To monitor the health of cells, the immune system tasks antigen-presenting cells with gathering antigens from other cells and bringing them to CD8 T cells in the form of peptides bound to MHC-I molecules. Most cells would be unable to perform this function because they use their MHC-I molecules to exclusively present peptides derived from the cell's own proteins. However, the immune system evolved mechanisms for dendritic cells and some other phagocytes to sample and present antigens from the extracellular milieu on MHC-I through a process called cross-presentation. How this important task is accomplished, its role in health and disease, and its potential for exploitation are the subject of this review.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Rock KL, Gramm C, Rothstein L, Clark K, Stein R. 1.  et al. 1994. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class-I molecules. Cell 78:761–71 [Google Scholar]
  2. Rock KL, York IA, Goldberg AL. 2.  2004. Post-proteasomal antigen processing for major histocompatibility complex class I presentation. Nat. Immunol. 5:670–77 [Google Scholar]
  3. Townsend A, Trowsdale J. 3.  1993. The transporters associated with antigen presentation. Semin. Cell Biol. 4:53–61 [Google Scholar]
  4. Serwold T, Gonzalez F, Kim J, Jacob R, Shastri N. 4.  2002. ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum. Nature 419:480–83 [Google Scholar]
  5. York IA, Chang SC, Saric T, Keys JA, Favreau JM. 5.  et al. 2002. The ER aminopeptidase ERAP1 enhances or limits antigen presentation by trimming epitopes to 8–9 residues. Nat. Immunol. 3:1177–84 [Google Scholar]
  6. Morrison LA, Lukacher AE, Braciale VL, Fan DP, Braciale TJ. 6.  1986. Differences in antigen presentation to MHC class I–and class II–restricted influenza virus–specific cytolytic T lymphocyte clones. J. Exp. Med. 163:903–21 [Google Scholar]
  7. Roche PA, Furuta K. 7.  2015. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat. Rev. Immunol. 15:203–16 [Google Scholar]
  8. Bevan MJ. 8.  1976. Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay. J. Exp. Med. 143:1283–88 [Google Scholar]
  9. Townsend AR, Rothbard J, Gotch FM, Bahadur G, Wraith D, McMichael AJ. 9.  1986. The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell 44:959–68 [Google Scholar]
  10. Rock KL, Gamble S, Rothstein L. 10.  1990. Presentation of exogenous antigen with class I major histocompatibility complex molecules. Science 249:918–21 [Google Scholar]
  11. Grant EP, Rock KL. 11.  1992. MHC class I-restricted presentation of exogenous antigen by thymic antigen-presenting cells in vitro and in vivo. J. Immunol. 148:13–18 [Google Scholar]
  12. Kovacsovics-Bankowski M, Clark K, Benacerraf B, Rock KL. 12.  1993. Efficient major histocompatibility complex class I presentation of exogenous antigen upon phagocytosis by macrophages. PNAS 90:4942–46 [Google Scholar]
  13. Shen Z, Reznikoff G, Dranoff G, Rock KL. 13.  1997. Cloned dendritic cells can present exogenous antigens on both MHC class I and class II molecules. J. Immunol. 158:2723–30 [Google Scholar]
  14. Rock KL, Rothstein L, Gamble S, Fleischacker C. 14.  1993. Characterization of antigen-presenting cells that present exogenous antigens in association with class I MHC molecules. J. Immunol. 150:438–46 [Google Scholar]
  15. den Haan JMM, Lehar SM, Bevan MJ. 15.  2000. CD8+ but not CD8 dendritic cells cross-prime cytotoxic T cells in vivo. J. Exp. Med. 192:1685–96 [Google Scholar]
  16. Pooley JL, Heath WR, Shortman K. 16.  2001. Cutting edge: Intravenous soluble antigen is presented to CD4 T cells by CD8 dendritic cells, but cross-presented to CD8 T cells by CD8+ dendritic cells. J. Immunol. 166:5327–30 [Google Scholar]
  17. Sei JJ, Haskett S, Kaminsky LW, Lin E, Truckenmiller ME. 17.  et al. 2015. Peptide-MHC-I from endogenous antigen outnumber those from exogenous antigen, irrespective of APC phenotype or activation. PLOS Pathog. 11:e1004941 [Google Scholar]
  18. Mora JR, von Andrian UH. 18.  2006. T-cell homing specificity and plasticity: new concepts and future challenges. Trends Immunol 27:235–43 [Google Scholar]
  19. Merad M, Sathe P, Helft J, Miller J, Mortha A. 19.  2013. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol. 31:563–604 [Google Scholar]
  20. Johnson LA, Jackson DG. 20.  2014. Control of dendritic cell trafficking in lymphatics by chemokines. Angiogenesis 17:335–45 [Google Scholar]
  21. McDonnell AM, Currie AJ, Brown M, Kania K, Wylie B. 21.  et al. 2012. Tumor cells, rather than dendritic cells, deliver antigen to the lymph node for cross-presentation. Oncoimmunology 1:840–46 [Google Scholar]
  22. Xu RH, Remakus S, Ma X, Roscoe F, Sigal LJ. 22.  2010. Direct presentation is sufficient for an efficient anti-viral CD8+ T cell response. PLOS Pathog. 6:e1000768 [Google Scholar]
  23. Hickman HD, Takeda K, Skon CN, Murray FR, Hensley SE. 23.  et al. 2008. Direct priming of antiviral CD8+ T cells in the peripheral interfollicular region of lymph nodes. Nat. Immunol. 9:155–65 [Google Scholar]
  24. Huang AY, Golumbek P, Ahmadzadeh M, Jaffee E, Pardoll D, Levitsky H. 24.  1994. Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science 264:961–65 [Google Scholar]
  25. Sigal LJ, Crotty S, Andino R, Rock KL. 25.  1999. Cytotoxic T-cell immunity to virus-infected non-haematopoietic cells requires presentation of exogenous antigen. Nature 398:77–80 [Google Scholar]
  26. Game DS, Lechler RI. 26.  2002. Pathways of allorecognition: implications for transplantation tolerance. Transpl. Immunol. 10:101–8 [Google Scholar]
  27. de Jersey J, Snelgrove SL, Palmer SE, Teteris SA, Mullbacher A. 27.  et al. 2007. Beta cells cannot directly prime diabetogenic CD8 T cells in nonobese diabetic mice. PNAS 104:1295–300 [Google Scholar]
  28. Calderon B, Unanue ER. 28.  2012. Antigen presentation events in autoimmune diabetes. Curr. Opin. Immunol. 24:119–28 [Google Scholar]
