Mucosal surfaces provide a remarkably effective barrier against potentially dangerous pathogens. Therefore, enhancing mucosal immunity through vaccines—strengthening that first line of defense—holds significant promise for reducing the burden of viral diseases. The large and varied class of viral pathogens, however, continues to present thorny challenges to vaccine development. Two primary difficulties exist: Viruses exhibit a stunning diversity of strategies for evading the host immune response, and even when we understand the nature of effective immune protection against a given virus, eliciting that protection is technically challenging. Only a few mucosal vaccines have surmounted these obstacles thus far. Recent developments, however, could greatly improve vaccine design. In this review, we first sketch out our understanding of mucosal immunity and then compare the herpes simplex virus, human immunodeficiency virus, and influenza virus to illustrate the distinct challenges of developing successful vaccines and to outline potential solutions.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Palm NW, Medzhitov R. 1.  2009. Pattern recognition receptors and control of adaptive immunity. Immunol. Rev. 227:221–33 [Google Scholar]
  2. Iwasaki A, Medzhitov R. 2.  2010. Regulation of adaptive immunity by the innate immune system. Science 327:291–95 [Google Scholar]
  3. Kanno Y, Vahedi G, Hirahara K, Singleton K, O’Shea JJ. 3.  2012. Transcriptional and epigenetic control of T helper cell specification: molecular mechanisms underlying commitment and plasticity. Annu. Rev. Immunol. 30:707–31 [Google Scholar]
  4. Banchereau J, Steinman RM. 4.  1998. Dendritic cells and the control of immunity. Nature 392:245–52 [Google Scholar]
  5. Kawai T, Akira S. 5.  2010. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11:373–84 [Google Scholar]
  6. Liniger M, Zuniga A, Naim HY. 6.  2007. Use of viral vectors for the development of vaccines. Expert Rev. Vaccines 6:255–66 [Google Scholar]
  7. Iwasaki A, Medzhitov R. 7.  2015. Control of adaptive immunity by the innate immune system. Nat. Immunol. 16:343–53 [Google Scholar]
  8. Virgin HW, Wherry EJ, Ahmed R. 8.  2009. Redefining chronic viral infection. Cell 138:30–50 [Google Scholar]
  9. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. 9.  2012. Diversity, stability and resilience of the human gut microbiota. Nature 489:220–30 [Google Scholar]
  10. Iwasaki A. 10.  2007. Mucosal dendritic cells. Annu. Rev. Immunol. 25:381–418 [Google Scholar]
  11. Linden SK, Sutton P, Karlsson NG, Korolik V, McGuckin MA. 11.  2008. Mucins in the mucosal barrier to infection. Mucosal Immunol. 1:183–97 [Google Scholar]
  12. Cone RA. 12.  2009. Barrier properties of mucus. Adv. Drug Deliv. Rev. 61:75–85 [Google Scholar]
  13. Wilks J, Beilinson H, Golovkina TV. 13.  2013. Dual role of commensal bacteria in viral infections. Immunol. Rev. 255:222–29 [Google Scholar]
  14. Haase AT. 14.  2010. Targeting early infection to prevent HIV-1 mucosal transmission. Nature 464:217–23 [Google Scholar]
  15. Frazer IH. 15.  2004. Prevention of cervical cancer through papillomavirus vaccination. Nat. Rev. Immunol. 4:46–54 [Google Scholar]
  16. Moody CA, Laimins LA. 16.  2010. Human papillomavirus oncoproteins: pathways to transformation. Nat. Rev. Cancer 10:550–60 [Google Scholar]
  17. Gilliet M, Cao W, Liu YJ. 17.  2008. Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat. Rev. Immunol. 8:594–606 [Google Scholar]
  18. Goubau D, Deddouche S, Reis e Sousa C. 18.  2013. Cytosolic sensing of viruses. Immunity 38:855–69 [Google Scholar]
  19. Hou B, Reizis B, DeFranco AL. 19.  2008. Toll-like receptors activate innate and adaptive immunity by using dendritic cell–intrinsic and –extrinsic mechanisms. Immunity 29:272–82 [Google Scholar]
  20. Rath T, Baker K, Pyzik M, Blumberg RS. 20.  2015. Regulation of immune responses by the neonatal Fc receptor and its therapeutic implications. Front. Immunol. 5:664 [Google Scholar]
  21. Hangartner L, Zinkernagel RM, Hengartner H. 21.  2006. Antiviral antibody responses: the two extremes of a wide spectrum. Nat. Rev. Immunol. 6:231–43 [Google Scholar]
  22. Para MF, Goldstein L, Spear PG. 22.  1982. Similarities and differences in the Fc-binding glycoprotein (gE) of herpes simplex virus types 1 and 2 and tentative mapping of the viral gene for this glycoprotein. J. Virol. 41:137–44 [Google Scholar]
  23. Awasthi S, Huang J, Shaw C, Friedman HM. 23.  2014. Blocking HSV-2 glycoprotein E immune evasion as an approach to enhance efficacy of a trivalent subunit antigen vaccine for genital herpes. J. Virol. 88:8421–32 [Google Scholar]
  24. Ackerman ME, Alter G. 24.  2013. Opportunities to exploit non-neutralizing HIV-specific antibody activity. Curr. HIV Res. 11:365–77 [Google Scholar]
  25. Lubinski J, Wang L, Mastellos D, Sahu A, Lambris JD, Friedman HM. 25.  1999. In vivo role of complement-interacting domains of herpes simplex virus type 1 glycoprotein gC. J. Exp. Med. 190:1637–46 [Google Scholar]
  26. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. 26.  1999. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401:708–12 [Google Scholar]
  27. Zinkernagel RM. 27.  1996. Immunology taught by viruses. Science 271:173–78 [Google Scholar]
  28. Wherry EJ, Teichgraber V, Becker TC, Masopust D, Kaech SM. 28.  et al. 2003. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol. 4:225–34 [Google Scholar]
  29. Medzhitov R, Schneider DS, Soares MP. 29.  2012. Disease tolerance as a defense strategy. Science 335:936–41 [Google Scholar]
  30. Raberg L, Sim D, Read AF. 30.  2007. Disentangling genetic variation for resistance and tolerance to infectious diseases in animals. Science 318:812–14 [Google Scholar]
  31. Ayres JS, Schneider DS. 31.  2012. Tolerance of infections. Annu. Rev. Immunol. 30:271–94 [Google Scholar]
  32. Zeitlin L, Cone RA, Moench TR, Whaley KJ. 32.  2000. Preventing infectious disease with passive immunization. Microbes Infect. 2:701–8 [Google Scholar]
  33. Franco MA, Angel J, Greenberg HB. 33.  2006. Immunity and correlates of protection for rotavirus vaccines. Vaccine 24:2718–31 [Google Scholar]
