The (MHC) locus encodes classical MHC class I and MHC class II molecules and nonclassical MHC-I molecules. The architecture of these molecules is ideally suited to capture and present an array of peptide antigens (Ags). In addition, the CD1 family members and MR1 are MHC class I–like molecules that bind lipid-based Ags and vitamin B precursors, respectively. These Ag-bound molecules are subsequently recognized by T cell antigen receptors (TCRs) expressed on the surface of T lymphocytes. Structural and associated functional studies have been highly informative in providing insight into these interactions, which are crucial to immunity, and how they can lead to aberrant T cell reactivity. Investigators have determined over thirty unique TCR-peptide-MHC-I complex structures and twenty unique TCR-peptide-MHC-II complex structures. These investigations have shown a broad consensus in docking geometry and provided insight into MHC restriction. Structural studies on TCR-mediated recognition of lipid and metabolite Ags have been mostly confined to TCRs from innate-like natural killer T cells and mucosal-associated invariant T cells, respectively. These studies revealed clear differences between TCR-lipid-CD1, TCR-metabolite-MR1, and TCR-peptide-MHC recognition. Accordingly, TCRs show remarkable structural and biological versatility in engaging different classes of Ag that are presented by polymorphic and monomorphic Ag-presenting molecules of the immune system.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. van der Merwe PA, Dushek O. 1.  2011. Mechanisms for T cell receptor triggering. Nat. Rev. Immunol. 11:47–55 [Google Scholar]
  2. Bharadwaj M, Illing P, Theodossis A, Purcell AW, Rossjohn J, McCluskey J. 2.  2012. Drug hypersensitivity and human leukocyte antigens of the major histocompatibility complex. Annu. Rev. Pharmacol. Toxicol. 52:401–31 [Google Scholar]
  3. Yin Y, Li Y, Mariuzza RA. 3.  2012. Structural basis for self-recognition by autoimmune T-cell receptors. Immunol. Rev. 250:32–48 [Google Scholar]
  4. Zinkernagel RM, Doherty PC. 4.  1997. The discovery of MHC restriction. Immunol. Today 18:14–17 [Google Scholar]
  5. Brigl M, Brenner MB. 5.  2004. CD1: antigen presentation and T cell function. Annu. Rev. Immunol. 22:817–90 [Google Scholar]
  6. Birkinshaw RW, Kjer-Nielsen L, Eckle SB, McCluskey J, Rossjohn J. 6.  2014. MAITs, MR1 and vitamin B metabolites. Curr. Opin. Immunol. 26C:7–13 [Google Scholar]
  7. Luoma AM, Castro CD, Mayassi T, Bembinster LA, Bai L. 7.  et al. 2013. Crystal structure of Vδ1 T cell receptor in complex with CD1d-sulfatide shows MHC-like recognition of a self-lipid by human γδ T cells. Immunity 39:1032–42 [Google Scholar]
  8. Garboczi DN, Ghosh P, Utz U, Fan QR, Biddison WE, Wiley DC. 8.  1996. Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature 384:134–41 [Google Scholar]
  9. Garcia KC, Degano M, Stanfield RL, Brunmark A, Jackson MR. 9.  et al. 1996. An αβ T cell receptor structure at 2.5 Å and its orientation in the TCR-MHC complex. Science 274:209–19 [Google Scholar]
  10. Rudolph MG, Stanfield RL, Wilson IA. 10.  2006. How TCRs bind MHCs, peptides, and coreceptors. Annu. Rev. Immunol. 24:419–66 [Google Scholar]
  11. Yin L, Scott-Browne J, Kappler JW, Gapin L, Marrack P. 11.  2012. T cells and their eons-old obsession with MHC. Immunol. Rev. 250:49–60 [Google Scholar]
  12. Burrows SR, Chen Z, Archbold JK, Tynan FE, Beddoe T. 12.  et al. 2010. Hard wiring of T cell receptor specificity for the major histocompatibility complex is underpinned by TCR adaptability. PNAS 107:10608–13 [Google Scholar]
  13. Garcia KC, Adams JJ, Feng D, Ely LK. 13.  2009. The molecular basis of TCR germline bias for MHC is surprisingly simple. Nat. Immunol. 10:143–47 [Google Scholar]
  14. Felix NJ, Allen PM. 14.  2007. Specificity of T-cell alloreactivity. Nat. Rev. Immunol. 7:942–53 [Google Scholar]
  15. Rossjohn J, Pellicci DG, Patel O, Gapin L, Godfrey DI. 15.  2012. Recognition of CD1d-restricted antigens by natural killer T cells. Nat. Rev. Immunol. 12:845–57 [Google Scholar]
  16. Adams EJ, Luoma AM. 16.  2013. The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class I–like molecules. Annu. Rev. Immunol. 31:529–61 [Google Scholar]