  29. Ji Q, Castelli L, Goverman JM. 29.  2013. MHC class I-restricted myelin epitopes are cross-presented by Tip-DCs that promote determinant spreading to CD8+ T cells. Nat. Immunol. 14:254–61 [Google Scholar]
  30. Sanchez-Paulete AR, Cueto FJ, Martinez-Lopez M, Labiano S, Morales-Kastresana A. 30.  et al. 2016. Cancer immunotherapy with immunomodulatory anti-CD137 and anti-PD-1 monoclonal antibodies requires BATF3-dependent dendritic cells. Cancer Discov 6:71–79 [Google Scholar]
  31. Iborra S, Izquierdo HM, Martinez-Lopez M, Blanco-Menendez N, Reis e Sousa C, Sancho D. 31.  2012. The DC receptor DNGR-1 mediates cross-priming of CTLs during vaccinia virus infection in mice. J. Clin. Investig. 122:1628–43 [Google Scholar]
  32. Smed-Sorensen A, Chalouni C, Chatterjee B, Cohn L, Blattmann P. 32.  et al. 2012. Influenza A virus infection of human primary dendritic cells impairs their ability to cross-present antigen to CD8 T cells. PLOS Pathog. 8e1002572 [Google Scholar]
  33. Shen L, Sigal LJ, Boes M, Rock KL. 33.  2004. Important role of cathepsin S in generating peptides for TAP-independent MHC class I crosspresentation in vivo. Immunity 21:155–65 [Google Scholar]
  34. Heipertz EL, Davies ML, Lin E, Norbury CC. 34.  2014. Prolonged antigen presentation following an acute virus infection requires direct and then cross-presentation. J. Immunol. 193:4169–77 [Google Scholar]
  35. Aleyas AG, Han YW, Patil AM, Kim SB, Kim K, Eo SK. 35.  2012. Impaired cross-presentation of CD8α+ CD11c+ dendritic cells by Japanese encephalitis virus in a TLR2/MyD88 signal pathway-dependent manner. Eur. J. Immunol. 42:2655–66 [Google Scholar]
  36. Lenschow DJ, Walunas TL, Bluestone JA. 36.  1996. CD28/B7 system of T cell costimulation. Annu. Rev. Immunol. 14:233–58 [Google Scholar]
  37. Luckashenak N, Schroeder S, Endt K, Schmidt D, Mahnke K. 37.  et al. 2008. Constitutive crosspresentation of tissue antigens by dendritic cells controls CD8+ T cell tolerance in vivo. Immunity 28:521–32 [Google Scholar]
  38. Kurts C, Kosaka H, Carbone FR, Miller JF, Heath WR. 38.  1997. Class I-restricted cross-presentation of exogenous self-antigens leads to deletion of autoreactive CD8+ T cells. J. Exp. Med. 186:239–45 [Google Scholar]
  39. Gallegos AM, Bevan MJ. 39.  2004. Central tolerance to tissue-specific antigens mediated by direct and indirect antigen presentation. J. Exp. Med. 200:1039–49 [Google Scholar]
  40. Falo LD Jr., Kovacsovics-Bankowski M, Thompson K, Rock KL. 40.  1995. Targeting antigen into the phagocytic pathway in vivo induces protective tumour immunity. Nat. Med. 1:649–53 [Google Scholar]
  41. Pfeifer JD, Wick MJ, Roberts RL, Findlay K, Normark SJ, Harding CV. 41.  1993. Phagocytic processing of bacterial antigens for class I MHC presentation to T cells. Nature 361:359–62 [Google Scholar]
  42. Norbury CC, Hewlett LJ, Prescott AR, Shastri N, Watts C. 42.  1995. Class I MHC presentation of exogenous soluble antigen via macropinocytosis in bone marrow macrophages. Immunity 3:783–91 [Google Scholar]
  43. van Montfoort N, Mangsbo SM, Camps MG, van Maren WW, Verhaart IE. 43.  et al. 2012. Circulating specific antibodies enhance systemic cross-priming by delivery of complexed antigen to dendritic cells in vivo. Eur. J. Immunol. 42:598–606 [Google Scholar]
  44. Burgdorf S, Lukacs-Kornek V, Kurts C. 44.  2006. The mannose receptor mediates uptake of soluble but not of cell-associated antigen for cross-presentation. J. Immunol. 176:6770–76 [Google Scholar]
  45. Kamphorst AO, Guermonprez P, Dudziak D, Nussenzweig MC. 45.  2010. Route of antigen uptake differentially impacts presentation by dendritic cells and activated monocytes. J. Immunol. 185:3426–35 [Google Scholar]
  46. Kerksiek KM, Niedergang F, Chavrier P, Busch DH, Brocker T. 46.  2005. Selective Rac1 inhibition in dendritic cells diminishes apoptotic cell uptake and cross-presentation in vivo. Blood 105:742–49 [Google Scholar]
  47. Subramanian M, Hayes CD, Thome JJ, Thorp E, Matsushima GK. 47.  et al. 2014. An AXL/LRP-1/RANBP9 complex mediates DC efferocytosis and antigen cross-presentation in vivo. J. Clin. Investig. 124:1296–308 [Google Scholar]
  48. Zelenay S, Keller AM, Whitney PG, Schraml BU, Deddouche S. 48.  et al. 2012. The dendritic cell receptor DNGR-1 controls endocytic handling of necrotic cell antigens to favor cross-priming of CTLs in virus-infected mice. J. Clin. Investig. 122:1615–27 [Google Scholar]
  49. Schreibelt G, Klinkenberg LJ, Cruz LJ, Tacken PJ, Tel J. 49.  et al. 2012. The C-type lectin receptor CLEC9A mediates antigen uptake and (cross-)presentation by human blood BDCA3+ myeloid dendritic cells. Blood 119:2284–92 [Google Scholar]
  50. Anyaegbu CC, Lake RA, Heel K, Robinson BW, Fisher SA. 50.  2014. Chemotherapy enhances cross-presentation of nuclear tumor antigens. PLOS ONE 9:e107894 [Google Scholar]
  51. Shen L, Rock KL. 51.  2004. Cellular protein is the source of cross-priming antigen in vivo. PNAS 101:3035–40 [Google Scholar]
  52. Li Y, Wang LX, Yang G, Hao F, Urba WJ, Hu HM. 52.  2008. Efficient cross-presentation depends on autophagy in tumor cells. Cancer Res 68:6889–95 [Google Scholar]
  53. Joubert PE, Albert ML. 53.  2012. Antigen cross-priming of cell-associated proteins is enhanced by macroautophagy within the antigen donor cell. Front. Immunol. 3:61 [Google Scholar]
  54. Basu S, Srivastava PK. 54.  2000. Heat shock proteins: the fountainhead of innate and adaptive immune responses. Cell Stress Chaperones 5:443–51 [Google Scholar]
  55. Matheoud D, Perie L, Hoeffel G, Vimeux L, Parent I. 55.  et al. 2010. Cross-presentation by dendritic cells from live cells induces protective immune responses in vivo. Blood 115:4412–20 [Google Scholar]
  56. Matheoud D, Baey C, Vimeux L, Tempez A, Valente M. 56.  et al. 2011. Dendritic cells crosspresent antigens from live B16 cells more efficiently than from apoptotic cells and protect from melanoma in a therapeutic model. PLOS ONE 6:e19104 [Google Scholar]
  57. Wolfers J, Lozier A, Raposo G, Regnault A, Thery C. 57.  et al. 2001. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat. Med. 7:297–303 [Google Scholar]
