1932

Abstract

Galectins are a family of mammalian carbohydrate-binding proteins expressed by many cell types. Galectins can function intracellularly and can also be secreted to bind to cell surface glycoconjugate counterreceptors. Some galectins are made by immune cells, whereas other galectins are secreted by different cell types, such as endothelial or epithelial cells, and bind to immune cells to regulate immune responses. Galectin binding to a single glycan ligand is a low-affinity interaction, but the multivalency of galectins and the glycan ligands presented on cell surface glycoproteins results in high-avidity binding that can reversibly scaffold or cluster these glycoproteins. Galectin binding to a specific glycoprotein counterreceptor is regulated in part by the repertoire of glycosyltransferase enzymes (which make the glycan ligands) expressed by that cell, and the effect of galectin binding results from clustering or retention of specific glycoprotein counterreceptors bearing these specific ligands.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-041015-055402
2016-05-20
2024-10-12
Loading full text...

Full text loading...

/deliver/fulltext/immunol/34/1/annurev-immunol-041015-055402.html?itemId=/content/journals/10.1146/annurev-immunol-041015-055402&mimeType=html&fmt=ahah

Literature Cited

  1. Bonzi J, Bornet O, Betzi S, Kasper BT, Mahal LK. 1.  et al. 2015. Pre-B cell receptor binding to galectin-1 modifies galectin-1/carbohydrate affinity to modulate specific galectin-1/glycan lattice interactions. Nat. Commun. 6:6194 [Google Scholar]
  2. Liu SD, Whiting CC, Tomassian T, Pang M, Bissel SJ. 2.  et al. 2008. Endogenous galectin-1 enforces class I–restricted TCR functional fate decisions in thymocytes. Blood 112:120–30 [Google Scholar]
  3. Thiemann S, Baum LG. 3.  2011. The road less traveled: regulation of leukocyte migration across vascular and lymphatic endothelium by galectins. J. Clin. Immunol. 31:2–9 [Google Scholar]
  4. Cooper D, Iqbal AJ, Gittens BR, Cervone C, Perretti M. 4.  2012. The effect of galectins on leukocyte trafficking in inflammation: sweet or sour?. Ann. N. Y. Acad. Sci. 1253:181–92 [Google Scholar]
  5. Lajoie P, Goetz JG, Dennis JW, Nabi IR. 5.  2009. Lattices, rafts, and scaffolds: domain regulation of receptor signaling at the plasma membrane. J. Cell Biol. 185:381–85 [Google Scholar]
  6. Liu FT, Rabinovich GA. 6.  2010. Galectins: regulators of acute and chronic inflammation. Ann. N. Y. Acad. Sci. 1183:158–82 [Google Scholar]
  7. Baum LG, Garner OB, Schaefer K, Lee B. 7.  2014. Microbe-host interactions are positively and negatively regulated by galectin-glycan interactions. Front. Immunol. 5:284 [Google Scholar]
  8. Arthur CM, Baruffi MD, Cummings RD, Stowell SR. 8.  2015. Evolving mechanistic insights into galectin functions. Methods Mol. Biol. 1207:1–35 [Google Scholar]
  9. Hsu DK, Yang RY, Liu FT. 9.  2006. Galectins in apoptosis. Methods Enzymol. 417:256–73 [Google Scholar]
  10. Lichtenstein RG, Rabinovich GA. 10.  2013. Glycobiology of cell death: when glycans and lectins govern cell fate. Cell Death Differ. 20:976–86 [Google Scholar]
  11. Sperandio M, Gleissner CA, Ley K. 11.  2009. Glycosylation in immune cell trafficking. Immunol. Rev. 230:97–113 [Google Scholar]
  12. Vasta GR. 12.  2012. Galectins as pattern recognition receptors: structure, function, and evolution. Adv. Exp. Med. Biol. 946:21–36 [Google Scholar]
  13. van Kooyk Y. 13.  2008. C-type lectins on dendritic cells: key modulators for the induction of immune responses. Biochem. Soc. Trans. 36:1478–81 [Google Scholar]