  17. Theodossis A, Guillonneau C, Welland A, Ely LK, Clements CS. 17.  et al. 2010. Constraints within major histocompatibility complex class I restricted peptides: presentation and consequences for T-cell recognition. PNAS 107:5534–39 [Google Scholar]
  18. Rodgers JR, Cook RG. 18.  2005. MHC class Ib molecules bridge innate and acquired immunity. Nat. Rev. Immunol. 5:459–71 [Google Scholar]
  19. Girardi E, Zajonc DM. 19.  2012. Molecular basis of lipid antigen presentation by CD1d and recognition by natural killer T cells. Immunol. Rev. 250:167–79 [Google Scholar]
  20. Davis MM, Bjorkman PJ. 20.  1988. T-cell antigen receptor genes and T-cell recognition. Nature 334:395–402 [Google Scholar]
  21. Arstila TP, Casrouge A, Baron V, Even J, Kanellopoulos J, Kourilsky P. 21.  1999. A direct estimate of the human αβ T cell receptor diversity. Science 286:958–61 [Google Scholar]
  22. Garcia KC, Degano M, Pease LR, Huang M, Peterson PA. 22.  et al. 1998. Structural basis of plasticity in T cell receptor recognition of a self peptide-MHC antigen. Science 279:1166–72 [Google Scholar]
  23. Bridgeman JS, Sewell AK, Miles JJ, Price DA, Cole DK. 23.  2012. Structural and biophysical determinants of αβ T-cell antigen recognition. Immunology 135:9–18 [Google Scholar]
  24. Gras S, Burrows SR, Kjer-Nielsen L, Clements CS, Liu YC. 24.  et al. 2009. The shaping of T cell receptor recognition by self-tolerance. Immunity 30:193–203 [Google Scholar]
  25. Turner SJ, Doherty PC, McCluskey J, Rossjohn J. 25.  2006. Structural determinants of T-cell receptor bias in immunity. Nat. Rev. Immunol. 6:883–94 [Google Scholar]
  26. Birnbaum ME, Mendoza JL, Sethi DK, Dong S, Glanville J. 26.  et al. 2014. Deconstructing the peptide-MHC specificity of T cell recognition. Cell 157:1073–87 [Google Scholar]
  27. Gras S, Burrows SR, Turner SJ, Sewell AK, McCluskey J, Rossjohn J. 27.  2012. A structural voyage toward an understanding of the MHC-I-restricted immune response: lessons learned and much to be learned. Immunol. Rev. 250:61–81 [Google Scholar]
  28. Marrack P, Scott-Browne JP, Dai S, Gapin L, Kappler JW. 28.  2008. Evolutionarily conserved amino acids that control TCR-MHC interaction. Annu. Rev. Immunol. 26:171–203 [Google Scholar]
  29. Kjer-Nielsen L, Clements CS, Purcell AW, Brooks AG, Whisstock JC. 29.  et al. 2003. A structural basis for the selection of dominant αβ T cell receptors in antiviral immunity. Immunity 18:53–64 [Google Scholar]
  30. Stewart-Jones GB, McMichael AJ, Bell JI, Stuart DI, Jones EY. 30.  2003. A structural basis for immunodominant human T cell receptor recognition. Nat. Immunol. 4:657–63 [Google Scholar]
  31. Gras S, Saulquin X, Reiser J-B, Debeaupuis E, Echasserieau K. 31.  et al. 2009. Structural bases for the affinity-driven selection of a public TCR against a dominant human cytomegalovirus epitope. J. Immunol. 183:430–37 [Google Scholar]
  32. Tynan FE, Burrows SR, Buckle AM, Clements CS, Borg NA. 32.  et al. 2005. T cell receptor recognition of a ‘super-bulged’ major histocompatibility complex class I–bound peptide. Nat. Immunol. 6:1114–22 [Google Scholar]
  33. Tynan FE, Reid HH, Kjer-Nielsen L, Miles JJ, Wilce MC. 33.  et al. 2007. A T cell receptor flattens a bulged antigenic peptide presented by a major histocompatibility complex class I molecule. Nat. Immunol. 8:268–76 [Google Scholar]
  34. Ladell K, Hashimoto M, Iglesias MC, Wilmann PG, McLaren JE. 34.  et al. 2013. A molecular basis for the control of preimmune escape variants by HIV-specific CD8+ T cells. Immunity 38:425–36 [Google Scholar]
  35. Borg NA, Ely LK, Beddoe T, Macdonald WA, Reid HH. 35.  et al. 2005. The CDR3 regions of an immunodominant T cell receptor dictate the ‘energetic landscape’ of peptide-MHC recognition. Nat. Immunol. 6:171–80 [Google Scholar]
  36. Kjer-Nielsen L, Clements CS, Brooks AG, Purcell AW, Fontes MR. 36.  et al. 2002. The structure of HLA-B8 complexed to an immunodominant viral determinant: peptide-induced conformational changes and a mode of MHC class I dimerization. J. Immunol. 169:5153–60 [Google Scholar]