  58. Harshyne LA, Zimmer MI, Watkins SC, Barratt-Boyes SM. 58.  2003. A role for class A scavenger receptor in dendritic cell nibbling from live cells. J. Immunol. 170:2302–9 [Google Scholar]
  59. Neijssen J, Herberts C, Drijfhout JW, Reits E, Janssen L, Neefjes J. 59.  2005. Cross-presentation by intercellular peptide transfer through gap junctions. Nature 434:83–88 [Google Scholar]
  60. Smyth LA, Hervouet C, Hayday T, Becker PD, Ellis R. 60.  et al. 2012. Acquisition of MHC:peptide complexes by dendritic cells contributes to the generation of antiviral CD8+ T cell immunity in vivo. J. Immunol. 189:2274–82 [Google Scholar]
  61. Li L, Kim S, Herndon JM, Goedegebuure P, Belt BA. 61.  et al. 2012. Cross-dressed CD8α+/CD103+ dendritic cells prime CD8+ T cells following vaccination. PNAS 109:12716–21 [Google Scholar]
  62. Dolan BP, Gibbs KD Jr., Ostrand-Rosenberg S. 62.  2006. Dendritic cells cross-dressed with peptide MHC class I complexes prime CD8+ T cells. J. Immunol. 177:6018–24 [Google Scholar]
  63. Serna A, Ramirez MC, Soukhanova A, Sigal LJ. 63.  2003. Cutting edge: Efficient MHC class I cross-presentation during early vaccinia infection requires the transfer of proteasomal intermediates between antigen donor and presenting cells. J. Immunol. 171:5668–72 [Google Scholar]
  64. Norbury CC, Basta S, Donohue KB, Tscharke DC, Princiotta MF. 64.  et al. 2004. CD8+ T cell cross-priming via transfer of proteasome substrates. Science 304:1318–21 [Google Scholar]
  65. Wang J, Nanjundappa RH, Shameli A, Clemente-Casares X, Yamanouchi J. 65.  et al. 2014. The cross-priming capacity and direct presentation potential of an autoantigen are separable and inversely related properties. J. Immunol. 193:3296–307 [Google Scholar]
  66. Schliehe C, Bitzer A, van den Broek M, Groettrup M. 66.  2012. Stable antigen is most effective for eliciting CD8+ T-cell responses after DNA vaccination and infection with recombinant vaccinia virus in vivo. J. Virol. 86:9782–93 [Google Scholar]
  67. Schnorrer P, Behrens GM, Wilson NS, Pooley JL, Smith CM. 67.  et al. 2006. The dominant role of CD8+ dendritic cells in cross-presentation is not dictated by antigen capture. PNAS 103:10729–34 [Google Scholar]
  68. Wakim LM, Bevan MJ. 68.  2011. Cross-dressed dendritic cells drive memory CD8+ T-cell activation after viral infection. Nature 471:629–32 [Google Scholar]
  69. Goldszmid RS, Coppens I, Lev A, Caspar P, Mellman I, Sher A. 69.  2009. Host ER-parasitophorous vacuole interaction provides a route of entry for antigen cross-presentation in Toxoplasma gondii-infected dendritic cells. J. Exp. Med. 206:399–410 [Google Scholar]
  70. Bertholet S, Goldszmid R, Morrot A, Debrabant A, Afrin F. 70.  et al. 2006. Leishmania antigens are presented to CD8+ T cells by a transporter associated with antigen processing-independent pathway in vitro and in vivo. J. Immunol. 177:3525–33 [Google Scholar]
  71. Harriff MJ, Burgdorf S, Kurts C, Wiertz EJ, Lewinsohn DA, Lewinsohn DM. 71.  2013. TAP mediates import of Mycobacterium tuberculosis-derived peptides into phagosomes and facilitates loading onto HLA-I. PLOS ONE 8:e79571 [Google Scholar]
  72. Flynn JL, Goldstein MM, Triebold KJ, Koller B, Bloom BR. 72.  1992. Major histocompatibility complex class I-restricted T cells are required for resistance to Mycobacterium tuberculosis infection. PNAS 89:12013–17 [Google Scholar]
  73. Belkaid Y, Von Stebut E, Mendez S, Lira R, Caler E. 73.  et al. 2002. CD8+ T cells are required for primary immunity in C57BL/6 mice following low-dose, intradermal challenge with Leishmania major. J. Immunol. 168:3992–4000 [Google Scholar]
  74. Ersching J, Vasconcelos JR, Ferreira CP, Caetano BC, Machado AV. 74.  et al. 2016. The combined deficiency of immunoproteasome subunits affects both the magnitude and quality of pathogen- and genetic vaccination-induced CD8+ T cell responses to the human protozoan parasite Trypanosoma cruzi. PLOS Pathog. 12:e1005593 [Google Scholar]
  75. Ackerman AL, Kyritsis C, Tampe R, Cresswell P. 75.  2005. Access of soluble antigens to the endoplasmic reticulum can explain cross-presentation by dendritic cells. Nat. Immunol. 6:107–13 [Google Scholar]
  76. Kovacsovics-Bankowski M, Rock KL. 76.  1995. A phagosome-to-cytosol pathway for exogenous antigens presented on MHC class I molecules. Science 267:243–46 [Google Scholar]
  77. Fonteneau JF, Kavanagh DG, Lirvall M, Sanders C, Cover TL. 77.  et al. 2003. Characterization of the MHC class I cross-presentation pathway for cell-associated antigens by human dendritic cells. Blood 102:4448–55 [Google Scholar]
  78. Palmowski MJ, Gileadi U, Salio M, Gallimore A, Millrain M. 78.  et al. 2006. Role of immunoproteasomes in cross-presentation. J. Immunol. 177:983–90 [Google Scholar]
  79. Lin ML, Zhan Y, Proietto AI, Prato S, Wu L. 79.  et al. 2008. Selective suicide of cross-presenting CD8+ dendritic cells by cytochrome c injection shows functional heterogeneity within this subset. PNAS 105:3029–34 [Google Scholar]
  80. Imai T, Kato Y, Kajiwara C, Mizukami S, Ishige I. 80.  et al. 2011. Heat shock protein 90 (HSP90) contributes to cytosolic translocation of extracellular antigen for cross-presentation by dendritic cells. PNAS 108:16363–68 [Google Scholar]
  81. Burgdorf S, Scholz C, Kautz A, Tampe R, Kurts C. 81.  2008. Spatial and mechanistic separation of cross-presentation and endogenous antigen presentation. Nat. Immunol. 9:558–66 [Google Scholar]
  82. Cebrian I, Visentin G, Blanchard N, Jouve M, Bobard A. 82.  et al. 2011. Sec 22b regulates phagosomal maturation and antigen crosspresentation by dendritic cells. Cell 147:1355–68 [Google Scholar]
  83. Ma W, Zhang Y, Vigneron N, Stroobant V, Thielemans K. 83.  et al. 2016. Long-peptide cross-presentation by human dendritic cells occurs in vacuoles by peptide exchange on nascent MHC class I molecules. J. Immunol. 196:1711–20 [Google Scholar]