  14. Dambuza IM, Brown GD. 14.  2015. C-type lectins in immunity: recent developments. Curr. Opin. Immunol. 32:21–27 [Google Scholar]
  15. Jeannin P, Jaillon S, Delneste Y. 15.  2008. Pattern recognition receptors in the immune response against dying cells. Curr. Opin. Immunol. 20:530–37 [Google Scholar]
  16. Bochner BS, Zimmermann N. 16.  2015. Role of siglecs and related glycan-binding proteins in immune responses and immunoregulation. J. Allergy Clin. Immunol. 135:598–608 [Google Scholar]
  17. Macauley MS, Crocker PR, Paulson JC. 17.  2014. Siglec-mediated regulation of immune cell function in disease. Nat. Rev. Immunol. 14:653–66 [Google Scholar]
  18. Varki A. 18.  1993. Biological roles of oligosaccharides: All of the theories are correct. Glycobiology 3:97–130 [Google Scholar]
  19. Di Lella S, Sundblad V, Cerliani JP, Guardia CM, Estrin DA. 19.  et al. 2011. When galectins recognize glycans: from biochemistry to physiology and back again. Biochemistry 50:7842–57 [Google Scholar]
  20. Vasta GR, Ahmed H, Bianchet MA, Fernandez-Robledo JA, Amzel LM. 20.  2012. Diversity in recognition of glycans by F-type lectins and galectins: molecular, structural, and biophysical aspects. Ann. N. Y. Acad. Sci. 1253:E14–26 [Google Scholar]
  21. Lobsanov YD, Gitt MA, Leffler H, Barondes SH, Rini JM. 21.  1993. X-ray crystal structure of the human dimeric S-Lac lectin, L-14-II, in complex with lactose at 2.9-Å resolution. J. Biol. Chem. 268:27034–38 [Google Scholar]
  22. Chen L, Li F. 22.  2013. Structural analysis of the evolutionary origins of influenza virus hemagglutinin and other viral lectins. J. Virol. 87:4118–20 [Google Scholar]
  23. Kouno T, Watanabe N, Sakai N, Nakamura T, Nabeshima Y. 23.  et al. 2011. The structure of Physarum polycephalum hemagglutinin I suggests a minimal carbohydrate recognition domain of legume lectin fold. J. Mol. Biol. 405:560–69 [Google Scholar]
  24. Barondes SH, Castronovo V, Cooper DN, Cummings RD, Drickamer K. 24.  et al. 1994. Galectins: a family of animal β-galactoside–binding lectins. Cell 76:597–98 [Google Scholar]
  25. de Waard A, Hickman S, Kornfeld S. 25.  1976. Isolation and properties of β-galactoside binding lectins of calf heart and lung. J. Biol. Chem. 251:7581–87 [Google Scholar]
  26. Rabinovich GA, Toscano MA, Jackson SS, Vasta GR. 26.  2007. Functions of cell surface galectin-glycoprotein lattices. Curr. Opin. Struct. Biol. 17:513–20 [Google Scholar]
  27. Yang RY, Rabinovich GA, Liu FT. 27.  2008. Galectins: structure, function and therapeutic potential. Expert Rev. Mol. Med. 10:e17 [Google Scholar]
  28. Vasta GR, Ahmed H, Tasumi S, Odom EW, Saito K. 28.  2007. Biological roles of lectins in innate immunity: molecular and structural basis for diversity in self/non-self recognition. Adv. Exp. Med. Biol. 598:389–406 [Google Scholar]
  29. Rabinovich GA, Toscano MA. 29.  2009. Turning ‘sweet’ on immunity: galectin-glycan interactions in immune tolerance and inflammation. Nat. Rev. Immunol. 9:338–52 [Google Scholar]
  30. Elola MT, Wolfenstein-Todel C, Troncoso MF, Vasta GR, Rabinovich GA. 30.  2007. Galectins: matricellular glycan-binding proteins linking cell adhesion, migration, and survival. Cell Mol. Life Sci. 64:1679–700 [Google Scholar]
  31. Rabinovich GA, Baum LG, Tinari N, Paganelli R, Natoli C. 31.  et al. 2002. Galectins and their ligands: amplifiers, silencers or tuners of the inflammatory response?. Trends Immunol. 23:313–20 [Google Scholar]
  32. Stillman BN, Hsu DK, Pang M, Brewer CF, Johnson P. 32.  et al. 2006. Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death. J. Immunol. 176:778–89 [Google Scholar]