  37. Kjer-Nielsen L, Clements CS, Brooks AG, Purcell AW, McCluskey J, Rossjohn J. 37.  2002. The 1.5 Å crystal structure of a highly selected antiviral T cell receptor provides evidence for a structural basis of immunodominance. Structure 10:1521–32 [Google Scholar]
  38. Ely LK, Beddoe T, Clements CS, Matthews JM, Purcell AW. 38.  et al. 2006. Disparate thermodynamics governing T cell receptor–MHC-I interactions implicate extrinsic factors in guiding MHC restriction. PNAS 103:6641–46 [Google Scholar]
  39. Ishizuka J, Stewart-Jones GB, van der Merwe A, Bell JI, McMichael AJ, Jones EY. 39.  2008. The structural dynamics and energetics of an immunodominant T cell receptor are programmed by its Vβ domain. Immunity 28:171–82 [Google Scholar]
  40. Motozono C, Kuse N, Sun X, Rizkallah PJ, Fuller A. 40.  et al. 2014. Molecular basis of a dominant T cell response to an HIV reverse transcriptase 8-mer epitope presented by the protective allele HLA-B*51:01. J. Immunol. 192:3428–34 [Google Scholar]
  41. Miles JJ, Bulek AM, Cole DK, Gostick E, Schauenburg AJ. 41.  et al. 2010. Genetic and structural basis for selection of a ubiquitous T cell receptor deployed in Epstein-Barr virus infection. PLoS Pathog. 6:e1001198 [Google Scholar]
  42. Cole DK, Yuan F, Rizkallah PJ, Miles JJ, Gostick E. 42.  et al. 2009. Germ line-governed recognition of a cancer epitope by an immunodominant human T-cell receptor. J. Biol. Chem. 284:27281–89 [Google Scholar]
  43. Archbold JK, Macdonald WA, Gras S, Ely LK, Miles JJ. 43.  et al. 2009. Natural micropolymorphism in human leukocyte antigens provides a basis for genetic control of antigen recognition. J. Exp. Med. 206:209–19 [Google Scholar]
  44. Stewart-Jones GB, Simpson P, van der Merwe PA, Easterbrook P, McMichael AJ. 44.  et al. 2012. Structural features underlying T-cell receptor sensitivity to concealed MHC class I micropolymorphisms. PNAS 109:E3483–92 [Google Scholar]
  45. Luz JG, Huang M, Garcia KC, Rudolph MG, Apostolopoulos V. 45.  et al. 2002. Structural comparison of allogeneic and syngeneic T cell receptor–peptide-major histocompatibility complex complexes: a buried alloreactive mutation subtly alters peptide presentation substantially increasing Vβ interactions. J. Exp. Med. 195:1175–86 [Google Scholar]
  46. Miles JJ, Elhassen D, Borg NA, Silins SL, Tynan FE. 46.  et al. 2005. CTL recognition of a bulged viral peptide involves biased TCR selection. J. Immunol. 175:3826–34 [Google Scholar]
  47. Liu YC, Chen Z, Burrows SR, Purcell AW, McCluskey J. 47.  et al. 2012. The energetic basis underpinning T-cell receptor recognition of a super-bulged peptide bound to a major histocompatibility complex class I molecule. J. Biol. Chem. 287:12267–76 [Google Scholar]
  48. Macdonald WA, Purcell AW, Mifsud NA, Ely LK, Williams DS. 48.  et al. 2003. A naturally selected dimorphism within the HLA-B44 supertype alters class I structure, peptide repertoire, and T cell recognition. J. Exp. Med. 198:679–91 [Google Scholar]
  49. Archbold JK, Macdonald WA, Gras S, Ely LK, Miles JJ. 49.  et al. 2009. Natural micropolymorphism in human leukocyte antigens provides a basis for genetic control of antigen recognition. J. Exp. Med. 206:209–19 [Google Scholar]
  50. Gras S, Chen Z, Miles JJ, Liu YC, Bell MJ. 50.  et al. 2010. Allelic polymorphism in the T cell receptor and its impact on immune responses. J. Exp. Med. 207:1555–67 [Google Scholar]
  51. Liu YC, Chen Z, Neller MA, Miles JJ, Purcell AW. 51.  et al. 2014. A molecular basis for the interplay between T cells, viral mutants, and human leukocyte antigen micropolymorphism. J. Biol. Chem. 289:16688–98 [Google Scholar]
  52. Hoare HL, Sullivan LC, Pietra G, Clements CS, Lee EJ. 52.  et al. 2006. Structural basis for a major histocompatibility complex class Ib-restricted T cell response. Nat. Immunol. 7:256–64 [Google Scholar]
  53. Walpole NG, Kjer-Nielsen L, Kostenko L, McCluskey J, Brooks AG. 53.  et al. 2010. The structure and stability of the monomorphic HLA-G are influenced by the nature of the bound peptide. J. Mol. Biol. 397:467–80 [Google Scholar]
  54. Chen J-L, Stewart-Jones G, Bossi G, Lissin NM, Wooldridge L. 54.  et al. 2005. Structural and kinetic basis for heightened immunogenicity of T cell vaccines. J. Exp. Med. 201:1243–55 [Google Scholar]
