The immune system is responsible for defending an organism against the myriad of microbial invaders it constantly confronts. It has become increasingly clear that the immune system has a second major function: the maintenance of organismal homeostasis. Foxp3+CD4+ regulatory T cells (Tregs) are important contributors to both of these critical activities, defense being the primary purview of Tregs circulating through lymphoid organs, and homeostasis ensured mainly by their counterparts residing in parenchymal tissues. This review focuses on so-called tissue Tregs. We first survey existing information on the phenotype, function, sustaining factors, and human equivalents of the three best-characterized tissue-Treg populations—those operating in visceral adipose tissue, skeletal muscle, and the colonic lamina propria. We then attempt to distill general principles from this body of work—as concerns the provenance, local adaptation, molecular sustenance, and targets of action of tissue Tregs, in particular.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Kotas ME, Medzhitov R. 1.  2015. Homeostasis, inflammation, and disease susceptibility. Cell 160:816–27 [Google Scholar]
  2. Chovatiya R, Medzhitov R. 2.  2014. Stress, inflammation, and defense of homeostasis. Mol. Cell 54:281–88 [Google Scholar]
  3. Varol C, Mildner A, Jung S. 3.  2015. Macrophages: development and tissue specialization. Annu. Rev. Immunol. 33:643–75 [Google Scholar]
  4. Josefowicz SZ, Lu LF, Rudensky AY. 4.  2012. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 30:531–64 [Google Scholar]
  5. Rosen ED, Spiegelman BM. 5.  2014. What we talk about when we talk about fat. Cell 156:20–44 [Google Scholar]
  6. Osborn O, Olefsky JM. 6.  2012. The cellular and signaling networks linking the immune system and metabolism in disease. Nat. Med. 18:363–74 [Google Scholar]
  7. Hotamisligil GS, Shargill NS, Spiegelman BM. 7.  1993. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259:87–91 [Google Scholar]
  8. Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM. 8.  2001. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 286:327–34 [Google Scholar]
  9. Wen H, Gris D, Lei Y, Jha S, Zhang L. 9.  et al. 2011. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol. 12:408–15 [Google Scholar]
  10. Xu H, Barnes GT, Yang Q, Tan G, Yang D. 10.  et al. 2003. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Investig. 112:1821–30 [Google Scholar]
  11. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. 11.  2003. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Investig. 112:1796–808 [Google Scholar]
  12. Lumeng CN, Bodzin JL, Saltiel AR. 12.  2007. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Investig. 117:175–84 [Google Scholar]
  13. Lumeng CN, Deyoung SM, Bodzin JL, Saltiel AR. 13.  2007. Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes 56:16–23 [Google Scholar]
  14. Nguyen MT, Favelyukis S, Nguyen AK, Reichart D, Scott PA. 14.  et al. 2007. A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways. J. Biol. Chem. 282:35279–92 [Google Scholar]
  15. Patsouris D, Li PP, Thapar D, Chapman J, Olefsky JM, Neels JG. 15.  2008. Ablation of CD11c-positive cells normalizes insulin sensitivity in obese insulin resistant animals. Cell Metab. 8:301–9 [Google Scholar]
  16. Weisberg SP, Hunter D, Huber R, Lemieux J, Slaymaker S. 16.  et al. 2006. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J. Clin. Investig. 116:115–24 [Google Scholar]