  84. Song R, Harding CV. 84.  1996. Roles of proteasomes, transporter for antigen presentation (TAP), and beta 2-microglobulin in the processing of bacterial or particulate antigens via an alternate class I MHC processing pathway. J. Immunol. 156:4182–90 [Google Scholar]
  85. Tiwari N, Garbi N, Reinheckel T, Moldenhauer G, Hammerling GJ, Momburg F. 85.  2007. A transporter associated with antigen-processing independent vacuolar pathway for the MHC class I-mediated presentation of endogenous transmembrane proteins. J. Immunol. 178:7932–42 [Google Scholar]
  86. Hari A, Ganguly A, Mu L, Davis SP, Stenner MD. 86.  et al. 2015. Redirecting soluble antigen for MHC class I cross-presentation during phagocytosis. Eur. J. Immunol. 45:383–95 [Google Scholar]
  87. Harding CV, Song R. 87.  1994. Phagocytic processing of exogenous particulate antigens by macrophages for presentation by class I MHC molecules. J. Immunol. 153:4925–33 [Google Scholar]
  88. Potter NS, Harding CV. 88.  2001. Neutrophils process exogenous bacteria via an alternate class I MHC processing pathway for presentation of peptides to T lymphocytes. J. Immunol. 167:2538–46 [Google Scholar]
  89. Oh YK, Swanson JA. 89.  1996. Different fates of phagocytosed particles after delivery into macrophage lysosomes. J. Cell Biol. 132:585–93 [Google Scholar]
  90. Mant A, Chinnery F, Elliott T, Williams AP. 90.  2012. The pathway of cross-presentation is influenced by the particle size of phagocytosed antigen. Immunology 136:163–75 [Google Scholar]
  91. Merzougui N, Kratzer R, Saveanu L, van Endert P. 91.  2011. A proteasome-dependent, TAP-independent pathway for cross-presentation of phagocytosed antigen. EMBO Rep 12:1257–64 [Google Scholar]
  92. Belizaire R, Unanue ER. 92.  2009. Targeting proteins to distinct subcellular compartments reveals unique requirements for MHC class I and II presentation. PNAS 106:17463–68 [Google Scholar]
  93. Houde M, Bertholet S, Gagnon E, Brunet S, Goyette G. 93.  et al. 2003. Phagosomes are competent organelles for antigen cross-presentation. Nature 425:402–6 [Google Scholar]
  94. Campbell-Valois FX, Trost M, Chemali M, Dill BD, Laplante A. 94.  et al. 2012. Quantitative proteomics reveals that only a subset of the endoplasmic reticulum contributes to the phagosome. Mol. Cell Proteom. 11:M111 016378 [Google Scholar]
  95. Ruggiano A, Foresti O, Carvalho P. 95.  2014. Quality control: ER-associated degradation; protein quality control and beyond. J. Cell Biol. 204:869–79 [Google Scholar]
  96. Grotzke JE, Cresswell P. 96.  2015. Are ERAD components involved in cross-presentation?. Mol. Immunol. 68:112–15 [Google Scholar]
  97. Ye Y, Meyer HH, Rapoport TA. 97.  2001. The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 414:652–56 [Google Scholar]
  98. Wiertz EJ, Tortorella D, Bogyo M, Yu J, Mothes W. 98.  et al. 1996. Sec 61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 384:432–38 [Google Scholar]
  99. Mehnert M, Sommer T, Jarosch E. 99.  2014. Der1 promotes movement of misfolded proteins through the endoplasmic reticulum membrane. Nat. Cell Biol. 16:77–86 [Google Scholar]
  100. Carvalho P, Stanley AM, Rapoport TA. 100.  2010. Retrotranslocation of a misfolded luminal ER protein by the ubiquitin-ligase Hrd1p. Cell 143:579–91 [Google Scholar]
  101. Ackerman AL, Giodini A, Cresswell P. 101.  2006. A role for the endoplasmic reticulum protein retrotranslocation machinery during crosspresentation by dendritic cells. Immunity 25:607–17 [Google Scholar]
  102. Zehner M, Chasan AI, Schuette V, Embgenbroich M, Quast T. 102.  et al. 2011. Mannose receptor polyubiquitination regulates endosomal recruitment of p97 and cytosolic antigen translocation for cross-presentation. PNAS 108:9933–38 [Google Scholar]
  103. Menager J, Ebstein F, Oger R, Hulin P, Nedellec S. 103.  et al. 2014. Cross-presentation of synthetic long peptides by human dendritic cells: a process dependent on ERAD component p97/VCP but not sec61 and/or Derlin-1. PLOS One 9:e89897 [Google Scholar]
  104. Imai J, Hasegawa H, Maruya M, Koyasu S, Yahara I. 104.  2005. Exogenous antigens are processed through the endoplasmic reticulum-associated degradation (ERAD) in cross-presentation by dendritic cells. Int. Immunol. 17:45–53 [Google Scholar]
  105. Zehner M, Marschall AL, Bos E, Schloetel JG, Kreer C. 105.  et al. 2015. The translocon protein Sec61 mediates antigen transport from endosomes in the cytosol for cross-presentation to CD8+ T cells. Immunity 42:850–63 [Google Scholar]
  106. Singh R, Cresswell P. 106.  2010. Defective cross-presentation of viral antigens in GILT-free mice. Science 328:1394–98 [Google Scholar]
  107. Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H. 107.  et al. 2008. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9:847–56 [Google Scholar]
  108. Giodini A, Cresswell P. 108.  2008. Hsp90-mediated cytosolic refolding of exogenous proteins internalized by dendritic cells. EMBO J 27:201–11 [Google Scholar]
  109. Dingjan I, Verboogen DR, Paardekooper LM, Revelo NH, Sittig SP. 109.  et al. 2016. Lipid peroxidation causes endosomal antigen release for cross-presentation. Sci. Rep. 6:22064 [Google Scholar]
  110. Savina A, Jancic C, Hugues S, Guermonprez P, Vargas P. 110.  et al. 2006. NOX2 controls phagosomal pH to regulate antigen processing during crosspresentation by dendritic cells. Cell 126:205–18 [Google Scholar]
  111. Johansson AC, Appelqvist H, Nilsson C, Kagedal K, Roberg K, Ollinger K. 111.  2010. Regulation of apoptosis-associated lysosomal membrane permeabilization. Apoptosis 15:527–40 [Google Scholar]
  112. Guermonprez P, Saveanu L, Kleijmeer M, Davoust J, Van Endert P, Amigorena S. 112.  2003. ER-phagosome fusion defines an MHC class I cross-presentation compartment in dendritic cells. Nature 425:397–402 [Google Scholar]
  113. Ackerman AL, Kyritsis C, Tampe R, Cresswell P. 113.  2003. Early phagosomes in dendritic cells form a cellular compartment sufficient for cross presentation of exogenous antigens. PNAS 100:12889–94 [Google Scholar]