  55. Bulek AM, Cole DK, Skowera A, Dolton G, Gras S. 55.  et al. 2012. Structural basis for the killing of human beta cells by CD8+ T cells in type 1 diabetes. Nat. Immunol. 13:283–89 [Google Scholar]
  56. Speir JA, Stevens J, Joly E, Butcher GW, Wilson IA. 56.  2001. Two different, highly exposed, bulged structures for an unusually long peptide bound to rat MHC class I RT1-Aa. Immunity 14:81–92 [Google Scholar]
  57. Borbulevych OY, Piepenbrink KH, Gloor BE, Scott DR, Sommese RF. 57.  et al. 2009. T cell receptor cross-reactivity directed by antigen-dependent tuning of peptide-MHC molecular flexibility. Immunity 31:885–96 [Google Scholar]
  58. Degano M, Garcia KC, Apostolopoulos V, Rudolph MG, Teyton L, Wilson IA. 58.  2000. A functional hot spot for antigen recognition in a superagonist TCR/MHC complex. Immunity 12:251–61 [Google Scholar]
  59. Ding Y-H, Baker BM, Garboczi DN, Biddison WE, Wiley DC. 59.  1999. Four A6-TCR/Peptide/HLA-A2 structures that generate very different T cell signals are nearly identical. Immunity 11:45–56 [Google Scholar]
  60. Baker BM, Gagnon SJ, Biddison WE, Wiley DC. 60.  2000. Conversion of a T cell antagonist into an agonist by repairing a defect in the TCR/peptide/MHC interface: implications for TCR signaling. Immunity 13:475–84 [Google Scholar]
  61. Luz JG, Huang M, Garcia KC, Rudolph MG, Apostolopoulos V. 61.  et al. 2002. Structural comparison of allogenic and syngeneic T cell receptor–peptide-major histocompatibility complex complexes: a buried alloreactive mutation subtly alters peptide presentation substantially increasing Vβ interactions. J. Exp. Med. 195:1175–86 [Google Scholar]
  62. Reiser JB, Darnault C, Gregoire C, Mosser T, Mazza G. 62.  et al. 2003. CDR3 loop flexibility contributes to the degeneracy of TCR recognition. Nat. Immunol. 4:241–47 [Google Scholar]
  63. Reiser JB, Darnault C, Guimezanes A, Gregoire C, Mosser T. 63.  et al. 2000. Crystal structure of a T cell receptor bound to an allogeneic MHC molecule. Nat. Immunol. 1:291–97 [Google Scholar]
  64. Reiser JB, Gregoire C, Darnault C, Mosser T, Guimezanes A. 64.  et al. 2002. A T cell receptor CDR3β loop undergoes conformational changes of unprecedented magnitude upon binding to a peptide/MHC class I complex. Immunity 16:345–54 [Google Scholar]
  65. Borbulevych OY, Insaidoo FK, Baxter TK, Powell DJ Jr, Johnson LA. 65.  et al. 2007. Structures of MART-126/27-35 peptide/HLA-A2 complexes reveal a remarkable disconnect between antigen structural homology and T cell recognition. J. Mol. Biol. 372:1123–36 [Google Scholar]
  66. Borbulevych OY, Santhanagopolan SM, Hossain M, Baker BM. 66.  2011. TCRs used in cancer gene therapy cross-react with MART-1/Melan-A tumor antigens via distinct mechanisms. J. Immunol. 187:2453–63 [Google Scholar]
  67. Insaidoo FK, Borbulevych OY, Hossain M, Santhanagopolan SM, Baxter TK, Baker BM. 67.  2011. Loss of T cell antigen recognition arising from changes in peptide and major histocompatibility complex protein flexibility: implications for vaccine design. J. Biol. Chem. 286:40163–73 [Google Scholar]
  68. Ding YH, Smith KJ, Garboczi DN, Utz U, Biddison WE, Wiley DC. 68.  1998. Two human T cell receptors bind in a similar diagonal mode to the HLA-A2/Tax peptide complex using different TCR amino acids. Immunity 8:403–11 [Google Scholar]
  69. Gras S, Wilmann PG, Chen Z, Halim H, Liu YC. 69.  et al. 2012. A structural basis for varied αβTCR usage against an immunodominant EBV antigen restricted to a HLA-B8 molecule. J. Immunol. 188:311–21 [Google Scholar]
  70. Liu YC, Miles JJ, Neller MA, Gostick E, Price DA. 70.  et al. 2013. Highly divergent T-cell receptor binding modes underlie specific recognition of a bulged viral peptide bound to a human leukocyte antigen class I molecule. J. Biol. Chem. 288:15442–54 [Google Scholar]
  71. Shimizu A, Kawana-Tachikawa A, Yamagata A, Han C, Zhu D. 71.  et al. 2013. Structure of TCR and antigen complexes at an immunodominant CTL epitope in HIV-1 infection. Sci. Rep. 3:3097 [Google Scholar]
  72. Colf LA, Bankovich AJ, Hanick NA, Bowerman NA, Jones LL. 72.  et al. 2007. How a single T cell receptor recognizes both self and foreign MHC. Cell 129:135–46 [Google Scholar]