  17. Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K. 17.  et al. 2006. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J. Clin. Investig. 116:1494–505 [Google Scholar]
  18. Kamei N, Tobe K, Suzuki R, Ohsugi M, Watanabe T. 18.  et al. 2006. Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J. Biol. Chem. 281:26602–14 [Google Scholar]
  19. Chawla A, Nguyen KD, Goh YP. 19.  2011. Macrophage-mediated inflammation in metabolic disease. Nat. Rev. Immunol. 11:738–49 [Google Scholar]
  20. McNelis JC, Olefsky JM. 20.  2014. Macrophages, immunity, and metabolic disease. Immunity 41:36–48 [Google Scholar]
  21. Mathis D, Shoelson SE. 21.  2011. Immunometabolism: an emerging frontier. Nat. Rev. Immunol. 11:81 [Google Scholar]
  22. Mathis D. 22.  2013. Immunological goings-on in visceral adipose tissue. Cell Metab. 17:851–59 [Google Scholar]
  23. Lynch L, Michelet X, Zhang S, Brennan PJ, Moseman A. 23.  et al. 2015. Regulatory iNKT cells lack expression of the transcription factor PLZF and control the homeostasis of Treg cells and macrophages in adipose tissue. Nat. Immunol. 16:85–95 [Google Scholar]
  24. Nishimura S, Manabe I, Takaki S, Nagasaki M, Otsu M. 24.  et al. 2013. Adipose natural regulatory B cells negatively control adipose tissue inflammation. Cell Metab. 18:759–66 [Google Scholar]
  25. Wensveen FM, Jelencic V, Valentic S, Sestan M, Wensveen TT. 25.  et al. 2015. NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nat. Immunol. 16:376–85 [Google Scholar]
  26. Moraes-Vieira PM, Yore MM, Dwyer PM, Syed I, Aryal P, Kahn BB. 26.  2014. RBP4 activates antigen-presenting cells, leading to adipose tissue inflammation and systemic insulin resistance. Cell Metab. 19:512–26 [Google Scholar]
  27. Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J. 27.  et al. 2009. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 15:930–39The first molecular, cellular, and functional characterization of a parenchymal-tissue Treg population, residing in visceral adipose tissue, is reported in this paper. [Google Scholar]
  28. Cipolletta D, Cohen P, Spiegelman BM, Benoist C, Mathis D. 28.  2015. Appearance and disappearance of the mRNA signature characteristic of Treg cells in visceral adipose tissue: age, diet, and PPARγ effects. PNAS 112:482–87 [Google Scholar]
  29. Pettersson US, Walden TB, Carlsson PO, Jansson L, Phillipson M. 29.  2012. Female mice are protected against high-fat diet induced metabolic syndrome and increase the regulatory T cell population in adipose tissue. PLOS ONE 7:e46057 [Google Scholar]
  30. Tran TT, Yamamoto Y, Gesta S, Kahn CR. 30.  2008. Beneficial effects of subcutaneous fat transplantation on metabolism. Cell Metab. 7:410–20 [Google Scholar]
  31. Kolodin D, van PN, Li C, Magnuson AM, Cipolletta D. 31.  et al. 2015. Antigen- and cytokine-driven accumulation of regulatory T cells in visceral adipose tissue of lean mice. Cell Metab. 21:543–57 [Google Scholar]
  32. Tontonoz P, Spiegelman BM. 32.  2008. Fat and beyond: the diverse biology of PPARγ. Annu. Rev. Biochem. 77:289–312 [Google Scholar]
  33. Cipolletta D, Feuerer M, Li A, Kamei N, Lee J. 33.  et al. 2012. PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 486:549–53Reports the intriguing observation that tissue Tregs can co-opt the archetypal transcriptional program of surrounding parenchymal cells. [Google Scholar]