  34. Patel M, Glass RI, Jiang B, Santosham M, Lopman B, Parashar U. 34.  2013. A systematic review of anti-rotavirus serum IgA antibody titer as a potential correlate of rotavirus vaccine efficacy. J. Infect. Dis. 208:284–94 [Google Scholar]
  35. Nardelli-Haefliger D, Wirthner D, Schiller JT, Lowy DR, Hildesheim A. 35.  et al. 2003. Specific antibody levels at the cervix during the menstrual cycle of women vaccinated with human papillomavirus 16 virus-like particles. J. Natl. Cancer Inst. 95:1128–37 [Google Scholar]
  36. Frazer I. 36.  2007. Correlating immunity with protection for HPV infection. Int. J. Infect. Dis. 11:Suppl. 2S10–16 [Google Scholar]
  37. Villa LL, Ault KA, Giuliano AR, Costa RL, Petta CA. 37.  et al. 2006. Immunologic responses following administration of a vaccine targeting human papillomavirus Types 6, 11, 16, and 18. Vaccine 24:5571–83 [Google Scholar]
  38. Leon B, Ballesteros-Tato A, Misra RS, Wojciechowski W, Lund FE. 38.  2012. Unraveling effector functions of B cells during infection: the hidden world beyond antibody production. Infect. Disord. Drug Targets 12:213–21 [Google Scholar]
  39. Levin MJ, Oxman MN, Zhang JH, Johnson GR, Stanley H. 39.  et al. 2008. Varicella-zoster virus-specific immune responses in elderly recipients of a herpes zoster vaccine. J. Infect. Dis. 197:825–35 [Google Scholar]
  40. Weinberg A, Zhang JH, Oxman MN, Johnson GR, Hayward AR. 40.  et al. 2009. Varicella-zoster virus-specific immune responses to herpes zoster in elderly participants in a trial of a clinically effective zoster vaccine. J. Infect. Dis. 200:1068–77 [Google Scholar]
  41. Gilbert PB, Gabriel EE, Miao X, Li X, Su SC. 41.  et al. 2014. Fold rise in antibody titers by measured by glycoprotein-based enzyme-linked immunosorbent assay is an excellent correlate of protection for a herpes zoster vaccine, demonstrated via the vaccine efficacy curve. J. Infect. Dis. 210:1573–81 [Google Scholar]
  42. Parr EL, Parr MB. 42.  1998. Immunoglobulin G, plasma cells, and lymphocytes in the murine vagina after vaginal or parenteral immunization with attenuated herpes simplex virus type 2. J. Virol. 72:5137–45 [Google Scholar]
  43. Belec L, Tevi-Benissan C, Lu XS, Prazuck T, Pillot J. 43.  1995. Local synthesis of IgG antibodies to HIV within the female and male genital tracts during asymptomatic and pre-AIDS stages of HIV infection. AIDS Res. Hum. Retrovir. 11:719–29 [Google Scholar]
  44. Belec L, Dupre T, Prazuck T, Tevi-Benissan C, Kanga JM. 44.  et al. 1995. Cervicovaginal overproduction of specific IgG to human immunodeficiency virus (HIV) contrasts with normal or impaired IgA local response in HIV infection. J. Infect. Dis. 172:691–97 [Google Scholar]
  45. Bomsel M, Tudor D, Drillet A-S, Alfsen A, Ganor Y. 45.  et al. 2011. Immunization with HIV-1 gp41 subunit virosomes induces mucosal antibodies protecting nonhuman primates against vaginal SHIV challenges. Immunity 34:269–80 [Google Scholar]
  46. Li Q, Zeng M, Duan L, Voss JE, Smith AJ. 46.  et al. 2014. Live simian immunodeficiency virus vaccine correlate of protection: local antibody production and concentration on the path of virus entry. J. Immunol. 193:3113–25 [Google Scholar]
  47. Shin H, Iwasaki A. 47.  2013. Tissue-resident memory T cells. Immunol. Rev. 255:165–81 [Google Scholar]
  48. Mueller SN, Gebhardt T, Carbone FR, Heath WR. 48.  2012. Memory T cell subsets, migration patterns, and tissue residence. Annu. Rev. Immunol. 31:137–61 [Google Scholar]
  49. Cauley LS, Lefrancois L. 49.  2013. Guarding the perimeter: protection of the mucosa by tissue-resident memory T cells. Mucosal Immunol. 6:14–23 [Google Scholar]
  50. Gebhardt T, Wakim LM, Eidsmo L, Reading PC, Heath WR, Carbone FR. 50.  2009. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol. 10:524–30 [Google Scholar]
  51. Liu L, Zhong Q, Tian T, Dubin K, Athale SK, Kupper TS. 51.  2010. Epidermal injury and infection during poxvirus immunization is crucial for the generation of highly protective T cell–mediated immunity. Nat. Med. 16:224–27 [Google Scholar]
  52. Hogan RJ, Zhong W, Usherwood EJ, Cookenham T, Roberts AD, Woodland DL. 52.  2001. Protection from respiratory virus infections can be mediated by antigen-specific Cd4+ T cells that persist in the lungs. J. Exp. Med. 193:981–86 [Google Scholar]
  53. Liang S, Mozdzanowska K, Palladino G, Gerhard W. 53.  1994. Heterosubtypic immunity to influenza type A virus in mice. Effector mechanisms and their longevity. J. Immunol. 152:1653–61 [Google Scholar]
  54. Wu T, Hu Y, Lee YT, Bouchard KR, Benechet A. 54.  et al. 2014. Lung-resident memory CD8 T cells (TRM) are indispensable for optimal cross-protection against pulmonary virus infection. J. Leukoc. Biol. 95:215–24 [Google Scholar]
  55. Teijaro JR, Turner D, Pham Q, Wherry EJ, Lefrançois L, Farber DL. 55.  2011. Cutting edge: Tissue-retentive lung memory CD4 T cells mediate optimal protection to respiratory virus infection. J. Immunol. 187:5510–14 [Google Scholar]
  56. Iijima N, Iwasaki A. 56.  2014. A local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells. Science 346:93–98 [Google Scholar]
  57. Farber DL, Yudanin NA, Restifo NP. 57.  2014. Human memory T cells: generation, compartmentalization and homeostasis. Nat. Rev. Immunol. 14:24–35 [Google Scholar]
  58. Thome JJ, Yudanin N, Ohmura Y, Kubota M, Grinshpun B. 58.  et al. 2014. Spatial map of human T cell compartmentalization and maintenance over decades of life. Cell 159:814–28 [Google Scholar]
  59. Schiffer JT, Abu-Raddad L, Mark KE, Zhu J, Selke S. 59.  et al. 2010. Mucosal host immune response predicts the severity and duration of herpes simplex virus-2 genital tract shedding episodes. PNAS 107:18973–78 [Google Scholar]
  60. Zhu J, Peng T, Johnston C, Phasouk K, Kask AS. 60.  et al. 2013. Immune surveillance by CD8αα + skin-resident T cells in human herpes virus infection. Nature 497:494–97 [Google Scholar]
  61. Schiffer JT, Swan D, Sallaq RA, Magaret A, Johnston C. 61.  et al. 2013. Rapid localized spread and immunologic containment define herpes simplex virus-2 reactivation in the human genital tract. eLife 2e00288