  73. Macdonald WA, Chen Z, Gras S, Archbold JK, Tynan FE. 73.  et al. 2009. T cell allorecognition via molecular mimicry. Immunity 31:897–908 [Google Scholar]
  74. Bowerman NA, Colf LA, Garcia KC, Kranz DM. 74.  2009. Different strategies adopted by Kb and Ld to generate T cell specificity directed against their respective bound peptides. J. Biol. Chem. 284:32551–61 [Google Scholar]
  75. Reinherz EL, Tan K, Tang L, Kern P, Liu J. 75.  et al. 1999. The crystal structure of a T cell receptor in complex with peptide and MHC class II. Science 286:1913–21 [Google Scholar]
  76. Feng D, Bond CJ, Ely LK, Maynard J, Garcia KC. 76.  2007. Structural evidence for a germline-encoded T cell receptor–major histocompatibility complex interaction ‘codon.’. Nat. Immunol. 8:975–83 [Google Scholar]
  77. Dai S, Huseby ES, Rubtsova K, Scott-Browne J, Crawford F. 77.  et al. 2008. Crossreactive T cells spotlight the germline rules for αβ T cell-receptor interactions with MHC molecules. Immunity 28:324–34 [Google Scholar]
  78. Garcia KC. 78.  2012. Reconciling views on T cell receptor germline bias for MHC. Trends Immunol. 33:429–36 [Google Scholar]
  79. Dai S, Crawford F, Marrack P, Kappler JW. 79.  2008. The structure of HLA-DR52c: comparison to other HLA-DRB3 alleles. PNAS 105:11893–97 [Google Scholar]
  80. Adams JJ, Narayanan S, Liu B, Birnbaum ME, Kruse AC. 80.  et al. 2011. T cell receptor signaling is limited by docking geometry to peptide-major histocompatibility complex. Immunity 35:681–93 [Google Scholar]
  81. Mazza C, Auphan-Anezin N, Gregoire C, Guimezanes A, Kellenberger C. 81.  et al. 2007. How much can a T-cell antigen receptor adapt to structurally distinct antigenic peptides?. EMBO J. 26:1972–83 [Google Scholar]
  82. Deng L, Langley RJ, Wang Q, Topalian SL, Mariuzza RA. 82.  2012. Structural insights into the editing of germ-line–encoded interactions between T-cell receptor and MHC class II by Vα CDR3. PNAS 109:14960–65 [Google Scholar]
  83. Deng L, Langley RJ, Brown PH, Xu G, Teng L. 83.  et al. 2007. Structural basis for the recognition of mutant self by a tumor-specific, MHC class II–restricted T cell receptor. Nat. Immunol. 8:398–408 [Google Scholar]
  84. Miles JJ, Borg NA, Brennan RM, Tynan FE, Kjer-Nielsen L. 84.  et al. 2006. TCRα genes direct MHC restriction in the potent human T cell response to a class I-bound viral epitope. J. Immunol. 177:6804–14 [Google Scholar]
  85. Broughton SE, Petersen J, Theodossis A, Scally SW, Loh KL. 85.  et al. 2012. Biased T cell receptor usage directed against human leukocyte antigen DQ8-restricted gliadin peptides is associated with celiac disease. Immunity 37:611–21 [Google Scholar]
  86. Hahn M, Nicholson MJ, Pyrdol J, Wucherpfennig KW. 86.  2005. Unconventional topology of self peptide–major histocompatibility complex binding by a human autoimmune T cell receptor. Nat. Immunol. 6:490–96 [Google Scholar]
  87. Harkiolaki M, Holmes SL, Svendsen P, Gregersen JW, Jensen LT. 87.  et al. 2009. T cell-mediated autoimmune disease due to low-affinity crossreactivity to common microbial peptides. Immunity 30:348–57 [Google Scholar]
  88. Hennecke J, Carfi A, Wiley DC. 88.  2000. Structure of a covalently stabilized complex of a human αβ T-cell receptor, influenza HA peptide and MHC class II molecule, HLA-DR1. EMBO J. 19:5611–24 [Google Scholar]
  89. Maynard J, Petersson K, Wilson DH, Adams EJ, Blondelle SE. 89.  et al. 2005. Structure of an autoimmune T cell receptor complexed with class II peptide-MHC: insights into MHC bias and antigen specificity. Immunity 22:81–92 [Google Scholar]
  90. He XL, Radu C, Sidney J, Sette A, Ward ES, Garcia KC. 90.  2002. Structural snapshot of aberrant antigen presentation linked to autoimmunity: the immunodominant epitope of MBP complexed with I-Au. Immunity 17:83–94 [Google Scholar]
  91. Yin Y, Li Y, Kerzic MC, Martin R, Mariuzza RA. 91.  2011. Structure of a TCR with high affinity for self-antigen reveals basis for escape from negative selection. EMBO J. 30:1137–48 [Google Scholar]
  92. Garcia KC, Radu CG, Ho J, Ober RJ, Ward ES. 92.  2001. Kinetics and thermodynamics of T cell receptor- autoantigen interactions in murine experimental autoimmune encephalomyelitis. PNAS 98:6818–23 [Google Scholar]