  34. Vasanthakumar A, Moro K, Xin A, Liao Y, Gloury R. 34.  et al. 2015. The transcriptional regulators IRF4, BATF and IL-33 orchestrate development and maintenance of adipose tissue-resident regulatory T cells. Nat. Immunol. 16:276–85Uncovers an important role for the IL-33:St2 axis in VAT Treg accumulation and identifies upstream transcription factors. [Google Scholar]
  35. Medrikova D, Sijmonsma TP, Sowodniok K, Richards DM, Delacher M. 35.  et al. 2015. Brown adipose tissue harbors a distinct sub-population of regulatory T cells. PLOS ONE 10:e0118534 [Google Scholar]
  36. Deiuliis J, Shah Z, Shah N, Needleman B, Mikami D. 36.  et al. 2011. Visceral adipose inflammation in obesity is associated with critical alterations in T regulatory cell numbers. PLOS ONE 6:e16376 [Google Scholar]
  37. Eller K, Kirsch A, Wolf AM, Sopper S, Tagwerker A. 37.  et al. 2011. Potential role of regulatory T cells in reversing obesity-linked insulin resistance and diabetic nephropathy. Diabetes 60:2954–62 [Google Scholar]
  38. Winer S, Chan Y, Paltser G, Truong D, Tsui H. 38.  et al. 2009. Normalization of obesity-associated insulin resistance through immunotherapy. Nat. Med. 15:921–29 [Google Scholar]
  39. Ilan Y, Maron R, Tukpah AM, Maioli TU, Murugaiyan G. 39.  et al. 2010. Induction of regulatory T cells decreases adipose inflammation and alleviates insulin resistance in ob/ob mice. PNAS 107:9765–70 [Google Scholar]
  40. Cho KW, Morris DL, Delproposto JL, Geletka L, Zamarron B. 40.  et al. 2014. An MHC II-dependent activation loop between adipose tissue macrophages and CD4+ T cells controls obesity-induced inflammation. Cell Rep. 9:605–17 [Google Scholar]
  41. Meijer K, de Vries M, Al-Lahham S, Bruinenberg M, Weening D. 41.  et al. 2011. Human primary adipocytes exhibit immune cell function: Adipocytes prime inflammation independent of macrophages. PLOS ONE 6:e17154 [Google Scholar]
  42. Deng T, Lyon CJ, Minze LJ, Lin J, Zou J. 42.  et al. 2013. Class II major histocompatibility complex plays an essential role in obesity-induced adipose inflammation. Cell Metab. 17:411–22 [Google Scholar]
  43. Choi JH, Banks AS, Estall JL, Kajimura S, Bostrom P. 43.  et al. 2010. Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARγ by Cdk5. Nature 466:451–56 [Google Scholar]
  44. Choi JH, Banks AS, Kamenecka TM, Busby SA, Chalmers MJ. 44.  et al. 2011. Antidiabetic actions of a non-agonist PPARγ ligand blocking Cdk5-mediated phosphorylation. Nature 477:477–81 [Google Scholar]
  45. Banks AS, McAllister FE, Camporez JP, Zushin PJ, Jurczak MJ. 45.  et al. 2014. An ERK/Cdk5 axis controls the diabetogenic actions of PPARγ. Nature 517:391–95 [Google Scholar]
  46. Molofsky AB, Van GF, Liang HE, Van Dyken SJ, Nussbaum JC. 46.  et al. 2015. Interleukin-33 and interferon-gamma counter-regulate group 2 innate lymphoid cell activation during immune perturbation. Immunity 43:161–74 [Google Scholar]
  47. Han JM, Wu D, Denroche HC, Yao Y, Verchere CB, Levings MK. 47.  2015. IL-33 reverses an obesity-induced deficit in visceral adipose tissue ST2+ T regulatory cells and ameliorates adipose tissue inflammation and insulin resistance. J. Immunol. 194:4777–83 [Google Scholar]
  48. Molofsky AB, Savage AK, Locksley RM. 48.  2015. Interleukin-33 in tissue homeostasis, injury, and inflammation. Immunity 42:1005–19 [Google Scholar]
  49. Turnquist HR, Zhao Z, Rosborough BR, Liu Q, Castellaneta A. 49.  et al. 2011. IL-33 expands suppressive CD11b+ Gr-1int and regulatory T cells, including ST2L+Foxp3+ cells, and mediates regulatory T cell-dependent promotion of cardiac allograft survival. J. Immunol. 187:4598–610 [Google Scholar]