  62. Zhu J, Koelle DM, Cao J, Vazquez J, Huang ML. 62.  et al. 2007. Virus-specific CD8+ T cells accumulate near sensory nerve endings in genital skin during subclinical HSV-2 reactivation. J. Exp. Med. 204:595–603 [Google Scholar]
  63. Schiffer JT. 63.  2013. Mucosal HSV-2 specific CD8+ T-cells represent containment of prior viral shedding rather than a correlate of future protection. Front. Immunol. 4:209Mathematical modeling predicts that increasing CD8 T cell density will lead to better control of viral shedding. [Google Scholar]
  64. Fleming DT, McQuillan GM, Johnson RE, Nahmias AJ, Aral SO. 64.  et al. 1997. Herpes simplex virus type 2 in the United States, 1976 to 1994. N. Engl. J. Med. 337:1105–11 [Google Scholar]
  65. Buchman TG, Roizman B, Nahmias AJ. 65.  1979. Demonstration of exogenous genital reinfection with herpes simplex virus type 2 by restriction endonuclease fingerprinting of viral DNA. J. Infect. Dis. 140:295–304 [Google Scholar]
  66. Schmidt OW, Fife KH, Corey L. 66.  1984. Reinfection is an uncommon occurrence in patients with symptomatic recurrent genital herpes. J. Infect. Dis. 149:645–46 [Google Scholar]
  67. Sakaoka H, Aomori T, Gouro T, Kumamoto Y. 67.  1995. Demonstration of either endogenous recurrence or exogenous reinfection by restriction endonuclease cleavage analysis of herpes simplex virus from patients with recrudescent genital herpes. J. Med. Virol. 46:387–96 [Google Scholar]
  68. Awasthi S, Friedman HM. 68.  2014. Status of prophylactic and therapeutic genital herpes vaccines. Curr. Opin. Virol. 6C:6–12 [Google Scholar]
  69. Hofstetter AM, Rosenthal SL, Stanberry LR. 69.  2014. Current thinking on genital herpes. Curr. Opin. Infect. Dis. 27:75–83 [Google Scholar]
  70. Dropulic LK, Cohen JI. 70.  2012. The challenge of developing a herpes simplex virus 2 vaccine. Expert Rev. Vaccines 11:1429–40 [Google Scholar]
  71. Corey L, Langenberg AG, Ashley R, Sekulovich RE, Izu AE. 71.  et al. 1999. Recombinant glycoprotein vaccine for the prevention of genital HSV-2 infection: two randomized controlled trials. JAMA 282:331–40 [Google Scholar]
  72. Bernstein DI, Aoki FY, Tyring SK, Stanberry LR, St. Pierre C. 72.  et al. 2005. Safety and immunogenicity of glycoprotein D–adjuvant genital herpes vaccine. Clin. Infect. Dis. 40:1271–81 [Google Scholar]
  73. Stanberry LR, Spruance SL, Cunningham AL, Bernstein DI, Mindel A. 73.  et al. 2002. Glycoprotein-D–adjuvant vaccine to prevent genital herpes. N. Engl. J. Med. 347:1652–61 [Google Scholar]
  74. Belshe RB, Heineman TC, Bernstein DI, Bellamy AR, Ewell M. 74.  et al. 2014. Correlate of immune protection against HSV-1 genital disease in vaccinated women. J. Infect. Dis. 209:828–36 [Google Scholar]
  75. Para MF, Parish ML, Noble AG, Spear PG. 75.  1985. Potent neutralizing activity associated with anti-glycoprotein D specificity among monoclonal antibodies selected for binding to herpes simplex virions. J. Virol. 55:483–88 [Google Scholar]
  76. Whaley KJ, Zeitlin L, Barratt RA, Hoen TE, Cone RA. 76.  1994. Passive immunization of the vagina protects mice against vaginal transmission of genital herpes infections. J. Infect. Dis. 169:647–49 [Google Scholar]
  77. Sherwood JK, Zeitlin L, Whaley KJ, Cone RA, Saltzman M. 77.  1996. Controlled release of antibodies for long-term topical passive immunoprotection of female mice against genital herpes. Nat. Biotechnol. 14:468–71 [Google Scholar]
  78. McDermott MR, Brais LJ, Evelegh MJ. 78.  1990. Mucosal and systemic antiviral antibodies in mice inoculated intravaginally with herpes simplex virus type 2. J. Gen. Virol. 71:1497–504 [Google Scholar]
  79. Parr EL, Bozzola JJ, Parr MB. 79.  1998. Immunity to vaginal infection by herpes simplex virus type 2 in adult mice: characterization of the immunoglobulins in vaginal mucus. J. Reprod. Immunol. 38:15–30 [Google Scholar]
  80. Chu CF, Meador MG, Young CG, Strasser JE, Bourne N, Milligan GN. 80.  2008. Antibody-mediated protection against genital herpes simplex virus type 2 disease in mice by Fc γ receptor–dependent and -independent mechanisms. J. Reprod. Immunol. 78:58–67 [Google Scholar]
  81. Mascola JR, Stiegler G, VanCott TC, Katinger H, Carpenter CB. 81.  et al. 2000. Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nat. Med. 6:207–10 [Google Scholar]
  82. Nagashunmugam T, Lubinski J, Wang L, Goldstein LT, Weeks BS. 82.  et al. 1998. In vivo immune evasion mediated by the herpes simplex virus type 1 immunoglobulin G Fc receptor. J. Virol. 72:5351–59 [Google Scholar]
  83. Lubinski JM, Lazear HM, Awasthi S, Wang F, Friedman HM. 83.  2011. The herpes simplex virus 1 IgG Fc receptor blocks antibody-mediated complement activation and antibody-dependent cellular cytotoxicity in vivo. J. Virol. 85:3239–49 [Google Scholar]
  84. Hook LM, Lubinski JM, Jiang M, Pangburn MK, Friedman HM. 84.  2006. Herpes simplex virus type 1 and 2 glycoprotein C prevents complement-mediated neutralization induced by natural immunoglobulin M antibody. J. Virol. 80:4038–46 [Google Scholar]
  85. Gewurz BE, Gaudet R, Tortorella D, Wang EW, Ploegh HL. 85.  2001. Virus subversion of immunity: a structural perspective. Curr. Opin. Immunol. 13:442–50 [Google Scholar]
  86. Ashley RL, Crisostomo FM, Doss M, Sekulovich RE, Burke RL. 86.  et al. 1998. Cervical antibody responses to a herpes simplex virus type 2 glycoprotein subunit vaccine. J. Infect. Dis. 178:1–7 [Google Scholar]
  87. Zhu J, Hladik F, Woodward A, Klock A, Peng T. 87.  et al. 2009. Persistence of HIV-1 receptor–positive cells after HSV-2 reactivation is a potential mechanism for increased HIV-1 acquisition. Nat. Med. 15:886–92 [Google Scholar]
  88. Schiffer JT, Abu-Raddad L, Mark KE, Zhu J, Selke S. 88.  et al. 2010. Mucosal host immune response predicts the severity and duration of herpes simplex virus-2 genital tract shedding episodes. PNAS 107:18973–78 [Google Scholar]
  89. Peng T, Zhu J, Phasouk K, Koelle DM, Wald A, Corey L. 89.  2012. An effector phenotype of CD8+ T cells at the junction epithelium during clinical quiescence of herpes simplex virus 2 infection. J. Virol. 86:10587–96 [Google Scholar]
  90. Zhu J, Peng T, Johnston C, Phasouk K, Kask AS. 90.  et al. 2013. Immune surveillance by CD8αα+ skin-resident T cells in human herpes virus infection. Nature 497:494–97 [Google Scholar]