  93. Sewell AK. 93.  2012. Why must T cells be cross-reactive?. Nat. Rev. Immunol. 12:669–77 [Google Scholar]
  94. Sethi DK, Schubert DA, Anders A-K, Heroux A, Bonsor DA. 94.  et al. 2011. A highly tilted binding mode by a self-reactive T cell receptor results in altered engagement of peptide and MHC. J. Exp. Med. 208:91–102 [Google Scholar]
  95. Sethi DK, Gordo S, Schubert DA, Wucherpfennig KW. 95.  2013. Crossreactivity of a human autoimmune TCR is dominated by a single TCR loop. Nat. Commun. 4:2623 [Google Scholar]
  96. Li Y, Huang Y, Lue J, Quandt JA, Martin R, Mariuzza RA. 96.  2005. Structure of a human autoimmune TCR bound to a myelin basic protein self-peptide and a multiple sclerosis-associated MHC class II molecule. EMBO J. 24:2968–79 [Google Scholar]
  97. Petersen J, Montserrat V, Mujico JR, Loh KL, Beringer DX. 97.  et al. 2014. T-cell receptor recognition of HLA-DQ2-gliadin complexes associated with celiac disease. Nat. Struct. Mol. Biol. 21:480–88 [Google Scholar]
  98. Clayton G, Kappler J. 98.  2014. Structural basis of chronic beryllium disease: linking allergic hypersensitivity and autoimmunity. Cell 158:1–11 [Google Scholar]
  99. Illing PT, Vivian JP, Dudek NL, Kostenko L, Chen Z. 99.  et al. 2012. Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. Nature 486:554–58 [Google Scholar]
  100. Stadinski BD, Trenh P, Smith RL, Bautista B, Huseby PG. 100.  et al. 2011. A role for differential variable gene pairing in creating T cell receptors specific for unique major histocompatibility ligands. Immunity 35:694–704 [Google Scholar]
  101. Borg NA, Wun KS, Kjer-Nielsen L, Wilce MC, Pellicci DG. 101.  et al. 2007. CD1d-lipid-antigen recognition by the semi-invariant NKT T-cell receptor. Nature 448:44–49 [Google Scholar]
  102. Wun KS, Borg NA, Kjer-Nielsen L, Beddoe T, Koh R. 102.  et al. 2008. A minimal binding footprint on CD1d-glycolipid is a basis for selection of the unique human NKT TCR. J. Exp. Med. 205:939–49 [Google Scholar]
  103. Scott-Browne JP, Matsuda JL, Mallevaey T, White J, Borg NA. 103.  et al. 2007. Germline-encoded recognition of diverse glycolipids by natural killer T cells. Nat. Immunol. 8:1105–13 [Google Scholar]
  104. Pellicci DG, Patel O, Kjer-Nielsen L, Pang SS, Sullivan LC. 104.  et al. 2009. Differential recognition of CD1d-α-galactosyl ceramide by the Vβ8.2 and Vβ7 semi-invariant NKT T cell receptors. Immunity 31:47–59 [Google Scholar]
  105. Patel O, Pellicci DG, Uldrich AP, Sullivan LC, Bhati M. 105.  et al. 2011. Vβ2 natural killer T cell antigen receptor-mediated recognition of CD1d-glycolipid antigen. PNAS 108:19007–12 [Google Scholar]
  106. Uldrich AP, Patel O, Cameron G, Pellicci DG, Day EB. 106.  et al. 2011. A semi-invariant Vα10+ T cell antigen receptor defines a population of natural killer T cells with distinct glycolipid antigen–recognition properties. Nat. Immunol. 12:616–23 [Google Scholar]
  107. Mallevaey T, Clarke AJ, Scott-Browne JP, Young MH, Roisman LC. 107.  et al. 2011. A molecular basis for NKT cell recognition of CD1d-self-antigen. Immunity 34:315–26 [Google Scholar]
  108. López-Sagaseta J, Kung JE, Savage PB, Gumperz J, Adams EJ. 108.  2012. The molecular basis for recognition of CD1d/α-galactosylceramide by a human non-Vα24 T cell receptor. PLOS Biol. 10:e1001412 [Google Scholar]
  109. Pellicci DG, Clarke AJ, Patel O, Mallevaey T, Beddoe T. 109.  et al. 2011. Recognition of β-linked self glycolipids mediated by natural killer T cell antigen receptors. Nat. Immunol. 12:827–33 [Google Scholar]
  110. Yu ED, Girardi E, Wang J, Zajonc DM. 110.  2011. Cutting edge: structural basis for the recognition of β-linked glycolipid antigens by invariant NKT cells. J. Immunol. 187:2079–83 [Google Scholar]
  111. López-Sagaseta J, Sibener LV, Kung JE, Gumperz J, Adams EJ. 111.  2012. Lysophospholipid presentation by CD1d and recognition by a human natural killer T-cell receptor. EMBO J. 31:2047–59 [Google Scholar]
  112. Wun KS, Cameron G, Patel O, Pang SS, Pellicci DG. 112.  et al. 2011. A molecular basis for the exquisite CD1d-restricted antigen specificity and functional responses of natural killer T cells. Immunity 34:327–39 [Google Scholar]