  50. Schiering C, Krausgruber T, Chomka A, Frohlich A, Adelmann K. 50.  et al. 2014. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature 513:564–68Uncovers the IL-33 dependence of colonic Tregs, of the Gata3+Helios+ subpopulation in particular. [Google Scholar]
  51. Miller AM, Asquith DL, Hueber AJ, Anderson LA, Holmes WM. 51.  et al. 2010. Interleukin-33 induces protective effects in adipose tissue inflammation during obesity in mice. Circ. Res. 107:650–58 [Google Scholar]
  52. Pichery M, Mirey E, Mercier P, Lefrancais E, Dujardin A. 52.  et al. 2012. Endogenous IL-33 is highly expressed in mouse epithelial barrier tissues, lymphoid organs, brain, embryos, and inflamed tissues: in situ analysis using a novel Il-33-LacZ gene trap reporter strain. J. Immunol. 188:3488–95 [Google Scholar]
  53. Kuswanto W, Burzyn D, Panduro M, Wang KK, Jang YC. 53.  et al. 2016. Poor repair of skeletal muscle in aging mice reflects a defect in local, interleukin-33-dependent accumulation of regulatory T cells. Immunity 44:355–67 [Google Scholar]
  54. Morita H, Arae K, Unno H, Miyauchi K, Toyama S. 54.  et al. 2015. An interleukin-33-mast cell-interleukin-2 axis suppresses papain-induced allergic inflammation by promoting regulatory T cell numbers. Immunity 43:175–86 [Google Scholar]
  55. Fabrizi M, Marchetti V, Mavilio M, Marino A, Casagrande V. 55.  et al. 2014. IL-21 is a major negative regulator of IRF4-dependent lipolysis affecting Tregs in adipose tissue and systemic insulin sensitivity. Diabetes 63:2086–96 [Google Scholar]
  56. Priceman SJ, Kujawski M, Shen S, Cherryholmes GA, Lee H. 56.  et al. 2013. Regulation of adipose tissue T cell subsets by Stat3 is crucial for diet-induced obesity and insulin resistance. PNAS 110:13079–84 [Google Scholar]
  57. Bassaganya-Riera J, Dominguez-Bello MG, Kronsteiner B, Carbo A, Lu P. 57.  et al. 2012. Helicobacter pylori colonization ameliorates glucose homeostasis in mice through a PPAR gamma-dependent mechanism. PLOS ONE 7:e50069 [Google Scholar]
  58. Donath MY, Shoelson SE. 58.  2011. Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol. 11:98–107 [Google Scholar]
  59. Zeyda M, Wernly B, Demyanets S, Kaun C, Hammerle M. 59.  et al. 2013. Severe obesity increases adipose tissue expression of interleukin-33 and its receptor ST2, both predominantly detectable in endothelial cells of human adipose tissue. Int. J. Obes. 37:658–65 [Google Scholar]
  60. Jang YC, Sinha M, Cerletti M, Dall’Osso C, Wagers AJ. 60.  2011. Skeletal muscle stem cells: effects of aging and metabolism on muscle regenerative function. Cold Spring Harb. Symp. Quant. Biol. 76:101–11 [Google Scholar]
  61. Rudnicki MA, Le Grand F, McKinnell I, Kuang S. 61.  2008. The molecular regulation of muscle stem cell function. Cold Spring Harb. Symp. Quant. Biol. 73:323–31 [Google Scholar]
  62. Tabebordbar M, Wang ET, Wagers AJ. 62.  2013. Skeletal muscle degenerative diseases and strategies for therapeutic muscle repair. Annu. Rev. Pathol. 8:441–75 [Google Scholar]
  63. Tidball JG, Villalta SA. 63.  2010. Regulatory interactions between muscle and the immune system during muscle regeneration. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298:R1173–87 [Google Scholar]
  64. Bosurgi L, Manfredi AA, Rovere-Querini P. 64.  2011. Macrophages in injured skeletal muscle: a perpetuum mobile causing and limiting fibrosis, prompting or restricting resolution and regeneration. Front. Immunol. 2:62 [Google Scholar]