  114. Lawand M, Abramova A, Manceau V, Springer S, van Endert P. 114.  2016. TAP-dependent and -independent peptide import into dendritic cell phagosomes. J. Immunol. 197:3454–63 [Google Scholar]
  115. Saveanu L, Carroll O, Weimershaus M, Guermonprez P, Firat E. 115.  et al. 2009. IRAP identifies an endosomal compartment required for MHC class I cross-presentation. Science 325:213–17 [Google Scholar]
  116. Weimershaus M, Maschalidi S, Sepulveda F, Manoury B, van Endert P, Saveanu L. 116.  2012. Conventional dendritic cells require IRAP-Rab14 endosomes for efficient cross-presentation. J. Immunol. 188:1840–46 [Google Scholar]
  117. Cascio P, Hilton C, Kisselev AF, Rock KL, Goldberg AL. 117.  2001. 26S proteasomes and immunoproteasomes produce mainly N-extended versions of an antigenic peptide. EMBO J 20:2357–66 [Google Scholar]
  118. Rock KL, Farfan-Arribas DJ, Shen L. 118.  2010. Proteases in MHC class I presentation and cross-presentation. J. Immunol. 184:9–15 [Google Scholar]
  119. Saveanu L, Babdor J, Lawand M, van Endert P. 119.  2013. Insulin-regulated aminopeptidase and its compartment in dendritic cells. Mol. Immunol. 55:153–55 [Google Scholar]
  120. Basha G, Lizee G, Reinicke AT, Seipp RP, Omilusik KD, Jefferies WA. 120.  2008. MHC class I endosomal and lysosomal trafficking coincides with exogenous antigen loading in dendritic cells. PLOS ONE 3:e3247 [Google Scholar]
  121. Crespo MI, Zacca ER, Nunez NG, Ranocchia RP, Maccioni M. 121.  et al. 2013. TLR7 triggering with polyuridylic acid promotes cross-presentation in CD8α+ conventional dendritic cells by enhancing antigen preservation and MHC class I antigen permanence on the dendritic cell surface. J. Immunol. 190:948–60 [Google Scholar]
  122. Ramachandra L, Sramkoski RM, Canaday DH, Boom WH, Harding CV. 122.  1998. Flow analysis of MHC molecules and other membrane proteins in isolated phagosomes. J. Immunol. Methods 213:53–71 [Google Scholar]
  123. Lizee G, Basha G, Tiong J, Julien JP, Tian M. 123.  et al. 2003. Control of dendritic cell cross-presentation by the major histocompatibility complex class I cytoplasmic domain. Nat. Immunol. 4:1065–73 [Google Scholar]
  124. Zou L, Zhou J, Zhang J, Li J, Liu N. 124.  et al. 2009. The GTPase Rab3b/3c-positive recycling vesicles are involved in cross-presentation in dendritic cells. PNAS 106:15801 [Google Scholar]
  125. Cebrian I, Croce C, Guerrero NA, Blanchard N, Mayorga LS. 125.  2016. Rab22a controls MHC-I intracellular trafficking and antigen cross-presentation by dendritic cells. EMBO Rep 17:1499–671 [Google Scholar]
  126. Weigert R, Yeung AC, Li J, Donaldson JG. 126.  2004. Rab22a regulates the recycling of membrane proteins internalized independently of clathrin. Mol. Biol. Cell 15:3758–70 [Google Scholar]
  127. Nair-Gupta P, Baccarini A, Tung N, Seyffer F, Florey O. 127.  et al. 2014. TLR signals induce phagosomal MHC-I delivery from the endosomal recycling compartment to allow cross-presentation. Cell 158:506–21 [Google Scholar]
  128. Singh SK, Streng-Ouwehand I, Litjens M, Kalay H, Saeland E, van Kooyk Y. 128.  2011. Tumour-associated glycan modifications of antigen enhance MGL2 dependent uptake and MHC class I restricted CD8 T cell responses. Int. J. Cancer 128:1371–83 [Google Scholar]
  129. Weck MM, Grunebach F, Werth D, Sinzger C, Bringmann A, Brossart P. 129.  2007. TLR ligands differentially affect uptake and presentation of cellular antigens. Blood 109:3890–94 [Google Scholar]
  130. Sugita M, Brenner MB. 130.  1995. Association of the invariant chain with major histocompatibility complex class I molecules directs trafficking to endocytic compartments. J. Biol. Chem. 270:1443–48 [Google Scholar]
  131. Basha G, Omilusik K, Chavez-Steenbock A, Reinicke AT, Lack N. 131.  et al. 2012. A CD74-dependent MHC class I endolysosomal cross-presentation pathway. Nat. Immunol. 13:237–45 [Google Scholar]
  132. Ljunggren HG, Stam NJ, Ohlen C, Neefjes JJ, Hoglund P. 132.  et al. 1990. Empty MHC class I molecules come out in the cold. Nature 346:476–80 [Google Scholar]
  133. Pos W, Sethi DK, Wucherpfennig KW. 133.  2013. Mechanisms of peptide repertoire selection by HLA-DM. Trends Immunol 34:495–501 [Google Scholar]
  134. Hulpke S, Tampe R. 134.  2013. The MHC I loading complex: a multitasking machinery in adaptive immunity. Trends Biochem. Sci. 38:412–20 [Google Scholar]
  135. Chefalo PJ, Grandea AG 3rd, Van Kaer L, Harding CV. 135.  2003. Tapasin−/− and TAP1−/− macrophages are deficient in vacuolar alternate class I MHC (MHC-I) processing due to decreased MHC-I stability at phagolysosomal pH. J. Immunol. 170:5825–33 [Google Scholar]
  136. Accapezzato D, Visco V, Francavilla V, Molette C, Donato T. 136.  et al. 2005. Chloroquine enhances human CD8+ T cell responses against soluble antigens in vivo. J. Exp. Med. 202:817–28 [Google Scholar]
  137. Mantegazza AR, Savina A, Vermeulen M, Perez L, Geffner J. 137.  et al. 2008. NADPH oxidase controls phagosomal pH and antigen cross-presentation in human dendritic cells. Blood 112:4712–22 [Google Scholar]
  138. Savina A, Peres A, Cebrian I, Carmo N, Moita C. 138.  et al. 2009. The small GTPase Rac2 controls phagosomal alkalinization and antigen crosspresentation selectively in CD8+ dendritic cells. Immunity 30:544–55 [Google Scholar]
  139. Jancic C, Savina A, Wasmeier C, Tolmachova T, El-Benna J. 139.  et al. 2007. Rab27a regulates phagosomal pH and NADPH oxidase recruitment to dendritic cell phagosomes. Nat. Cell Biol. 9:367–78 [Google Scholar]
  140. Graham DB, Stephenson LM, Lam SK, Brim K, Lee HM. 140.  et al. 2007. An ITAM-signaling pathway controls cross-presentation of particulate but not soluble antigens in dendritic cells. J. Exp. Med. 204:2889–97 [Google Scholar]
  141. Samie M, Cresswell P. 141.  2015. The transcription factor TFEB acts as a molecular switch that regulates exogenous antigen-presentation pathways. Nat. Immunol. 16:729–36 [Google Scholar]