  113. Aspeslagh S, Li Y, Yu ED, Pauwels N, Trappeniers M. 113.  et al. 2011. Galactose-modified iNKT cell agonists stabilized by an induced fit of CD1d prevent tumour metastasis. EMBO J. 30:2294–305 [Google Scholar]
  114. Wun KS, Ross F, Patel O, Besra GS, Porcelli SA. 114.  et al. 2012. Human and mouse type I natural killer T cell antigen receptors exhibit different fine specificities for CD1d-antigen complex. J. Biol. Chem. 287:39139–48 [Google Scholar]
  115. Li Y, Girardi E, Wang J, Yu ED, Painter GF. 115.  et al. 2010. The Va14 invariant natural killer T cell TCR forces microbial glycolipids and CD1d into a conserved binding mode. J. Exp. Med. 207:2383–93 [Google Scholar]
  116. Girardi E, Yu ED, Li Y, Tarumoto N, Pei B. 116.  et al. 2011. Unique interplay between sugar and lipid in determining the antigenic potency of bacterial antigens for NKT cells. PLOS Biol. 9:e1001189 [Google Scholar]
  117. Patel O, Pellicci DG, Gras S, Sandoval-Romero ML, Uldrich AP. 117.  et al. 2012. Recognition of CD1d-sulfatide mediated by a type II natural killer T cell antigen receptor. Nat. Immunol. 13:857–63 [Google Scholar]
  118. Girardi E, Maricic I, Wang J, Mac T-T, Iyer P. 118.  et al. 2012. Type II natural killer T cells use features of both innate-like and conventional T cells to recognize sulfatide self antigens. Nat. Immunol. 13:851–56 [Google Scholar]
  119. Adams EJ, Chien YH, Garcia KC. 119.  2005. Structure of a γδ T cell receptor in complex with the nonclassical MHC T22. Science 308:227–31 [Google Scholar]
  120. Uldrich AP. Nours J, Pellicci DG, Gherardin NA, McPherson KG. 120. , Le et al. 2013. CD1d-lipid antigen recognition by the γδ TCR. Nat. Immunol. 14:1137–45 [Google Scholar]
  121. Kjer-Nielsen L, Patel O, Corbett AJ, Le Nours J, Meehan B. 121.  et al. 2012. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491:717–23 [Google Scholar]
  122. Patel O, Kjer-Nielsen L, Le Nours J, Eckle SB, Birkinshaw R. 122.  et al. 2013. Recognition of vitamin B metabolites by mucosal-associated invariant T cells. Nat. Commun. 4:2142 [Google Scholar]
  123. López-Sagaseta J, Dulberger CL, Crooks JE, Parks CD, Luoma AM. 123.  et al. 2013. The molecular basis for Mucosal-Associated Invariant T cell recognition of MR1 proteins. PNAS 110:E1771–78 [Google Scholar]
  124. López-Sagaseta J, Dulberger CL, McFedries A, Cushman M, Saghatelian A, Adams EJ. 124.  2013. MAIT recognition of a stimulatory bacterial antigen bound to MR1. J. Immunol. 191:5268–77 [Google Scholar]
  125. Reantragoon R, Corbett AJ, Sakala IG, Gherardin NA, Furness JB. 125.  et al. 2013. Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells. J. Exp. Med. 210:2305–20 [Google Scholar]
  126. Reantragoon R, Kjer-Nielsen L, Patel O, Chen Z, Illing PT. 126.  et al. 2012. Structural insight into MR1-mediated recognition of the mucosal associated invariant T cell receptor. J. Exp. Med. 209:761–74 [Google Scholar]
  127. Eckle S, Birkinshaw R. 127.  2014. A molecular basis underpinning the T cell receptor heterogeneity of Mucosal-Associated Invariant T cells. J. Exp. Med. 211:1585–600 [Google Scholar]
  128. Corbett AJ, Eckle SB, Birkinshaw RW, Liu L, Patel O. 128.  et al. 2014. T-cell activation by transitory neo-antigens derived from distinct microbial pathways. Nature 509:361–65 [Google Scholar]
  129. Tikhonova AN, Vann Laethem F, Hanada K-I, Lu J, Pobezinsky LA. 129.  et al. 2012. αβ T cell receptors that do not undergo major histocompatibility complex-specific thymic selection possess antibody-like recognition specificities. Immunity 36:79–91 [Google Scholar]
  130. Yin L, Huseby E, Scott-Browne J, Rubtsova K, Pinilla C. 130.  et al. 2011. A single T cell receptor bound to major histocompatibility complex class I and class II glycoproteins reveals switchable TCR conformers. Immunity 35:23–33 [Google Scholar]
  131. Turner SJ, Kedzierska K, Komodromou H, La Gruta NL, Dunstone MA. 131.  et al. 2005. Lack of prominent peptide-major histocompatibility complex features limits repertoire diversity in virus-specific CD8+ T cell populations. Nat. Immunol. 6:382–89 [Google Scholar]
  132. Day EB, Guillonneau C, Gras S, La Gruta NL, Vignali DAA. 132.  et al. 2011. Structural basis for enabling T-cell receptor diversity within biased virus-specific CD8+ T-cell responses. PNAS 108:9536–41 [Google Scholar]