  65. Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N. 65.  et al. 2007. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J. Exp. Med. 204:1057–69 [Google Scholar]
  66. Ruffell D, Mourkioti F, Gambardella A, Kirstetter P, Lopez RG. 66.  et al. 2009. A CREB-C/EBPβ cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair. PNAS 106:17475–80 [Google Scholar]
  67. Mounier R, Theret M, Arnold L, Cuvellier S, Bultot L. 67.  et al. 2013. AMPKα1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration. Cell Metab. 18:251–64 [Google Scholar]
  68. Rosenberg AS, Puig M, Nagaraju K, Hoffman EP, Villalta SA. 68.  et al. 2015. Immune-mediated pathology in Duchenne muscular dystrophy. Sci. Transl. Med. 7:299rv4 [Google Scholar]
  69. Villalta SA, Rinaldi C, Deng B, Liu G, Fedor B, Tidball JG. 69.  2011. Interleukin-10 reduces the pathology of mdx muscular dystrophy by deactivating M1 macrophages and modulating macrophage phenotype. Hum. Mol. Genet. 20:790–805 [Google Scholar]
  70. Villalta SA, Nguyen HX, Deng B, Gotoh T, Tidball JG. 70.  2009. Shifts in macrophage phenotypes and macrophage competition for arginine metabolism affect the severity of muscle pathology in muscular dystrophy. Hum. Mol. Genet. 18:482–96 [Google Scholar]
  71. Farini A, Meregalli M, Belicchi M, Battistelli M, Parolini D. 71.  et al. 2007. T and B lymphocyte depletion has a marked effect on the fibrosis of dystrophic skeletal muscles in the scid/mdx mouse. J. Pathol. 213:229–38 [Google Scholar]
  72. Iannitti T, Capone S, Feder D, Palmieri B. 72.  2010. Clinical use of immunosuppressants in Duchenne muscular dystrophy. J. Clin. Neuromuscul. Dis. 12:1–21 [Google Scholar]
  73. Eghtesad S, Jhunjhunwala S, Little SR, Clemens PR. 73.  2011. Rapamycin ameliorates dystrophic phenotype in mdx mouse skeletal muscle. Mol. Med. 17:917–24 [Google Scholar]
  74. Morrison J, Partridge T, Bou-Gharios G. 74.  2005. Nude mutation influences limb skeletal muscle development. Matrix Biol. 23:535–42 [Google Scholar]
  75. Burzyn D, Kuswanto W, Kolodin D, Shadrach JL, Cerletti M. 75.  et al. 2013. A special population of regulatory T cells potentiates muscle repair. Cell 155:1282–95Describes skeletal muscle Tregs for the first time and demonstrates their importance for muscle repair after acute or chronic injury. [Google Scholar]
  76. Villalta SA, Rosenthal W, Martinez L, Kaur A, Sparwasser T. 76.  et al. 2014. Regulatory T cells suppress muscle inflammation and injury in muscular dystrophy. Sci. Transl. Med. 6:258ra142 [Google Scholar]
  77. Blau HM, Cosgrove BD, Ho AT. 77.  2015. The central role of muscle stem cells in regenerative failure with aging. Nat. Med. 21:854–62 [Google Scholar]
  78. Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA. 78.  2005. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433:760–64 [Google Scholar]
  79. Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ. 79.  et al. 2007. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317:807–10 [Google Scholar]
  80. Ruckh JM, Zhao J-W, Shadrach JL, van Wijngarden P, Rao TN. 80.  et al. 2012. Rejuvenation of regeneration in the aging central nervous system. Cell Stem Cell 10:96–103 [Google Scholar]
  81. Sinha M, Jang YC, Oh J, Khong D, Wu EY. 81.  et al. 2014. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science 344:649–52 [Google Scholar]
  82. Lages CS, Suffia I, Velilla PA, Huang B, Warshaw G. 82.  et al. 2008. Functional regulatory T cells accumulate in aged hosts and promote chronic infectious disease reactivation. J. Immunol. 181:1835–48 [Google Scholar]
