell 46:6735–45 [Google Scholar]
  235. Ouyang S, Song X, Wang Y, Ru H, Shaw N. 235.  et al. 2012. Structural analysis of the STING adaptor protein reveals a hydrophobic dimer interface and mode of cyclic di-GMP binding. Immunity 36:61073–86 [Google Scholar]
  236. Huang Y-H, Liu X-Y, Du X-X, Jiang Z-F, Su X-D. 236.  2012. The structural basis for the sensing and binding of cyclic di-GMP by STING. Nat. Struct. Mol. Biol. 19:7728–30 [Google Scholar]
  237. Shang G, Zhu D, Li N, Zhang J, Zhu C. 237.  et al. 2012. Crystal structures of STING protein reveal basis for recognition of cyclic di-GMP. Nat. Struct. Mol. Biol. 19:7725–27 [Google Scholar]
  238. Shu C, Yi G, Watts T, Kao CC, Li P. 238.  2012. Structure of STING bound to cyclic di-GMP reveals the mechanism of cyclic dinucleotide recognition by the immune system. Nat. Struct. Mol. Biol. 19:7722–24 [Google Scholar]
  239. Sun L, Wu J, Du F, Chen X, Chen ZJ. 239.  2013. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339:6121786–91 [Google Scholar]
  240. Wu J, Sun L, Chen X, Du F, Shi H. 240.  et al. 2013. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339:6121826–30 [Google Scholar]
  241. Saitoh T, Fujita N, Hayashi T, Takahara K, Satoh T. 241.  et al. 2009. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. PNAS 106:4920842–46 [Google Scholar]
  242. Konno H, Konno K, Barber GN. 242.  2013. Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling. Cell 155:3688–98 [Google Scholar]
  243. Watson RO, Manzanillo PS, Cox JS. 243.  2012. Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell 150:4803–15 [Google Scholar]
  244. Fernandes-Alnemri T, Yu J-W, Datta P, Wu J, Alnemri ES. 244.  2009. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458:7237509–13 [Google Scholar]
  245. Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G. 245.  et al. 2009. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458:7237514–18 [Google Scholar]
  246. Bürckstümmer T, Baumann C, Blüml S, Dixit E, Dürnberger G. 246.  et al. 2009. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat. Immunol. 10:3266–72 [Google Scholar]
  247. Kerur N, Veettil MV, Sharma-Walia N, Bottero V, Sadagopan S. 247.  et al. 2011. IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi sarcoma-associated herpesvirus infection. Cell Host Microbe 9:5363–75 [Google Scholar]
  248. von Moltke J, Ayres JS, Kofoed EM, Chavarría-Smith J, Vance RE. 248.  2013. Recognition of bacteria by inflammasomes. Annu. Rev. Immunol. 31:173–106 [Google Scholar]
  249. Eder C. 249.  2009. Mechanisms of interleukin-1β release. Immunobiology 214:7543–53 [Google Scholar]
  250. Rubartelli A, Cozzolino F, Talio M, Sitia R. 250.  1990. A novel secretory pathway for interleukin-1β, a protein lacking a signal sequence. EMBO J. 9:51503–10 [Google Scholar]
  251. Andrei C, Dazzi C, Lotti L, Torrisi MR, Chimini G, Rubartelli A. 251.  1999. The secretory route of the leaderless protein interleukin 1β involves exocytosis of endolysosome-related vesicles. Mol. Biol. Cell 10:51463–75 [Google Scholar]
  252. MacKenzie A, Wilson HL, Kiss-Toth E, Dower SK, North RA, Surprenant A. 252.  2001. Rapid secretion of interleukin-1β by microvesicle shedding. Immunity 15:5825–35 [Google Scholar]
  253. Qu Y, Franchi L, Núñez G, Dubyak GR. 253.  2007. Nonclassical IL-1β secretion stimulated by P2X7 receptors is dependent on inflammasome activation and correlated with exosome release in murine macrophages. J. Immunol. 179:31913–25 [Google Scholar]
  254. Hogquist KA, Unanue ER, Chaplin DD. 254.  1991. Release of IL-1 from mononuclear phagocytes. J. Immunol. 147:72181–86 [Google Scholar]
  255. Fink SL, Cookson BT. 255.  2006. Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell. Microbiol. 8:111812–25 [Google Scholar]
  256. Gariano GR, Dell'Oste V, Bronzini M, Gatti D, Luganini A. 256.  et al. 2012. The intracellular DNA sensor IFI16 gene acts as restriction factor for human cytomegalovirus replication. PLOS Pathog. 8:1e1002498 [Google Scholar]
  257. Jakobsen MR, Bak RO, Andersen A, Berg RK, Jensen SB. 257.  et al. 2013. IFI16 senses DNA forms of the lentiviral replication cycle and controls HIV-1 replication. PNAS 110:48E4571–80 [Google Scholar]
  258. Monroe KM, Yang Z, Johnson JR, Geng X, Doitsh G. 258.  et al. 2014. IFI16 DNA sensor is required for death of lymphoid CD4 T cells abortively infected with HIV. Science 343:6169428–32 [Google Scholar]
  259. Veeranki S, Choubey D. 259.  2012. Interferon-inducible p200-family protein IFI16, an innate immune sensor for cytosolic and nuclear double-stranded DNA: regulation of subcellular localization. Mol. Immunol. 49:4567–71 [Google Scholar]
  260. Li T, Diner BA, Chen J, Cristea IM. 260.  2012. Acetylation modulates cellular distribution and DNA sensing ability of interferon-inducible protein IFI16. PNAS 109:2610558–63 [Google Scholar]
  261. Orzalli MH, DeLuca NA, Knipe DM. 261.  2012. Nuclear IFI16 induction of IRF-3 signaling during herpesviral infection and degradation of IFI16 by the viral ICP0 protein. PNAS 109:44E3008–17 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error