  91. Shin H, Iwasaki A. 91.  2012. A vaccine strategy that protects against genital herpes by establishing local memory T cells. Nature 491:463–67 [Google Scholar]
  92. Mackay LK, Stock AT, Ma JZ, Jones CM, Kent SJ. 92.  et al. 2012. Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation. PNAS 109:7037–42 [Google Scholar]
  93. Iijima N, Iwasaki A. 93.  2014. A local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells. Science 346:93–98 [Google Scholar]
  94. Awasthi S, Zumbrun EE, Si H, Wang F, Shaw CE. 94.  et al. 2012. Live attenuated herpes simplex virus 2 glycoprotein E deletion mutant as a vaccine candidate defective in neuronal spread. J. Virol. 86:4586–98 [Google Scholar]
  95. Awasthi S, Lubinski JM, Shaw CE, Barrett SM, Cai M. 95.  et al. 2011. Immunization with a vaccine combining herpes simplex virus 2 (HSV-2) glycoprotein C (gC) and gD subunits improves the protection of dorsal root ganglia in mice and reduces the frequency of recurrent vaginal shedding of HSV-2 DNA in guinea pigs compared to immunization with gD alone. J. Virol. 85:10472–86 [Google Scholar]
  96. Awasthi S, Lubinski JM, Friedman HM. 96.  2009. Immunization with HSV-1 glycoprotein C prevents immune evasion from complement and enhances the efficacy of an HSV-1 glycoprotein D subunit vaccine. Vaccine 27:6845–53 [Google Scholar]
  97. Schenkel JM, Fraser KA, Vezys V, Masopust D. 97.  2013. Sensing and alarm function of resident memory CD8+ T cells. Nat. Immunol. 14:509–13 [Google Scholar]
  98. 98. UNAIDS, WHO (U.N. Prog. HIV/AIDS, World Health Organ.) 2007. AIDS Epidemic Update 2007 Geneva: UNAIDS
  99. 99. WHO (World Health Organ.) 2008. Report on the Global AIDS Epidemic Geneva: WHO
  100. Altfeld M, Allen TM, Yu XG, Johnston MN, Agrawal D. 100.  et al. 2002. HIV-1 superinfection despite broad CD8+ T-cell responses containing replication of the primary virus. Nature 420:434–39 [Google Scholar]
  101. Walker BD, Yu XG. 101.  2013. Unravelling the mechanisms of durable control of HIV-1. Nat. Rev. Immunol. 13:487–98 [Google Scholar]
  102. Pereyra F, Jia X, McLaren PJ, Telenti A, de Bakker PI. 102.  et al. 2010. The major genetic determinants of HIV-1 control affect HLA class I peptide presentation. Science 330:1551–57 [Google Scholar]
  103. Pereyra F, Addo MM, Kaufmann DE, Liu Y, Miura T. 103.  et al. 2008. Genetic and immunologic heterogeneity among persons who control HIV infection in the absence of therapy. J. Infect. Dis. 197:563–71 [Google Scholar]
  104. Migueles SA, Sabbaghian MS, Shupert WL, Bettinotti MP, Marincola FM. 104.  et al. 2000. HLA B*5701 is highly associated with restriction of virus replication in a subgroup of HIV-infected long term nonprogressors. PNAS 97:2709–14 [Google Scholar]
  105. Fellay J, Shianna KV, Ge D, Colombo S, Ledergerber B. 105.  et al. 2007. A whole-genome association study of major determinants for host control of HIV-1. Science 317:944–47 [Google Scholar]
  106. Pelak K, Goldstein DB, Walley NM, Fellay J, Ge D. 106.  et al. 2010. Host determinants of HIV-1 control in African Americans. J. Infect. Dis. 201:1141–49 [Google Scholar]
  107. Limou S, Le Clerc S, Coulonges C, Carpentier W, Dina C. 107.  et al. 2009. Genomewide association study of an AIDS-nonprogression cohort emphasizes the role played by HLA genes (ANRS Genomewide Association Study 02). J. Infect. Dis. 199:419–26 [Google Scholar]
  108. Carrington M, Nelson GW, Martin MP, Kissner T, Vlahov D. 108.  et al. 1999. HLA and HIV-1: heterozygote advantage and B*35-Cw*04 disadvantage. Science 283:1748–52 [Google Scholar]
  109. Kaslow RA, Carrington M, Apple R, Park L, Munoz A. 109.  et al. 1996. Influence of combinations of human major histocompatibility complex genes on the course of HIV-1 infection. Nat. Med. 2:405–11 [Google Scholar]
  110. Ferre AL, Hunt PW, Critchfield JW, Young DH, Morris MM. 110.  et al. 2009. Mucosal immune responses to HIV-1 in elite controllers: a potential correlate of immune control. Blood 113:3978–89 [Google Scholar]
  111. Hersperger AR, Pereyra F, Nason M, Demers K, Sheth P. 111.  et al. 2010. Perforin expression directly ex vivo by HIV-specific CD8+ T-cells is a correlate of HIV elite control. PLOS Pathog. 6:e1000917 [Google Scholar]
  112. Killian MS, Johnson C, Teque F, Fujimura S, Levy JA. 112.  2011. Natural suppression of human immunodeficiency virus type 1 replication is mediated by transitional memory CD8+ T cells. J. Virol. 85:1696–705 [Google Scholar]
  113. Akinsiku OT, Bansal A, Sabbaj S, Heath SL, Goepfert PA. 113.  2011. Interleukin-2 production by polyfunctional HIV-1-specific CD8 T cells is associated with enhanced viral suppression. J. Acquir. Immune Defic. Syndr. 58:132–40 [Google Scholar]
  114. Bailey JR, Lassen KG, Yang HC, Quinn TC, Ray SC. 114.  et al. 2006. Neutralizing antibodies do not mediate suppression of human immunodeficiency virus type 1 in elite suppressors or selection of plasma virus variants in patients on highly active antiretroviral therapy. J. Virol. 80:4758–70 [Google Scholar]
  115. Ahmad R, Sindhu ST, Toma E, Morisset R, Vincelette J. 115.  et al. 2001. Evidence for a correlation between antibody-dependent cellular cytotoxicity-mediating anti–HIV-1 antibodies and prognostic predictors of HIV infection. J. Clin. Immunol. 21:227–33 [Google Scholar]
  116. Baum LL, Cassutt KJ, Knigge K, Khattri R, Margolick J. 116.  et al. 1996. HIV-1 gp120-specific antibody-dependent cell-mediated cytotoxicity correlates with rate of disease progression. J. Immunol. 157:2168–73 [Google Scholar]
  117. Lambotte O, Ferrari G, Moog C, Yates NL, Liao HX. 117.  et al. 2009. Heterogeneous neutralizing antibody and antibody-dependent cell cytotoxicity responses in HIV-1 elite controllers. AIDS 23:897–906 [Google Scholar]
  118. Dalgleish A, Sinclair A, Steel M, Beatson D, Ludlam C, Habeshaw J. 118.  1990. Failure of ADCC to predict HIV-associated disease progression or outcome in a haemophiliac cohort. Clin. Exp. Immunol. 81:5–10 [Google Scholar]
  119. Smalls-Mantey A, Doria-Rose N, Klein R, Patamawenu A, Migueles SA. 119.  et al. 2012. Antibody-dependent cellular cytotoxicity against primary HIV-infected CD4+ T cells is directly associated with the magnitude of surface IgG binding. J. Virol. 86:8672–80 [Google Scholar]