  83. Castiglioni A, Corna G, Rigamonti E, Basso V, Vezzoli M. 83.  et al. 2015. FOXP3+ T cells recruited to sites of sterile skeletal muscle injury regulate the fate of satellite cells and guide effective tissue regeneration. PLOS ONE 10:e0128094 [Google Scholar]
  84. Takeoka A, Vollenweider I, Courtine G, Arber S. 84.  2014. Muscle spindle feedback directs locomotor recovery and circuit reorganization after spinal cord injury. Cell 159:1626–39 [Google Scholar]
  85. Gussoni E, Pavlath GK, Miller RG, Panzara MA, Powell M. 85.  et al. 1994. Specific T cell receptor gene rearrangements at the site of muscle degeneration in Duchenne muscular dystrophy. J. Immunol. 153:4798–805 [Google Scholar]
  86. Mowat AM, Agace WW. 86.  2014. Regional specialization within the intestinal immune system. Nat. Rev. Immunol. 14:667–85 [Google Scholar]
  87. Morton AM, Sefik E, Upadhyay R, Weissleder R, Benoist C, Mathis D. 87.  2014. Endoscopic photoconversion reveals unexpectedly broad leukocyte trafficking to and from the gut. PNAS 111:6696–701 [Google Scholar]
  88. Wu HJ, Ivanov II, Darce J, Hattori K, Shima T. 88.  et al. 2010. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32:815–27 [Google Scholar]
  89. Hooper LV, Littman DR, Macpherson AJ. 89.  2012. Interactions between the microbiota and the immune system. Science 336:1268–73 [Google Scholar]
  90. Geuking MB, Cahenzli J, Lawson MA, Ng DC, Slack E. 90.  et al. 2011. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 34:794–806 [Google Scholar]
  91. Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T. 91.  et al. 2011. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331:337–41 [Google Scholar]
  92. Hegazy AN, Powrie F. 92.  2015. Microbiota RORgulates intestinal suppressor T cells. Science 349:929–30 [Google Scholar]
  93. Ohnmacht C, Park JH, Cording S, Wing JB, Atarashi K. 93.  et al. 2015. The microbiota regulates type 2 immunity through RORγ+ T cells. Science 349:989–9393 and 94. Report on the phenotype and function of the microbiota-dependent RORγt+Helios1o/− subpopulation of Tregs in the colonic lamina propria. [Google Scholar]
  94. Sefik E, Geva-Zatorsky N, Oh S, Konnikova L, Zemmour D. 94.  et al. 2015. Individual intestinal symbionts induce a distinct population of RORγ+ regulatory T cells. Science 349:993–793 and 94. Report on the phenotype and function of the microbiota-dependent RORγt+Helios1o/− subpopulation of Tregs in the colonic lamina propria. [Google Scholar]
  95. Yang BH, Hagemann S, Mamareli P, Lauer U, Hoffmann U. 95.  et al. 2016. Foxp3+ T cells expressing RORγt represent a stable regulatory T-cell effector lineage with enhanced suppressive capacity during intestinal inflammation. Mucosal Immunol. 9:444–57 [Google Scholar]
  96. Lathrop SK, Bloom SM, Rao SM, Nutsch K, Lio CW. 96.  et al. 2011. Peripheral education of the immune system by colonic commensal microbiota. Nature 478:250–54 [Google Scholar]
  97. Cebula A, Seweryn M, Rempala GA, Pabla SS, McIndoe RA. 97.  et al. 2013. Thymus-derived regulatory T cells contribute to tolerance to commensal microbiota. Nature 497:258–62 [Google Scholar]
  98. Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y. 98.  et al. 2013. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500:232–36 [Google Scholar]