  33. Bi S, Hong PW, Lee B, Baum LG. 33.  2011. Galectin-9 binding to cell surface protein disulfide isomerase regulates the redox environment to enhance T-cell migration and HIV entry. PNAS 108:10650–55 [Google Scholar]
  34. Hirabayashi J, Kasai K. 34.  1993. The family of metazoan metal-independent β-galactoside–binding lectins: structure, function and molecular evolution. Glycobiology 3:297–304 [Google Scholar]
  35. Garner OB, Yun T, Pernet O, Aguilar HC, Park A. 35.  et al. 2015. Timing of galectin-1 exposure differentially modulates Nipah virus entry and syncytium formation in endothelial cells. J. Virol. 89:2520–29 [Google Scholar]
  36. Gabius HJ. 36.  1997. Animal lectins. Eur. J. Biochem. 243:543–76 [Google Scholar]
  37. Yang RY, Hill PN, Hsu DK, Liu FT. 37.  1998. Role of the carboxyl-terminal lectin domain in self-association of galectin-3. Biochemistry 37:4086–92 [Google Scholar]
  38. Lepur A, Salomonsson E, Nilsson UJ, Leffler H. 38.  2012. Ligand induced galectin-3 protein self-association. J. Biol. Chem. 287:21751–56 [Google Scholar]
  39. Ahmad N, Gabius HJ, Andre S, Kaltner H, Sabesan S. 39.  et al. 2004. Galectin-3 precipitates as a pentamer with synthetic multivalent carbohydrates and forms heterogeneous cross-linked complexes. J. Biol. Chem. 279:10841–47 [Google Scholar]
  40. Sato M, Nishi N, Shoji H, Seki M, Hashidate T. 40.  et al. 2002. Functional analysis of the carbohydrate recognition domains and a linker peptide of galectin-9 as to eosinophil chemoattractant activity. Glycobiology 12:191–97 [Google Scholar]
  41. Spitzenberger F, Graessler J, Schroeder HE. 41.  2001. Molecular and functional characterization of galectin 9 mRNA isoforms in porcine and human cells and tissues. Biochimie 83:851–62 [Google Scholar]
  42. Brewer CF, Miceli MC, Baum LG. 42.  2002. Clusters, bundles, arrays and lattices: novel mechanisms for lectin-saccharide–mediated cellular interactions. Curr. Opin. Struct. Biol. 12:616–23 [Google Scholar]
  43. Bi S, Earl LA, Jacobs L, Baum LG. 43.  2008. Structural features of galectin-9 and galectin-1 that determine distinct T cell death pathways. J. Biol. Chem. 283:12248–58 [Google Scholar]
  44. Garner OB, Baum LG. 44.  2008. Galectin-glycan lattices regulate cell-surface glycoprotein organization and signalling. Biochem. Soc. Trans. 36:1472–77 [Google Scholar]
  45. Bourne Y, Bolgiano B, Liao DI, Strecker G, Cantau P. 45.  et al. 1994. Crosslinking of mammalian lectin (galectin-1) by complex biantennary saccharides. Nat. Struct. Biol. 1:863–70 [Google Scholar]
  46. Earl LA, Bi S, Baum LG. 46.  2011. Galectin multimerization and lattice formation are regulated by linker region structure. Glycobiology 21:6–12 [Google Scholar]
  47. Wilson TJ, Firth MN, Powell JT, Harrison FL. 47.  1989. The sequence of the mouse 14 kDa β-galactoside–binding lectin and evidence for its synthesis on free cytoplasmic ribosomes. Biochem. J. 261:847–52 [Google Scholar]
  48. Rabinovich GA, Rubinstein N, Fainboim L. 48.  2002. Unlocking the secrets of galectins: a challenge at the frontier of glyco-immunology. J. Leukoc. Biol. 71:741–52 [Google Scholar]
  49. Yang RY, Yu L, Graham JL, Hsu DK, Lloyd KC. 49.  et al. 2011. Ablation of a galectin preferentially expressed in adipocytes increases lipolysis, reduces adiposity, and improves insulin sensitivity in mice. PNAS 108:18696–701 [Google Scholar]
  50. Yang RY, Havel PJ, Liu FT. 50.  2012. Galectin-12: a protein associated with lipid droplets that regulates lipid metabolism and energy balance. Adipocyte 1:96–100 [Google Scholar]