  120. Miyazawa M, Lopalco L, Mazzotta F, Lo Caputo S, Veas F, Clerici M. 120.  2009. The ‘immunologic advantage’ of HIV-exposed seronegative individuals. AIDS 23:161–75 [Google Scholar]
  121. Erickson AL, Willberg CB, McMahan V, Liu A, Buchbinder SP. 121.  et al. 2008. Potentially exposed but uninfected individuals produce cytotoxic and polyfunctional human immunodeficiency virus type 1–specific CD8+ T-cell responses which can be defined to the epitope level. Clin. Vaccine Immunol. 15:1745–48 [Google Scholar]
  122. Clerici M, Levin JM, Kessler HA, Harris A, Berzofsky JA. 122.  et al. 1994. HIV-specific T-helper activity in seronegative health care workers exposed to contaminated blood. JAMA 271:42–46 [Google Scholar]
  123. Pinto LA, Sullivan J, Berzofsky JA, Clerici M, Kessler HA. 123.  et al. 1995. ENV-specific cytotoxic T lymphocyte responses in HIV seronegative health care workers occupationally exposed to HIV-contaminated body fluids. J. Clin. Investig. 96:867–76 [Google Scholar]
  124. Rowland-Jones SL, Dong T, Fowke KR, Kimani J, Krausa P. 124.  et al. 1998. Cytotoxic T cell responses to multiple conserved HIV epitopes in HIV-resistant prostitutes in Nairobi. J. Clin. Investig. 102:1758–65 [Google Scholar]
  125. Stranford SA, Skurnick J, Louria D, Osmond D, Chang SY. 125.  et al. 1999. Lack of infection in HIV-exposed individuals is associated with a strong CD8+ cell noncytotoxic anti-HIV response. PNAS 96:1030–35 [Google Scholar]
  126. Ritchie AJ, Campion SL, Kopycinski J, Moodie Z, Wang ZM. 126.  et al. 2011. Differences in HIV-specific T cell responses between HIV-exposed and -unexposed HIV-seronegative individuals. J. Virol. 85:3507–16 [Google Scholar]
  127. Begaud E, Chartier L, Marechal V, Ipero J, Leal J. 127.  et al. 2006. Reduced CD4 T cell activation and in vitro susceptibility to HIV-1 infection in exposed uninfected Central Africans. Retrovirology 3:35 [Google Scholar]
  128. Jennes W, Evertse D, Borget MY, Vuylsteke B, Maurice C. 128.  et al. 2006. Suppressed cellular alloimmune responses in HIV-exposed seronegative female sex workers. Clin. Exp. Immunol. 143:435–44 [Google Scholar]
  129. Card CM, McLaren PJ, Wachihi C, Kimani J, Plummer FA, Fowke KR. 129.  2009. Decreased immune activation in resistance to HIV-1 infection is associated with an elevated frequency of CD4+CD25+FOXP3+ regulatory T cells. J. Infect. Dis. 199:1318–22 [Google Scholar]
  130. Camara M, Dieye TN, Seydi M, Diallo AA, Fall M. 130.  et al. 2010. Low-level CD4+ T cell activation in HIV-exposed seronegative subjects: influence of gender and condom use. J. Infect. Dis. 201:835–42 [Google Scholar]
  131. Koning FA, Otto SA, Hazenberg MD, Dekker L, Prins M. 131.  et al. 2005. Low-level CD4+ T cell activation is associated with low susceptibility to HIV-1 infection. J. Immunol. 175:6117–22 [Google Scholar]
  132. Mazzoli S, Trabattoni D, Lo Caputo S, Piconi S, Ble C. 132.  et al. 1997. HIV-specific mucosal and cellular immunity in HIV-seronegative partners of HIV-seropositive individuals. Nat. Med. 3:1250–57 [Google Scholar]
  133. Mestecky J, Wright PF, Lopalco L, Staats HF, Kozlowski PA. 133.  et al. 2011. Scarcity or absence of humoral immune responses in the plasma and cervicovaginal lavage fluids of heavily HIV-1–exposed but persistently seronegative women. AIDS Res. Hum. Retrovir. 27:469–86 [Google Scholar]
  134. Scott-Algara D, Truong LX, Versmisse P, David A, Luong TT. 134.  et al. 2003. Cutting edge: increased NK cell activity in HIV-1–exposed but uninfected Vietnamese intravascular drug users. J. Immunol. 171:5663–67 [Google Scholar]
  135. Pitisuttithum P, Gilbert P, Gurwith M, Heyward W, Martin M. 135.  et al. 2006. Randomized, double-blind, placebo-controlled efficacy trial of a bivalent recombinant glycoprotein 120 HIV-1 vaccine among injection drug users in Bangkok, Thailand. J. Infect. Dis. 194:1661–71 [Google Scholar]
  136. Flynn NM, Forthal DN, Harro CD, Judson FN, Mayer KH, Para MF. 136.  2005. Placebo-controlled phase 3 trial of a recombinant glycoprotein 120 vaccine to prevent HIV-1 infection. J. Infect. Dis. 191:654–65 [Google Scholar]
  137. McElrath MJ, De Rosa SC, Moodie Z, Dubey S, Kierstead L. 137.  et al. 2008. HIV-1 vaccine-induced immunity in the test-of-concept Step Study: a case-cohort analysis. Lancet 372:1894–905 [Google Scholar]
  138. Buchbinder SP, Mehrotra DV, Duerr A, Fitzgerald DW, Mogg R. 138.  et al. 2008. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 372:1881–93 [Google Scholar]
  139. Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, Kaewkungwal J, Chiu J. 139.  et al. 2009. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N. Engl. J. Med. 361:2209–20 [Google Scholar]
  140. Haynes BF, Gilbert PB, McElrath MJ, Zolla-Pazner S, Tomaras GD. 140.  et al. 2012. Immune-correlates analysis of an HIV-1 vaccine efficacy trial. N. Engl. J. Med. 366:1275–86Vaccine protects against HIV-1 through IgG, whereas IgA may interfere with protection. [Google Scholar]
  141. Parren PW, Marx PA, Hessell AJ, Luckay A, Harouse J. 141.  et al. 2001. Antibody protects macaques against vaginal challenge with a pathogenic R5 simian/human immunodeficiency virus at serum levels giving complete neutralization in vitro. J. Virol. 75:8340–47 [Google Scholar]
  142. Moldt B, Rakasz EG, Schultz N, Chan-Hui PY, Swiderek K. 142.  et al. 2012. Highly potent HIV-specific antibody neutralization in vitro translates into effective protection against mucosal SHIV challenge in vivo. PNAS 109:18921–25 [Google Scholar]
  143. Trkola A, Kuster H, Rusert P, von Wyl V, Leemann C. 143.  et al. 2008. In vivo efficacy of human immunodeficiency virus neutralizing antibodies: estimates for protective titers. J. Virol. 82:1591–99 [Google Scholar]
  144. Nishimura Y, Igarashi T, Haigwood N, Sadjadpour R, Plishka RJ. 144.  et al. 2002. Determination of a statistically valid neutralization titer in plasma that confers protection against simian-human immunodeficiency virus challenge following passive transfer of high-titered neutralizing antibodies. J. Virol. 76:2123–30 [Google Scholar]
  145. Mascola JR. 145.  2002. Passive transfer studies to elucidate the role of antibody-mediated protection against HIV-1. Vaccine 20:1922–25 [Google Scholar]