  99. Faith JJ, Ahern PP, Ridaura VK, Cheng J, Gordon JI. 99.  2014. Identifying gut microbe-host phenotype relationships using combinatorial communities in gnotobiotic mice. Sci. Transl. Med. 6:220ra11 [Google Scholar]
  100. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA. 100.  et al. 2013. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341:569–73 [Google Scholar]
  101. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G. 101.  et al. 2013. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504:446–50 [Google Scholar]
  102. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J. 102.  et al. 2013. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504:451–55 [Google Scholar]
  103. Cong Y, Feng T, Fujihashi K, Schoeb TR, Elson CO. 103.  2009. A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota. PNAS 106:19256–61 [Google Scholar]
  104. Kawamoto S, Maruya M, Kato LM, Suda W, Atarashi K. 104.  et al. 2014. Foxp3+ T cells regulate immunoglobulin A selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity 41:152–65 [Google Scholar]
  105. Sun J, Furio L, Mecheri R, van der Does AM, Lundeberg E. 105.  et al. 2015. Pancreatic beta-cells limit autoimmune diabetes via an immunoregulatory antimicrobial peptide expressed under the influence of the gut microbiota. Immunity 43:304–17 [Google Scholar]
  106. Josefowicz SZ, Niec RE, Kim HY, Treuting P, Chinen T. 106.  et al. 2012. Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature 482:395–99 [Google Scholar]
  107. Wohlfert EA, Grainger JR, Bouladoux N, Konkel JE, Oldenhove G. 107.  et al. 2011. GATA3 controls Foxp3+ regulatory T cell fate during inflammation in mice. J. Clin. Investig. 121:4503–15 [Google Scholar]
  108. Frangogiannis NG. 108.  2014. The inflammatory response in myocardial injury, repair, and remodelling. Nat. Rev. Cardiol. 11:255–65 [Google Scholar]
  109. Yan X, Anzai A, Katsumata Y, Matsuhashi T, Ito K. 109.  et al. 2013. Temporal dynamics of cardiac immune cell accumulation following acute myocardial infarction. J. Mol. Cell Cardiol. 62:24–35 [Google Scholar]
  110. Weirather J, Hofmann UD, Beyersdorf N, Ramos GC, Vogel B. 110.  et al. 2014. Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation. Circ. Res. 115:55–67 [Google Scholar]
  111. Saxena A, Dobaczewski M, Rai V, Haque Z, Chen W. 111.  et al. 2014. Regulatory T cells are recruited in the infarcted mouse myocardium and may modulate fibroblast phenotype and function. Am. J. Physiol. Heart Circ. Physiol. 307:H1233–42 [Google Scholar]
  112. Kanellakis P, Dinh TN, Agrotis A, Bobik A. 112.  2011. CD4+CD25+Foxp3+ regulatory T cells suppress cardiac fibrosis in the hypertensive heart. J. Hypertens. 29:1820–28 [Google Scholar]
  113. Sanada S, Hakuno D, Higgins LJ, Schreiter ER, McKenzie AN, Lee RT. 113.  2007. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J. Clin. Investig. 117:1538–49 [Google Scholar]
  114. Kakkar R, Hei H, Dobner S, Lee RT. 114.  2012. Interleukin 33 as a mechanically responsive cytokine secreted by living cells. J. Biol. Chem. 287:6941–48 [Google Scholar]
  115. Chen WY, Hong J, Gannon J, Kakkar R, Lee RT. 115.  2015. Myocardial pressure overload induces systemic inflammation through endothelial cell IL-33. PNAS 112:7249–54 [Google Scholar]
  116. Honda T, Miyachi Y, Kabashima K. 116.  2011. Regulatory T cells in cutaneous immune responses. J. Dermatol. Sci. 63:75–82 [Google Scholar]
  117. Sather BD, Treuting P, Perdue N, Miazgowicz M, Fontenot JD. 117.  et al. 2007. Altering the distribution of Foxp3+ regulatory T cells results in tissue-specific inflammatory disease. J. Exp. Med. 204:1335–47 [Google Scholar]