  133. Auphan-Anezin N, Mazza C, Guimezanes A, Barrett-Wilt GA, Montero-Julian F. 133.  et al. 2006. Distinct orientation of the alloreactive monoclonal CD8 T cell activation program by three different peptide/MHC complexes. Eur. J. Immunol. 36:1856–66 [Google Scholar]
  134. Khan AR, Baker BM, Ghosh P, Biddison WE, Wiley DC. 134.  2000. The structure and stability of an HLA-A*0201/octameric tax peptide complex with an empty conserved peptide-N-terminal binding site. J. Immunol. 164:6398–405 [Google Scholar]
  135. Scott DR, Borbulevych OY, Piepenbrink KH, Corcelli SA, Baker BM. 135.  2011. Disparate degrees of hypervariable loop flexibility control T-cell receptor cross-reactivity, specificity, and binding mechanism. J. Mol. Biol. 414:385–400 [Google Scholar]
  136. Zhao R, Loftus DJ, Appella E, Collins EJ. 136.  1999. Structural evidence of T cell xeno-reactivity in the absence of molecular mimicry. J. Exp. Med. 189:359–70 [Google Scholar]
  137. Buslepp J, Wang H, Biddison WE, Appella E, Collins EJ. 137.  2003. A correlation between TCR Vα docking on MHC and CD8 dependence: implications for T cell selection. Immunity 19:595–606 [Google Scholar]
  138. Tynan FE, Borg NA, Miles JJ, Beddoe T, El-Hassen D. 138.  et al. 2005. High resolution structures of highly bulged viral epitopes bound to major histocompatibility complex class I. Implications for T-cell receptor engagement and T-cell immunodominance. J. Biol. Chem. 280:23900–9 [Google Scholar]
  139. Maenaka K, Maenaka T, Tomiyama H, Takiguchi M, Stuart DI, Jones EY. 139.  2000. Nonstandard peptide binding revealed by crystal structures of HLA-B*5101 complexed with HIV immunodominant epitopes. J. Immunol. 165:3260–67 [Google Scholar]
  140. Yin L, Crawford F, Marrack P, Kappler JW, Dai S. 140.  2012. T-cell receptor (TCR) interaction with peptides that mimic nickel offers insight into nickel contact allergy. PNAS 109:18517–22 [Google Scholar]
  141. Liu X, Dai S, Crawford F, Fruge R, Marrack P, Kappler J. 141.  2002. Alternate interactions define the binding of peptides to the MHC molecule IAb. PNAS 99:8820–25 [Google Scholar]
  142. Yoshida K, Corper AL, Herro R, Jabri B, Wilson IA, Teyton L. 142.  2010. The diabetogenic mouse MHC class II molecule I-Ag7 is endowed with a switch that modulates TCR affinity. J. Clin. Investig. 120:1578–90 [Google Scholar]
  143. Newell EW, Ely LK, Kruse AC, Reay PA, Rodriguez SN. 143.  et al. 2011. Structural basis of specificity and cross-reactivity in T cell receptors specific for cytochrome c–I-Ek. J. Immunol. 186:5823–32 [Google Scholar]
  144. Hare BJ, Wyss DF, Osburne MS, Kern PS, Reinherz EL, Wagner G. 144.  1999. Structure, specificity and CDR mobility of a class II restricted single-chain T-cell receptor. Nat. Struct. Biol. 6:574–81 [Google Scholar]
  145. Zajonc DM, Cantu C 3rd, Mattner J, Zhou D, Savage PB. 145.  et al. 2005. Structure and function of a potent agonist for the semi-invariant natural killer T cell receptor. Nat. Immunol. 6:810–18 [Google Scholar]
  146. Zajonc DM, Savage PB, Bendelac A, Wilson IA, Teyton L. 146.  2008. Crystal structures of mouse CD1d-iGb3 complex and its cognate Vα14 T cell receptor suggest a model for dual recognition of foreign and self glycolipids. J. Mol. Biol. 377:1104–16 [Google Scholar]
  147. Tyznik AJ, Farber E, Girardi E, Birkholz A, Li Y. 147.  et al. 2011. Glycolipids that elicit IFN-γ-biased responses from natural killer T cells. Chem. Biol. 18:1620–30 [Google Scholar]
  148. Kjer-Nielsen L, Borg NA, Pellicci DG, Beddoe T, Kostenko L. 148.  et al. 2006. A structural basis for selection and cross-species reactivity of the semi-invariant NKT cell receptor in CD1d/glycolipid recognition. J. Exp. Med. 203:661–73 [Google Scholar]
  149. Koch M, Stronge VS, Shepherd D, Gadola SD, Mathew B. 149.  et al. 2005. The crystal structure of human CD1d with and without α-galactosylceramide. Nat. Immunol. 6:819–26 [Google Scholar]
  150. Zajonc DM, Maricic I, Wu D, Halder R, Roy K. 150.  et al. 2005. Structural basis for CD1d presentation of a sulfatide derived from myelin and its implications for autoimmunity. J. Exp. Med. 202:1517–26 [Google Scholar]

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error