  146. Ko SY, Pegu A, Rudicell RS, Yang ZY, Joyce MG. 146.  et al. 2014. Enhanced neonatal Fc receptor function improves protection against primate SHIV infection. Nature 514:642–45 [Google Scholar]
  147. Kwong PD, Mascola JR, Nabel GJ. 147.  2011. Rational design of vaccines to elicit broadly neutralizing antibodies to HIV-1. Cold Spring Harb. Perspect. Med. 1:a007278 [Google Scholar]
  148. Walker LM, Burton DR. 148.  2010. Rational antibody-based HIV-1 vaccine design: current approaches and future directions. Curr. Opin. Immunol. 22:358–66 [Google Scholar]
  149. Haynes BF, Kelsoe G, Harrison SC, Kepler TB. 149.  2012. B-cell–lineage immunogen design in vaccine development with HIV-1 as a case study. Nat. Biotechnol. 30:423–33 [Google Scholar]
  150. Wu X, Yang ZY, Li Y, Hogerkorp CM, Schief WR. 150.  et al. 2010. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 329:856–61 [Google Scholar]
  151. Mouquet H, Scheid JF, Zoller MJ, Krogsgaard M, Ott RG. 151.  et al. 2010. Polyreactivity increases the apparent affinity of anti-HIV antibodies by heteroligation. Nature 467:591–95 [Google Scholar]
  152. Haynes BF, Fleming J, St. Clair EW, Katinger H, Stiegler G. 152.  et al. 2005. Cardiolipin polyspecific autoreactivity in two broadly neutralizing HIV-1 antibodies. Science 308:1906–8 [Google Scholar]
  153. Meffre E. 153.  2011. The establishment of early B cell tolerance in humans: lessons from primary immunodeficiency diseases. Ann. N. Y. Acad. Sci. 1246:1–10 [Google Scholar]
  154. Doria-Rose NA, Schramm CA, Gorman J, Moore PL, Bhiman JN. 154.  et al. 2014. Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies. Nature 509:55–62 [Google Scholar]
  155. Wang S, Mata-Fink J, Kriegsman B, Hanson M, Irvine DJ. 155.  et al. 2015. Manipulating the selection forces during affinity maturation to generate cross-reactive HIV antibodies. Cell 160:785–97 [Google Scholar]
  156. Tregoning JS, Buffa V, Oszmiana A, Klein K, Walters AA, Shattock RJ. 156.  2013. A “prime-pull” vaccine strategy has a modest effect on local and systemic antibody responses to HIV gp140 in mice. PLOS ONE 8:e80559 [Google Scholar]
  157. Greene JM, Lhost JJ, Burwitz BJ, Budde ML, Macnair CE. 157.  et al. 2010. Extralymphoid CD8+ T cells resident in tissue from simian immunodeficiency virus SIVmac239Δnef-vaccinated macaques suppress SIVmac239 replication ex vivo. J. Virol. 84:3362–72 [Google Scholar]
  158. Genesca M, McChesney MB, Miller CJ. 158.  2009. Antiviral CD8+ T cells in the genital tract control viral replication and delay progression to AIDS after vaginal SIV challenge in rhesus macaques immunized with virulence attenuated SHIV 89.6. J. Intern. Med. 265:67–77 [Google Scholar]
  159. Sasikala-Appukuttan AK, Kim HO, Kinzel NJ, Hong JJ, Smith AJ. 159.  et al. 2013. Location and dynamics of the immunodominant CD8 T cell response to SIVΔnef immunization and SIVmac251 vaginal challenge. PLOS ONE 8:e81623 [Google Scholar]
  160. Hansen SG, Ford JC, Lewis MS, Ventura AB, Hughes CM. 160.  et al. 2011. Profound early control of highly pathogenic SIV by an effector memory T-cell vaccine. Nature 473:523–27 [Google Scholar]
  161. Hansen SG, Piatak M Jr, Ventura AB, Hughes CM, Gilbride RM. 161.  et al. 2013. Immune clearance of highly pathogenic SIV infection. Nature 502:100–4 [Google Scholar]
  162. 162. WHO (World Health Organ.) 2014. Influenza Fact Sheet. http://www.who.int/mediacentre/factsheets/fs211/en
  163. Palese P. 163.  2004. Influenza: old and new threats. Nat. Med. 10:S82–87 [Google Scholar]
  164. Coudeville L, Bailleux F, Riche B, Megas F, Andre P, Ecochard R. 164.  2010. Relationship between haemagglutination-inhibiting antibody titres and clinical protection against influenza: development and application of a Bayesian random-effects model. BMC Med. Res. Methodol. 10:18 [Google Scholar]
  165. Hobson D, Curry RL, Beare AS, Ward-Gardner A. 165.  1972. The role of serum haemagglutination-inhibiting antibody in protection against challenge infection with influenza A2 and B viruses. J. Hyg. 70:767–77 [Google Scholar]
  166. McMichael AJ, Gotch FM, Noble GR, Beare PA. 166.  1983. Cytotoxic T-cell immunity to influenza. N. Engl. J. Med. 309:13–17 [Google Scholar]
  167. Black S, Nicolay U, Vesikari T, Knuf M, Del Giudice G. 167.  et al. 2011. Hemagglutination inhibition antibody titers as a correlate of protection for inactivated influenza vaccines in children. Pediatr. Infect. Dis. J. 30:1081–85 [Google Scholar]
  168. McElhaney JE. 168.  2011. Influenza vaccine responses in older adults. Ageing Res. Rev. 10:379–88 [Google Scholar]
  169. Wilkinson TM, Li CK, Chui CS, Huang AK, Perkins M. 169.  et al. 2012. Preexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans. Nat. Med. 18:274–80In humans without cross-reactive antibodies, preexisting CD4, but not CD8, T cells control viral replication and disease. [Google Scholar]
  170. Strutt TM, McKinstry KK, Dibble JP, Winchell C, Kuang Y. 170.  et al. 2010. Memory CD4+ T cells induce innate responses independently of pathogen. Nat. Med. 16:558–64 [Google Scholar]
  171. Sridhar S, Begom S, Bermingham A, Hoschler K, Adamson W. 171.  et al. 2013. Cellular immune correlates of protection against symptomatic pandemic influenza. Nat. Med. 19:1305–12 [Google Scholar]
  172. Yewdell JW. 172.  2013. To dream the impossible dream: universal influenza vaccination. Curr. Opin. Virol. 3:316–21 [Google Scholar]
  173. Krammer F, Palese P, Steel J. 173.  2014. Advances in universal influenza virus vaccine design and antibody mediated therapies based on conserved regions of the hemagglutinin. Curr. Top. Microbiol. Immunol. 386:301–21 [Google Scholar]
  174. Corti D, Voss J, Gamblin SJ, Codoni G, Macagno A. 174.  et al. 2011. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science 333:850–56 [Google Scholar]
  175. Sagawa H, Ohshima A, Kato I, Okuno Y, Isegawa Y. 175.  1996. The immunological activity of a deletion mutant of influenza virus haemagglutinin lacking the globular region. J. Gen. Virol. 77:Pt. 71483–87 [Google Scholar]