  118. Dudda JC, Perdue N, Bachtanian E, Campbell DJ. 118.  2008. Foxp3+ regulatory T cells maintain immune homeostasis in the skin. J. Exp. Med. 205:1559–65 [Google Scholar]
  119. Samstein RM, Josefowicz SZ, Arvey A, Treuting PM, Rudensky AY. 119.  2012. Extrathymic generation of regulatory T cells in placental mammals mitigates maternal-fetal conflict. Cell 150:29–38Identifies a placental decidua Treg population that is critical for preventing maternal rejection of a fetus expressing paternally derived alloantigens. [Google Scholar]
  120. Aluvihare VR, Kallikourdis M, Betz AG. 120.  2004. Regulatory T cells mediate maternal tolerance to the fetus. Nat. Immunol. 5:266–71 [Google Scholar]
  121. Shima T, Sasaki Y, Itoh M, Nakashima A, Ishii N. 121.  et al. 2010. Regulatory T cells are necessary for implantation and maintenance of early pregnancy but not late pregnancy in allogeneic mice. J. Reprod. Immunol. 85:121–29 [Google Scholar]
  122. Rowe JH, Ertelt JM, Xin L, Way SS. 122.  2012. Pregnancy imprints regulatory memory that sustains anergy to fetal antigen. Nature 490:102–6 [Google Scholar]
  123. Rowe JH, Ertelt JM, Aguilera MN, Farrar MA, Way SS. 123.  2011. Foxp3+ regulatory T cell expansion required for sustaining pregnancy compromises host defense against prenatal bacterial pathogens. Cell Host Microbe 10:54–64 [Google Scholar]
  124. Thornton AM, Korty PE, Tran DQ, Wohlfert EA, Murray PE. 124.  et al. 2010. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J. Immunol. 184:3433–41 [Google Scholar]
  125. Weiss JM, Bilate AM, Gobert M, Ding Y, Curotto de Lafaille MA. 125.  et al. 2012. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. J. Exp. Med. 209:1723–42 [Google Scholar]
  126. Yang S, Fujikado N, Kolodin D, Benoist C, Mathis D. 126.  2015. Immune tolerance: Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance. Science 348:589–94 [Google Scholar]
  127. Cretney E, Kallies A, Nutt SL. 127.  2013. Differentiation and function of Foxp3+ effector regulatory T cells. Trends Immunol. 34:74–80 [Google Scholar]
  128. Rosenblum MD, Gratz IK, Paw JS, Lee K, Marshak-Rothstein A, Abbas AK. 128.  2011. Response to self antigen imprints regulatory memory in tissues. Nature 480:538–42 [Google Scholar]
  129. Arpaia N, Green JA, Moltedo B, Arvey A, Hemmers S. 129.  et al. 2015. A distinct function of regulatory T cells in tissue protection. Cell 162:1078–89Describes a TCR-independent repair program in lung Tregs and highlights the important role of amphiregulin. [Google Scholar]
  130. Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H. 130.  et al. 2014. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159:1312–26Uses a systems-level analysis to explore how tissue-resident macrophages acquire unique phenotypes, a potential model for tissue Tregs. [Google Scholar]
  131. Gosselin D, Link VM, Romanoski CE, Fonseca GJ, Eichenfield DZ. 131.  et al. 2014. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159:1327–40 [Google Scholar]
  132. Kim SV, Xiang WV, Kwak C, Yang Y, Lin XW. 132.  et al. 2013. GPR15-mediated homing controls immune homeostasis in the large intestine mucosa. Science 340:1456–59 [Google Scholar]
  133. Luck H, Tsai S, Chung J, Clemente-Casares X, Ghazarian M. 133.  et al. 2015. Regulation of obesity-related insulin resistance with gut anti-inflammatory agents. Cell Metab. 21:527–42 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error