  142. Rizzitelli A, Meuter S, Vega Ramos J, Bird CH, Mintern JD. 142.  et al. 2012. Serpinb9 (Spi6)-deficient mice are impaired in dendritic cell-mediated antigen cross-presentation. Immunol. Cell Biol. 90:841–51 [Google Scholar]
  143. Bougneres L, Helft J, Tiwari S, Vargas P, Chang BH. 143.  et al. 2009. A role for lipid bodies in the cross-presentation of phagocytosed antigens by MHC class I in dendritic cells. Immunity 31:232–44 [Google Scholar]
  144. Neefjes JJ, Stollorz V, Peters PJ, Geuze HJ, Ploegh HL. 144.  1990. The biosynthetic pathway of MHC class II but not class I molecules intersects the endocytic route. Cell 61:171–83 [Google Scholar]
  145. Burgdorf S, Kautz A, Bohnert V, Knolle PA, Kurts C. 145.  2007. Distinct pathways of antigen uptake and intracellular routing in CD4 and CD8 T cell activation. Science 316:612–16 [Google Scholar]
  146. Chatterjee B, Smed-Sorensen A, Cohn L, Chalouni C, Vandlen R. 146.  et al. 2012. Internalization and endosomal degradation of receptor-bound antigens regulate the efficiency of cross presentation by human dendritic cells. Blood 120:2011–20 [Google Scholar]
  147. Shen KY, Song YC, Chen IH, Leng CH, Chen HW. 147.  et al. 2014. Molecular mechanisms of TLR2-mediated antigen cross-presentation in dendritic cells. J. Immunol. 192:4233–41 [Google Scholar]
  148. Murrow L, Debnath J. 148.  2013. Autophagy as a stress-response and quality-control mechanism: implications for cell injury and human disease. Annu. Rev. Pathol. 8:105–37 [Google Scholar]
  149. Lee HK, Mattei LM, Steinberg BE, Alberts P, Lee YH. 149.  et al. 2010. In vivo requirement for Atg5 in antigen presentation by dendritic cells. Immunity 32:227–39 [Google Scholar]
  150. Ravindran R, Khan N, Nakaya HI, Li S, Loebbermann J. 150.  et al. 2014. Vaccine activation of the nutrient sensor GCN2 in dendritic cells enhances antigen presentation. Science 343:313–17 [Google Scholar]
  151. Li H, Li Y, Jiao J, Hu HM. 151.  2011. Alpha-alumina nanoparticles induce efficient autophagy-dependent cross-presentation and potent antitumour response. Nat. Nanotechnol. 6:645–50 [Google Scholar]
  152. Mintern JD, Macri C, Chin WJ, Panozza SE, Segura E. 152.  et al. 2015. Differential use of autophagy by primary dendritic cells specialized in cross-presentation. Autophagy 11:906–17 [Google Scholar]
  153. Martinez J, Malireddi RK, Lu Q, Cunha LD, Pelletier S. 153.  et al. 2015. Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat. Cell Biol. 17:893–906 [Google Scholar]
  154. Sanjuan MA, Dillon CP, Tait SW, Moshiach S, Dorsey F. 154.  et al. 2007. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450:1253–57 [Google Scholar]
  155. Hildner K, Edelson BT, Purtha WE, Diamond M, Matsushita H. 155.  et al. 2008. Batf3 deficiency reveals a critical role for CD8α+ dendritic cells in cytotoxic T cell immunity. Science 322:1097–100 [Google Scholar]
  156. Jung S, Unutmaz D, Wong P, Sano G, De los Santos K. 156.  et al. 2002. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17:211–20 [Google Scholar]
  157. Chiang MC, Tullett KM, Lee YS, Idris A, Ding Y. 157.  et al. 2016. Differential uptake and cross-presentation of soluble and necrotic cell antigen by human DC subsets. Eur. J. Immunol. 46:329–39 [Google Scholar]
  158. Tel J, Sittig SP, Blom RA, Cruz LJ, Schreibelt G. 158.  et al. 2013. Targeting uptake receptors on human plasmacytoid dendritic cells triggers antigen cross-presentation and robust type I IFN secretion. J. Immunol. 191:5005–12 [Google Scholar]
  159. Nierkens S, Tel J, Janssen E, Adema GJ. 159.  2013. Antigen cross-presentation by dendritic cell subsets: One general or all sergeants?. Trends Immunol 34:361–70 [Google Scholar]
  160. Segura E, Durand M, Amigorena S. 160.  2013. Similar antigen cross-presentation capacity and phagocytic functions in all freshly isolated human lymphoid organ-resident dendritic cells. J. Exp. Med. 210:1035–47 [Google Scholar]
  161. Kitano M, Yamazaki C, Takumi A, Ikeno T, Hemmi H. 161.  et al. 2016. Imaging of the cross-presenting dendritic cell subsets in the skin-draining lymph node. PNAS 113:1044–49 [Google Scholar]
  162. Busche A, Jirmo AC, Welten SP, Zischke J, Noack J. 162.  et al. 2013. Priming of CD8+ T cells against cytomegalovirus-encoded antigens is dominated by cross-presentation. J. Immunol. 190:2767–77 [Google Scholar]
  163. Becker M, Guttler S, Bachem A, Hartung E, Mora A. 163.  et al. 2014. Ontogenic, phenotypic, and functional characterization of XCR1+ dendritic cells leads to a consistent classification of intestinal dendritic cells based on the expression of XCR1 and SIRPα. Front. Immunol. 5:326 [Google Scholar]
  164. Cerovic V, Houston SA, Westlund J, Utriainen L, Davison ES. 164.  et al. 2015. Lymph-borne CD8α+ dendritic cells are uniquely able to cross-prime CD8+ T cells with antigen acquired from intestinal epithelial cells. Mucosal Immunol 8:38–48 [Google Scholar]
  165. Bedoui S, Whitney PG, Waithman J, Eidsmo L, Wakim L. 165.  et al. 2009. Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nat. Immunol. 10:488–95 [Google Scholar]
  166. Henri S, Poulin LF, Tamoutounour S, Ardouin L, Guilliams M. 166.  et al. 2010. CD207+ CD103+ dermal dendritic cells cross-present keratinocyte-derived antigens irrespective of the presence of Langerhans cells. J. Exp. Med. 207:189–206 [Google Scholar]
  167. Desch AN, Randolph GJ, Murphy K, Gautier EL, Kedl RM. 167.  et al. 2011. CD103+ pulmonary dendritic cells preferentially acquire and present apoptotic cell-associated antigen. J. Exp. Med. 208:1789–97 [Google Scholar]
  168. Wagner CS, Grotzke J, Cresswell P. 168.  2013. Intracellular regulation of cross-presentation during dendritic cell maturation. PLOS ONE 8:e76801 [Google Scholar]
  169. Allan RS, Waithman J, Bedoui S, Jones CM, Villadangos JA. 169.  et al. 2006. Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming. Immunity 25:153–62 [Google Scholar]
  170. Cohn L, Chatterjee B, Esselborn F, Smed-Sorensen A, Nakamura N. 170.  et al. 2013. Antigen delivery to early endosomes eliminates the superiority of human blood BDCA3+ dendritic cells at cross presentation. J. Exp. Med. 210:1049–63 [Google Scholar]