  51. Yu F, Finley RL Jr, Raz A, Kim HR. 51.  2002. Galectin-3 translocates to the perinuclear membranes and inhibits cytochrome c release from the mitochondria. A role for synexin in galectin-3 translocation. J. Biol. Chem. 277:15819–27 [Google Scholar]
  52. Shi Y, He B, Kuchenbecker KM, You L, Xu Z. 52.  et al. 2007. Inhibition of Wnt-2 and galectin-3 synergistically destabilizes β-catenin and induces apoptosis in human colorectal cancer cells. Int. J. Cancer 121:1175–81 [Google Scholar]
  53. Boyle KB, Randow F. 53.  2013. The role of ‘eat-me’ signals and autophagy cargo receptors in innate immunity. Curr. Opin. Microbiol. 16:339–48 [Google Scholar]
  54. Liu FT, Patterson RJ, Wang JL. 54.  2002. Intracellular functions of galectins. Biochim. Biophys. Acta 1572:263–73 [Google Scholar]
  55. Patterson RJ, Wang W, Wang JL. 55.  2004. Understanding the biochemical activities of galectin-1 and galectin-3 in the nucleus. Glycoconj. J. 19:499–506 [Google Scholar]
  56. Seelenmeyer C, Wegehingel S, Tews I, Kunzler M, Aebi M, Nickel W. 56.  2005. Cell surface counter receptors are essential components of the unconventional export machinery of galectin-1. J. Cell Biol. 171:373–81 [Google Scholar]
  57. Cooper DN, Barondes SH. 57.  1990. Evidence for export of a muscle lectin from cytosol to extracellular matrix and for a novel secretory mechanism. J. Cell Biol. 110:1681–91 [Google Scholar]
  58. Florkiewicz RZ, Majack RA, Buechler RD, Florkiewicz E. 58.  1995. Quantitative export of FGF-2 occurs through an alternative, energy-dependent, non-ER/Golgi pathway. J. Cell Physiol. 162:388–99 [Google Scholar]
  59. Eder C. 59.  2009. Mechanisms of interleukin-1β release. Immunobiology 214:543–53 [Google Scholar]
  60. Nickel W. 60.  2003. The mystery of nonclassical protein secretion. A current view on cargo proteins and potential export routes. Eur. J. Biochem. 270:2109–19 [Google Scholar]
  61. Cho M, Cummings RD. 61.  1995. Galectin-1, a β-galactoside–binding lectin in Chinese hamster ovary cells. II. Localization and biosynthesis. J. Biol. Chem. 270:5207–12 [Google Scholar]
  62. He J, Baum LG. 62.  2006. Galectin interactions with extracellular matrix and effects on cellular function. Methods Enzymol. 417:247–56 [Google Scholar]
  63. Hsu DK, Chen HY, Liu FT. 63.  2009. Galectin-3 regulates T-cell functions. Immunol. Rev. 230:114–27 [Google Scholar]
  64. Solis D, Lopez-Lucendo MI, Leon S, Varela J, Diaz-Maurino T. 64.  2000. Description of a monomeric prototype galectin from the lizard Podarcis hispanica. Glycobiology 10:1325–31 [Google Scholar]
  65. Ahmed H, Fink NE, Pohl J, Vasta GR. 65.  1996. Galectin-1 from bovine spleen: biochemical characterization, carbohydrate specificity and tissue-specific isoform profiles. J. Biochem. 120:1007–19 [Google Scholar]
  66. Inohara H, Segawa T, Miyauchi A, Yoshii T, Nakahara S. 66.  et al. 2008. Cytoplasmic and serum galectin-3 in diagnosis of thyroid malignancies. Biochem. Biophys. Res. Commun. 376:605–10 [Google Scholar]
  67. Sakaki M, Oka N, Nakanishi R, Yamaguchi K, Fukumori T, Kanayama HO. 67.  2008. Serum level of galectin-3 in human bladder cancer. J. Med. Investig. 55:127–32 [Google Scholar]
  68. de Boer RA, Voors AA, Muntendam P, van Gilst WH, van Veldhuisen DJ. 68.  2009. Galectin-3: a novel mediator of heart failure development and progression. Eur. J. Heart Fail. 11:811–17 [Google Scholar]
  69. Tracey BM, Feizi T, Abbott WM, Carruthers RA, Green BN, Lawson AM. 69.  1992. Subunit molecular mass assignment of 14,654 Da to the soluble β-galactoside–binding lectin from bovine heart muscle and demonstration of intramolecular disulfide bonding associated with oxidative inactivation. J. Biol. Chem. 267:10342–47 [Google Scholar]