  176. Steel J, Lowen AC, Wang TT, Yondola M, Gao Q. 176.  et al. 2010. Influenza virus vaccine based on the conserved hemagglutinin stalk domain. mBio 1:e00018–10 [Google Scholar]
  177. Krammer F, Pica N, Hai R, Margine I, Palese P. 177.  2013. Chimeric hemagglutinin influenza virus vaccine constructs elicit broadly protective stalk-specific antibodies. J. Virol. 87:6542–50 [Google Scholar]
  178. Margine I, Krammer F, Hai R, Heaton NS, Tan GS. 178.  et al. 2013. Hemagglutinin stalk-based universal vaccine constructs protect against group 2 influenza A viruses. J. Virol. 87:10435–46This study, along with Krammer et al. (179), illustrates the benefit of targeting the HA stalk region as a strategy for a universal flu vaccine. [Google Scholar]
  179. Krammer F, Hai R, Yondola M, Tan GS, Leyva-Grado VH. 179.  et al. 2014. Assessment of influenza virus hemagglutinin stalk–based immunity in ferrets. J. Virol. 88:3432–42This study, along with Margine et al. (178), illustrates the benefit of targeting the HA stalk region as a strategy for a universal flu vaccine. [Google Scholar]
  180. Wei CJ, Boyington JC, McTamney PM, Kong WP, Pearce MB. 180.  et al. 2010. Induction of broadly neutralizing H1N1 influenza antibodies by vaccination. Science 329:1060–64 [Google Scholar]
  181. Keating R, Hertz T, Wehenkel M, Harris TL, Edwards BA. 181.  et al. 2013. The kinase mTOR modulates the antibody response to provide cross-protective immunity to lethal infection with influenza virus. Nat. Immunol. 14:1266–76 [Google Scholar]
  182. Lingwood D, McTamney PM, Yassine HM, Whittle JR, Guo X. 182.  et al. 2012. Structural and genetic basis for development of broadly neutralizing influenza antibodies. Nature 489:566–70 [Google Scholar]
  183. Thompson WW, Shay DK, Weintraub E, Brammer L, Cox N. 183.  et al. 2003. Mortality associated with influenza and respiratory syncytial virus in the United States. JAMA 289:179–86 [Google Scholar]
  184. Shaw AC, Goldstein DR, Montgomery RR. 184.  2013. Age-dependent dysregulation of innate immunity. Nat. Rev. Immunol. 13:875–87 [Google Scholar]
  185. Weng N-p. 185.  2006. Aging of the immune system: How much can the adaptive immune system adapt?. Immunity 24:495–99 [Google Scholar]
  186. Maue AC, Yager EJ, Swain SL, Woodland DL, Blackman MA, Haynes L. 186.  2009. T-cell immunosenescence: lessons learned from mouse models of aging. Trends Immunol. 30:301–5 [Google Scholar]
  187. Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M. 187.  et al. 2000. Inflamm-aging: an evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 908:244–54 [Google Scholar]
  188. Murasko DM, Jiang J. 188.  2005. Response of aged mice to primary virus infections. Immunol. Rev. 205:285–96 [Google Scholar]
  189. Stout-Delgado HW, Yang X, Walker WE, Tesar BM, Goldstein DR. 189.  2008. Aging impairs IFN regulatory factor 7 upregulation in plasmacytoid DCs during TLR9 activation. J. Immunol. 181:6747–56 [Google Scholar]
  190. Jefferson T, Rivetti D, Rivetti A, Rudin M, Di Pietrantonj C, Demicheli V. 190.  2005. Efficacy and effectiveness of influenza vaccines in elderly people: a systematic review. Lancet 366:1165–74 [Google Scholar]
  191. McElhaney JE, Xie D, Hager WD, Barry MB, Wang Y. 191.  et al. 2006. T cell responses are better correlates of vaccine protection in the elderly. J. Immunol. 176:6333–39In elderly people, prevaccine T cell responses, and not Ab, correlate with protection against influenza virus. [Google Scholar]
  192. McElhaney JE, Ewen C, Zhou X, Kane KP, Xie D. 192.  et al. 2009. Granzyme B: correlates with protection and enhanced CTL response to influenza vaccination in older adults. Vaccine 27:2418–25 [Google Scholar]
  193. Wagar LE, Gentleman B, Pircher H, McElhaney JE, Watts TH. 193.  2011. Influenza-specific T cells from older people are enriched in the late effector subset and their presence inversely correlates with vaccine response. PLOS ONE 6:e23698 [Google Scholar]
  194. Panda A, Qian F, Mohanty S, van Duin D, Newman FK. 194.  et al. 2010. Age-associated decrease in TLR function in primary human dendritic cells predicts influenza vaccine response. J. Immunol. 184:2518–27 [Google Scholar]
  195. Allman D, Miller JP. 195.  2005. B cell development and receptor diversity during aging. Curr. Opin. Immunol. 17:463–67 [Google Scholar]
  196. Falsey AR, Treanor JJ, Tornieporth N, Capellan J, Gorse GJ. 196.  2009. Randomized, double-blind controlled phase 3 trial comparing the immunogenicity of high-dose and standard-dose influenza vaccine in adults 65 years of age and older. J. Infect. Dis. 200:172–80 [Google Scholar]
  197. Holland D, Booy R, De Looze F, Eizenberg P, McDonald J. 197.  et al. 2008. Intradermal influenza vaccine administered using a new microinjection system produces superior immunogenicity in elderly adults: a randomized controlled trial. J. Infect. Dis. 198:650–58 [Google Scholar]
  198. Lambert ND, Ovsyannikova IG, Pankratz VS, Jacobson RM, Poland GA. 198.  2012. Understanding the immune response to seasonal influenza vaccination in older adults: a systems biology approach. Expert Rev. Vaccines 11:985–94 [Google Scholar]
  199. Shaw AC, Goldstein DR, Montgomery RR. 199.  2013. Age-dependent dysregulation of innate immunity. Nat. Rev. Immunol. 13:875–87 [Google Scholar]
  200. Qian F, Wang X, Zhang L, Chen S, Piecychna M. 200.  et al. 2012. Age-associated elevation in TLR5 leads to increased inflammatory responses in the elderly. Aging Cell 11:104–10 [Google Scholar]
  201. Leng J, Stout-Delgado HW, Kavita U, Jacobs A, Tang J. 201.  et al. 2011. Efficacy of a vaccine that links viral epitopes to flagellin in protecting aged mice from influenza viral infection. Vaccine 29:8147–55 [Google Scholar]
  202. Sun K, Ye J, Perez DR, Metzger DW. 202.  2011. Seasonal FluMist vaccination induces cross-reactive T cell immunity against H1N1 2009 influenza and secondary bacterial infections. J. Immunol. 186:987–93 [Google Scholar]
  203. Slutter B, Pewe LL, Lauer P, Harty JT. 203.  2013. Cutting edge: rapid boosting of cross-reactive memory CD8 T cells broadens the protective capacity of the Flumist vaccine. J. Immunol. 190:3854–58 [Google Scholar]
  204. Ambrose CS, Luke C, Coelingh K. 204.  2008. Current status of live attenuated influenza vaccine in the United States for seasonal and pandemic influenza. Influenza Other Respir. Viruses 2:193–202 [Google Scholar]