  171. Haniffa M, Shin A, Bigley V, McGovern N, Teo P. 171.  et al. 2012. Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity 37:60–73 [Google Scholar]
  172. Hanc P, Fujii T, Iborra S, Yamada Y, Huotari J. 172.  et al. 2015. Structure of the complex of F-actin and DNGR-1, a C-type lectin receptor involved in dendritic cell cross-presentation of dead cell-associated antigens. Immunity 42:839–49 [Google Scholar]
  173. Dudziak D, Kamphorst AO, Heidkamp GF, Buchholz VR, Trumpfheller C. 173.  et al. 2007. Differential antigen processing by dendritic cell subsets in vivo. Science 315:107–11 [Google Scholar]
  174. Ding Y, Guo Z, Liu Y, Li X, Zhang Q. 174.  et al. 2016. The lectin Siglec-G inhibits dendritic cell cross-presentation by impairing MHC class I–peptide complex formation. Nat. Immunol. 17:1167–75 [Google Scholar]
  175. Nizza ST, Campbell JJ. 175.  2014. CD11b+ migratory dendritic cells mediate CD8 T cell cross-priming and cutaneous imprinting after topical immunization. PLOS ONE 9:e91054 [Google Scholar]
  176. Ballesteros-Tato A, Leon B, Lund FE, Randall TD. 176.  2010. Temporal changes in dendritic cell subsets, cross-priming and costimulation via CD70 control CD8+ T cell responses to influenza. Nat. Immunol. 11:216–24 [Google Scholar]
  177. Backer R, van Leeuwen F, Kraal G, den Haan JM. 177.  2008. CD8 dendritic cells preferentially cross-present Saccharomyces cerevisiae antigens. Eur. J. Immunol. 38:370–80 [Google Scholar]
  178. Desch AN, Gibbings SL, Clambey ET, Janssen WJ, Slansky JE. 178.  et al. 2014. Dendritic cell subsets require cis-activation for cytotoxic CD8 T-cell induction. Nat. Commun. 5:4674 [Google Scholar]
  179. Segura E, Albiston AL, Wicks IP, Chai SY, Villadangos JA. 179.  2009. Different cross-presentation pathways in steady-state and inflammatory dendritic cells. PNAS 106:20377–81 [Google Scholar]
  180. den Haan JMM, Bevan MJ. 180.  2002. Constitutive versus activation-dependent cross-presentation of immune complexes by CD8+and CD8 dendritic cells in vivo. J. Exp. Med. 196:817–27 [Google Scholar]
  181. Mount AM, Smith CM, Kupresanin F, Stoermer K, Heath WR, Belz GT. 181.  2008. Multiple dendritic cell populations activate CD4+ T cells after viral stimulation. PLOS ONE 3:e1691 [Google Scholar]
  182. Savina A, Amigorena S. 182.  2007. Phagocytosis and antigen presentation in dendritic cells. Immunol. Rev. 219:143–56 [Google Scholar]
  183. Asano K, Nabeyama A, Miyake Y, Qiu CH, Kurita A. 183.  et al. 2011. CD169-positive macrophages dominate antitumor immunity by crosspresenting dead cell-associated antigens. Immunity 34:85–95 [Google Scholar]
  184. Leiriao P, del Fresno C, Ardavin C. 184.  2012. Monocytes as effector cells: Activated Ly-6Chigh mouse monocytes migrate to the lymph nodes through the lymph and cross-present antigens to CD8+ T cells. Eur. J. Immunol. 42:2042–51 [Google Scholar]
  185. Davey MS, Morgan MP, Liuzzi AR, Tyler CJ, Khan MW. 185.  et al. 2014. Microbe-specific unconventional T cells induce human neutrophil differentiation into antigen cross-presenting cells. J. Immunol. 193:3704–16 [Google Scholar]
  186. Milo I, Sapoznikov A, Kalchenko V, Tal O, Krauthgamer R. 186.  et al. 2013. Dynamic imaging reveals promiscuous crosspresentation of blood-borne antigens to naive CD8+ T cells in the bone marrow. Blood 122:193–208 [Google Scholar]
  187. Kiesel JR, Buchwald ZS, Aurora R. 187.  2009. Cross-presentation by osteoclasts induces FoxP3 in CD8+ T cells. J. Immunol. 182:5477–87 [Google Scholar]
  188. Ebrahimkhani MR, Mohar I, Crispe IN. 188.  2011. Cross-presentation of antigen by diverse subsets of murine liver cells. Hepatology 54:1379–87 [Google Scholar]
  189. Jarry U, Jeannin P, Pineau L, Donnou S, Delneste Y, Couez D. 189.  2013. Efficiently stimulated adult microglia cross-prime naive CD8+ T cells injected in the brain. Eur. J. Immunol. 43:1173–84 [Google Scholar]
  190. Hirosue S, Vokali E, Raghavan VR, Rincon-Restrepo M, Lund AW. 190.  et al. 2014. Steady-state antigen scavenging, cross-presentation, and CD8+ T cell priming: a new role for lymphatic endothelial cells. J. Immunol. 192:5002–11 [Google Scholar]
  191. Giodini A, Rahner C, Cresswell P. 191.  2009. Receptor-mediated phagocytosis elicits cross-presentation in nonprofessional antigen-presenting cells. PNAS 106:3324–29 [Google Scholar]
  192. Perchellet A, Brabb T, Goverman JM. 192.  2008. Crosspresentation by nonhematopoietic and direct presentation by hematopoietic cells induce central tolerance to myelin basic protein. PNAS 105:14040–45 [Google Scholar]
  193. Ke Y, Kapp JA. 193.  1996. Exogenous antigens gain access to the major histocompatibility complex class I processing pathway in B cells by receptor-mediated uptake. J. Exp. Med. 184:1179–84 [Google Scholar]
  194. Marino E, Tan B, Binge L, Mackay CR, Grey ST. 194.  2012. B-cell cross-presentation of autologous antigen precipitates diabetes. Diabetes 61:2893–905 [Google Scholar]
  195. Goodridge JP, Lee N, Burian A, Pyo CW, Tykodi SS. 195.  et al. 2013. HLA-F and MHC-I open conformers cooperate in a MHC-I antigen cross-presentation pathway. J. Immunol. 191:1567–77 [Google Scholar]
  196. van de Weijer ML, Luteijn RD, Wiertz EJ. 196.  2015. Viral immune evasion: lessons in MHC class I antigen presentation. Semin. Immunol. 27:125–37 [Google Scholar]
  197. Schwartz O, Marechal V, Le Gall S, Lemonnier F, Heard JM. 197.  1996. Endocytosis of major histocompatibility complex class I molecules is induced by the HIV-1 Nef protein. Nat. Med. 2:338–42 [Google Scholar]
  198. Nopora K, Bernhard CA, Ried C, Castello AA, Murphy KM. 198.  et al. 2012. MHC class I cross-presentation by dendritic cells counteracts viral immune evasion. Front. Immunol. 3:348 [Google Scholar]
  199. Orr MT, Edelmann KH, Vieira J, Corey L, Raulet DH, Wilson CB. 199.  2005. Inhibition of MHC class I is a virulence factor in herpes simplex virus infection of mice. PLOS Pathog. 1:e7 [Google Scholar]