  70. Gruson D, Ko G. 70.  2012. Galectins testing: new promises for the diagnosis and risk stratification of chronic diseases?. Clin. Biochem. 45:719–26 [Google Scholar]
  71. Green NM. 71.  1990. Avidin and streptavidin. Methods Enzymol. 184:51–67 [Google Scholar]
  72. Dam TK, Brewer CF. 72.  2010. Lectins as pattern recognition molecules: the effects of epitope density in innate immunity. Glycobiology 20:270–79 [Google Scholar]
  73. Grigorian A, Torossian S, Demetriou M. 73.  2009. T-cell growth, cell surface organization, and the galectin-glycoprotein lattice. Immunol. Rev. 230:232–46 [Google Scholar]
  74. Stowell SR, Arthur CM, Mehta P, Slanina KA, Blixt O. 74.  et al. 2008. Galectin-1, -2, and -3 exhibit differential recognition of sialylated glycans and blood group antigens. J. Biol. Chem. 283:10109–23 [Google Scholar]
  75. Di Virgilio S, Glushka J, Moremen K, Pierce M. 75.  1999. Enzymatic synthesis of natural and 13C enriched linear poly-N-acetyllactosamines as ligands for galectin-1. Glycobiology 9:353–64 [Google Scholar]
  76. Kohatsu L, Hsu DK, Jegalian AG, Liu FT, Baum LG. 76.  2006. Galectin-3 induces death of Candida species expressing specific β-1,2–linked mannans. J. Immunol. 177:4718–26 [Google Scholar]
  77. Smith DF, Song X, Cummings RD. 77.  2010. Use of glycan microarrays to explore specificity of glycan-binding proteins. Methods Enzymol. 480:417–44 [Google Scholar]
  78. Liu Y, Feizi T, Campanero-Rhodes MA, Childs RA, Zhang Y. 78.  et al. 2007. Neoglycolipid probes prepared via oxime ligation for microarray analysis of oligosaccharide-protein interactions. Chem. Biol. 14:847–59 [Google Scholar]
  79. Iwaki J, Hirabayashi J. 79.  2015. Evaluation of galectin binding by frontal affinity chromatography (FAC). Methods Mol. Biol. 1207:63–74 [Google Scholar]
  80. Hernandez JD, Nguyen JT, He J, Wang W, Ardman B. 80.  et al. 2006. Galectin-1 binds different CD43 glycoforms to cluster CD43 and regulate T cell death. J. Immunol. 177:5328–36 [Google Scholar]
  81. Clark MC, Baum LG. 81.  2012. T cells modulate glycans on CD43 and CD45 during development and activation, signal regulation, and survival. Ann. N. Y. Acad. Sci. 1253:58–67 [Google Scholar]
  82. Daniels MA, Hogquist KA, Jameson SC. 82.  2002. Sweet ‘n’ sour: the impact of differential glycosylation on T cell responses. Nat. Immunol. 3:903–10 [Google Scholar]
  83. Nguyen JT, Evans DP, Galvan M, Pace KE, Leitenberg D. 83.  et al. 2001. CD45 modulates galectin-1–induced T cell death: regulation by expression of core 2 O-glycans. J. Immunol. 167:5697–707 [Google Scholar]
  84. Varki A, Cummings RD, Esko JD, Stanley P, Hart G. 84.  et al. 2009. Essentials of Glycobiology Cold Spring Harbor, NY: Cold Spring Harb. Lab. Press, 2nd ed.. [Google Scholar]
  85. Cabrera PV, Amano M, Mitoma J, Chan J, Said J. 85.  et al. 2006. Haploinsufficiency of C2GnT-I glycosyltransferase renders T lymphoma cells resistant to cell death. Blood 108:2399–406 [Google Scholar]
  86. Demetriou M, Granovsky M, Quaggin S, Dennis JW. 86.  2001. Negative regulation of T-cell activation and autoimmunity by Mgat5N-glycosylation. Nature 409:733–39 [Google Scholar]
  87. Toscano MA, Bianco GA, Ilarregui JM, Croci DO, Correale J. 87.  et al. 2007. Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death. Nat. Immunol. 8:825–34 [Google Scholar]
  88. Amano M, Galvan M, He J, Baum LG. 88.  2003. The ST6Gal I sialyltransferase selectively modifies N-glycans on CD45 to negatively regulate galectin-1–induced CD45 clustering, phosphatase modulation, and T cell death. J. Biol. Chem. 278:7469–75 [Google Scholar]