  205. Antrobus RD, Lillie PJ, Berthoud TK, Spencer AJ, McLaren JE. 205.  et al. 2012. A T cell–inducing influenza vaccine for the elderly: safety and immunogenicity of MVA-NP+M1 in adults aged over 50 years. PLOS ONE 7:e48322 [Google Scholar]
  206. Behzad H, Huckriede AL, Haynes L, Gentleman B, Coyle K. 206.  et al. 2012. GLA-SE, a synthetic Toll-like receptor 4 agonist, enhances T-cell responses to influenza vaccine in older adults. J. Infect. Dis. 205:466–73 [Google Scholar]
  207. Beadling C, Slifka MK. 207.  2004. How do viral infections predispose patients to bacterial infections?. Curr. Opin. Infect. Dis. 17:185–91 [Google Scholar]
  208. McCullers JA. 208.  2006. Insights into the interaction between influenza virus and pneumococcus. Clin. Microbiol. Rev. 19:571–82 [Google Scholar]
  209. Jamieson AM, Pasman L, Yu S, Gamradt P, Homer RJ. 209.  et al. 2013. Role of tissue protection in lethal respiratory viral-bacterial coinfection. Science 340:1230–34 [Google Scholar]
  210. Nalin DR, Kuter BJ, Brown L, Patterson C, Calandra GB. 210.  et al. 1993. Worldwide experience with the CR326F-derived inactivated hepatitis A virus vaccine in pediatric and adult populations: an overview. J. Hepatol. 18:Suppl. 2S51–55 [Google Scholar]
  211. Jack AD, Hall AJ, Maine N, Mendy M, Whittle HC. 211.  1999. What level of hepatitis B antibody is protective?. J. Infect. Dis. 179:489–92 [Google Scholar]
  212. Hombach J, Solomon T, Kurane I, Jacobson J, Wood D. 212.  2005. Report on a WHO consultation on immunological endpoints for evaluation of new Japanese encephalitis vaccines, WHO, Geneva, 2–3 September, 2004. Vaccine 23:5205–11 [Google Scholar]
  213. Chen RT, Markowitz LE, Albrecht P, Stewart JA, Mofenson LM. 213.  et al. 1990. Measles antibody: reevaluation of protective titers. J. Infect. Dis. 162:1036–42 [Google Scholar]
  214. Samb B, Aaby P, Whittle HC, Seck AM, Rahman S. 214.  et al. 1995. Serologic status and measles attack rates among vaccinated and unvaccinated children in rural Senegal. Pediatr. Infect. Dis. J. 14:203–9 [Google Scholar]
  215. 215. WHO (World Health Organ.) 1993. The Immunological Basis for Immunization Series Geneva: WHO
  216. Weibel RE, Buynak EB, McLean AA, Hilleman MR. 216.  1975. Long-term follow-up for immunity after monovalent or combined live measles, mumps, and rubella virus vaccines. Pediatrics 56:380–87 [Google Scholar]
  217. Faden H, Modlin JF, Thoms ML, McBean AM, Ferdon MB, Ogra PL. 217.  1990. Comparative evaluation of immunization with live attenuated and enhanced-potency inactivated trivalent poliovirus vaccines in childhood: systemic and local immune responses. J. Infect. Dis. 162:1291–97 [Google Scholar]
  218. Marine WM, Chin TD, Gravelle CR. 218.  1962. Limitation of fecal and pharyngeal poliovirus excretion in Salk-vaccinated children. A family study during a type 1 poliomyelitis epidemic. Am. J. Hyg. 76:173–95 [Google Scholar]
  219. 219. WHO (World Health Organ.) 2007. Rabies vaccines: WHO position paper. Wkly. Epidemiol. Rec. 82:425–35 [Google Scholar]
  220. Jiang B, Gentsch JR, Glass RI. 220.  2002. The role of serum antibodies in the protection against rotavirus disease: an overview. Clin. Infect. Dis. 34:1351–61 [Google Scholar]
  221. McNeal MM, Broome RL, Ward RL. 221.  1994. Active immunity against rotavirus infection in mice is correlated with viral replication and titers of serum rotavirus IgA following vaccination. Virology 204:642–50 [Google Scholar]
  222. Matter L, Kogelschatz K, Germann D. 222.  1997. Serum levels of rubella virus antibodies indicating immunity: response to vaccination of subjects with low or undetectable antibody concentrations. J. Infect. Dis. 175:749–55 [Google Scholar]
  223. Skendzel LP. 223.  1996. Rubella immunity. Defining the level of protective antibody. Am. J. Clin. Pathol. 106:170–74 [Google Scholar]
  224. Plotkin SA. 224.  1995. Rubella vaccine. J. Infect. Dis. 171:1690–92 [Google Scholar]
  225. Fogel A, Gerichter CB, Barnea B, Handsher R, Heeger E. 225.  1978. Response to experimental challenge in persons immunized with different rubella vaccines. J. Pediatr. 92:26–29 [Google Scholar]
  226. Mack TM, Noble J Jr, Thomas DB. 226.  1972. A prospective study of serum antibody and protection against smallpox. Am. J. Trop. Med. Hyg. 21:214–18 [Google Scholar]
  227. Sarkar JK, Mitra AC, Mukherjee MK. 227.  1975. The minimum protective level of antibodies in smallpox. Bull. World Health Organ. 52:307–11 [Google Scholar]
  228. White CJ, Kuter BJ, Ngai A, Hildebrand CS, Isganitis KL. 228.  et al. 1992. Modified cases of chickenpox after varicella vaccination: correlation of protection with antibody response. Pediatr. Infect. Dis. J. 11:19–23 [Google Scholar]
  229. Clements DA, Armstrong CB, Ursano AM, Moggio MM, Walter EB, Wilfert CM. 229.  1995. Over five-year follow-up of Oka/Merck varicella vaccine recipients in 465 infants and adolescents. Pediatr. Infect. Dis. J. 14:874–79 [Google Scholar]
  230. Mason RA, Tauraso NM, Spertzel RO, Ginn RK. 230.  1973. Yellow fever vaccine: direct challenge of monkeys given graded doses of 17D vaccine. Appl. Microbiol. 25:539–44 [Google Scholar]
  231. Monath TP, Nichols R, Archambault WT, Moore L, Marchesani R. 231.  et al. 2002. Comparative safety and immunogenicity of two yellow fever 17D vaccines (ARILVAX and YF-VAX) in a phase III multicenter, double-blind clinical trial. Am. J. Trop. Med. Hyg. 66:533–41 [Google Scholar]
  232. Plotkin SA. 232.  2001. Immunologic correlates of protection induced by vaccination. Pediatr. Infect. Dis. J. 20:63–75 [Google Scholar]
  233. Plotkin SA. 233.  2008. Vaccines: correlates of vaccine-induced immunity. Clin. Infect. Dis. 47:401–9 [Google Scholar]
  234. Plotkin SA. 234.  2010. Correlates of protection induced by vaccination. Clin. Vaccine Immunol. 17:1055–65 [Google Scholar]
  235. Plotkin S, Orenstein WA, Offit P. 235.  2012. Vaccines Amsterdam: Elsevier
  236. Amanna IJ, Messaoudi I, Slifka MK. 236.  2008. Protective immunity following vaccination: How is it defined?. Hum. Vaccin. 4:316–19 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error