  200. Gainey MD, Rivenbark JG, Cho H, Yang L, Yokoyama WM. 200.  2012. Viral MHC class I inhibition evades CD8+ T-cell effector responses in vivo but not CD8+ T-cell priming. PNAS 109:E3260–67 [Google Scholar]
  201. Matheoud D, Moradin N, Bellemare-Pelletier A, Shio MT, Hong WJ. 201.  et al. 2013. Leishmania evades host immunity by inhibiting antigen cross-presentation through direct cleavage of the SNARE VAMP8. Cell Host Microbe 14:15–25 [Google Scholar]
  202. Ribeiro-Gomes FL, Romano A, Lee S, Roffe E, Peters NC. 202.  et al. 2015. Apoptotic cell clearance of Leishmania major-infected neutrophils by dendritic cells inhibits CD8+ T-cell priming in vitro by Mer tyrosine kinase-dependent signaling. Cell Death Dis 6:e2018 [Google Scholar]
  203. Ramakrishnan R, Tyurin VA, Veglia F, Condamine T, Amoscato A. 203.  et al. 2014. Oxidized lipids block antigen cross-presentation by dendritic cells in cancer. J. Immunol. 192:2920–31 [Google Scholar]
  204. McDonnell AM, Lesterhuis WJ, Khong A, Nowak AK, Lake RA. 204.  et al. 2015. Tumor-infiltrating dendritic cells exhibit defective cross-presentation of tumor antigens, but is reversed by chemotherapy. Eur. J. Immunol. 45:49–59 [Google Scholar]
  205. Belz GT, Heath WR, Carbone FR. 205.  2002. The role of dendritic cell subsets in selection between tolerance and immunity. Immunol. Cell Biol. 80:463–68 [Google Scholar]
  206. Lutz MB, Kurts C. 206.  2009. Induction of peripheral CD4+ T-cell tolerance and CD8+ T-cell cross-tolerance by dendritic cells. Eur. J. Immunol. 39:2325–30 [Google Scholar]
  207. Kapsenberg ML. 207.  2003. Dendritic-cell control of pathogen-driven T-cell polarization. Nat. Rev. Immunol. 3:984–93 [Google Scholar]
  208. Shi Y, Evans JE, Rock KL. 208.  2003. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425:516–21 [Google Scholar]
  209. Woo SR, Fuertes MB, Corrales L, Spranger S, Furdyna MJ. 209.  et al. 2014. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41:830–42 [Google Scholar]
  210. Kerkar SP, Goldszmid RS, Muranski P, Chinnasamy D, Yu Z. 210.  et al. 2011. IL-12 triggers a programmatic change in dysfunctional myeloid-derived cells within mouse tumors. J. Clin. Investig. 121:4746–57 [Google Scholar]
  211. Kerkar SP, Chinnasamy D, Hadi N, Melenhorst J, Muranski P. 211.  et al. 2014. Timing and intensity of exposure to interferon-gamma critically determines the function of monocyte-derived dendritic cells. Immunology 143:96–108 [Google Scholar]
  212. Schulz O, Diebold SS, Chen M, Naslund TI, Nolte MA. 212.  et al. 2005. Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature 433:887–92 [Google Scholar]
  213. Datta SK, Redecke V, Prilliman KR, Takabayashi K, Corr M. 213.  et al. 2003. A subset of Toll-like receptor ligands induces cross-presentation by bone marrow-derived dendritic cells. J. Immunol. 170:4102–10 [Google Scholar]
  214. Elsen S, Doussiere J, Villiers CL, Faure M, Berthier R. 214.  et al. 2004. Cryptic O2–generating NADPH oxidase in dendritic cells. J. Cell Sci. 117:2215–26 [Google Scholar]
  215. Alloatti A, Kotsias F, Pauwels AM, Carpier JM, Jouve M. 215.  et al. 2015. Toll-like receptor 4 engagement on dendritic cells restrains phago-lysosome fusion and promotes cross-presentation of antigens. Immunity 43:1087–100 [Google Scholar]
  216. Boehm U, Klamp T, Groot M, Howard JC. 216.  1997. Cellular responses to interferon-γ. Annu. Rev. Immunol. 15:749–95 [Google Scholar]
  217. Schiavoni G, Mattei F, Gabriele L. 217.  2013. Type I interferons as stimulators of DC-mediated cross-priming: impact on anti-tumor response. Front. Immunol. 4:483 [Google Scholar]
  218. Diamond MS, Kinder M, Matsushita H, Mashayekhi M, Dunn GP. 218.  et al. 2011. Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J. Exp. Med. 208:1989–2003 [Google Scholar]
  219. Wilson NS, Behrens GM, Lundie RJ, Smith CM, Waithman J. 219.  et al. 2006. Systemic activation of dendritic cells by Toll-like receptor ligands or malaria infection impairs cross-presentation and antiviral immunity. Nat. Immunol. 7:165–72 [Google Scholar]
  220. Wong YC, Smith SA, Tscharke DC. 220.  2013. Systemic Toll-like receptor ligation and selective killing of dendritic cell subsets fail to dissect priming pathways for anti-vaccinia virus CD8+ T cells. J. Virol. 87:11978–86 [Google Scholar]
  221. Wagner CS, Cresswell P. 221.  2012. TLR and nucleotide-binding oligomerization domain-like receptor signals differentially regulate exogenous antigen presentation. J. Immunol. 188:686–93 [Google Scholar]
  222. Raychaudhuri S, Rock KL. 222.  1998. Fully mobilizing host defense: building better vaccines. Nat. Biotechnol. 16:1025–31 [Google Scholar]
  223. Platzer B, Stout M, Fiebiger E. 223.  2014. Antigen cross-presentation of immune complexes. Front. Immunol. 5:140 [Google Scholar]
  224. Hartung E, Becker M, Bachem A, Reeg N, Jakel A. 224.  et al. 2015. Induction of potent CD8 T cell cytotoxicity by specific targeting of antigen to cross-presenting dendritic cells in vivo via murine or human XCR1. J. Immunol. 194:1069–79 [Google Scholar]
  225. Platt CD, Ma JK, Chalouni C, Ebersold M, Bou-Reslan H. 225.  et al. 2010. Mature dendritic cells use endocytic receptors to capture and present antigens. PNAS 107:4287–92 [Google Scholar]
  226. Bonifaz L, Bonnyay D, Mahnke K, Rivera M, Nussenzweig MC, Steinman RM. 226.  2002. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J. Exp. Med. 196:1627–38 [Google Scholar]
  227. Herve J, Dubreil L, Tardif V, Terme M, Pogu S. 227.  et al. 2013. β2-Adrenoreceptor agonist inhibits antigen cross-presentation by dendritic cells. J. Immunol. 190:3163–71 [Google Scholar]
  228. Hunzeker JT, Elftman MD, Mellinger JC, Princiotta MF, Bonneau RH. 228.  et al. 2011. A marked reduction in priming of cytotoxic CD8+ T cells mediated by stress-induced glucocorticoids involves multiple deficiencies in cross-presentation by dendritic cells. J. Immunol. 186:183–94 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error