  89. Bi S, Baum LG. 89.  2009. Sialic acids in T cell development and function. Biochim. Biophys. Acta 1790:1599–610 [Google Scholar]
  90. Lau KS, Partridge EA, Grigorian A, Silvescu CI, Reinhold VN. 90.  et al. 2007. Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell 129:123–34 [Google Scholar]
  91. Demotte N, Stroobant V, Courtoy PJ, Van Der Smissen P, Colau D. 91.  et al. 2008. Restoring the association of the T cell receptor with CD8 reverses anergy in human tumor-infiltrating lymphocytes. Immunity 28:414–24 [Google Scholar]
  92. Ohtsubo K, Takamatsu S, Gao C, Korekane H, Kurosawa TM, Taniguchi N. 92.  2013. N-glycosylation modulates the membrane sub-domain distribution and activity of glucose transporter 2 in pancreatic β cells. Biochem. Biophys. Res. Commun. 434:346–51 [Google Scholar]
  93. Starossom SC, Mascanfroni ID, Imitola J, Cao L, Raddassi K. 93.  et al. 2012. Galectin-1 deactivates classically activated microglia and protects from inflammation-induced neurodegeneration. Immunity 37:249–63 [Google Scholar]
  94. Lajoie P, Partridge EA, Guay G, Goetz JG, Pawling J. 94.  et al. 2007. Plasma membrane domain organization regulates EGFR signaling in tumor cells. J. Cell Biol. 179:341–56 [Google Scholar]
  95. Honig E, Schneider K, Jacob R. 95.  2015. Recycling of galectin-3 in epithelial cells. Eur. J. Cell Biol. 94:309–15 [Google Scholar]
  96. Gitt MA, Wiser MF, Leffler H, Herrmann J, Xia YR. 96.  et al. 1995. Sequence and mapping of galectin-5, a β-galactoside–binding lectin, found in rat erythrocytes. J. Biol. Chem. 270:5032–38 [Google Scholar]
  97. Barres C, Blanc L, Bette-Bobillo P, Andre S, Mamoun R. 97.  et al. 2010. Galectin-5 is bound onto the surface of rat reticulocyte exosomes and modulates vesicle uptake by macrophages. Blood 115:696–705 [Google Scholar]
  98. Madsen P, Rasmussen HH, Flint T, Gromov P, Kruse TA. 98.  et al. 1995. Cloning, expression, and chromosome mapping of human galectin-7. J. Biol. Chem. 270:5823–29 [Google Scholar]
  99. Gitt MA, Colnot C, Poirier F, Nani KJ, Barondes SH, Leffler H. 99.  1998. Galectin-4 and galectin-6 are two closely related lectins expressed in mouse gastrointestinal tract. J. Biol. Chem. 273:2954–60 [Google Scholar]
  100. Kubach J, Lutter P, Bopp T, Stoll S, Becker C. 100.  et al. 2007. Human CD4+CD25+ regulatory T cells: Proteome analysis identifies galectin-10 as a novel marker essential for their anergy and suppressive function. Blood 110:1550–58 [Google Scholar]
  101. Sato S, St-Pierre C, Bhaumik P, Nieminen J. 101.  2009. Galectins in innate immunity: dual functions of host soluble β-galactoside–binding lectins as damage-associated molecular patterns (DAMPs) and as receptors for pathogen-associated molecular patterns (PAMPs). Immunol. Rev. 230:172–87 [Google Scholar]
  102. Kuwabara I, Sano H, Liu FT. 102.  2003. Functions of galectins in cell adhesion and chemotaxis. Methods Enzymol. 363:532–52 [Google Scholar]
  103. Auvynet C, Moreno S, Melchy E, Coronado-Martinez I, Montiel JL. 103.  et al. 2013. Galectin-1 promotes human neutrophil migration. Glycobiology 23:32–42 [Google Scholar]
  104. Bax M, Garcia-Vallejo JJ, Jang-Lee J, North SJ, Gilmartin TJ. 104.  et al. 2007. Dendritic cell maturation results in pronounced changes in glycan expression affecting recognition by siglecs and galectins. J. Immunol. 179:8216–24 [Google Scholar]
  105. Rabinovich GA, Liu FT, Hirashima M, Anderson A. 105.  2007. An emerging role for galectins in tuning the immune response: lessons from experimental models of inflammatory disease, autoimmunity and cancer. Scand. J. Immunol. 66:143–58 [Google Scholar]
  106. Cerliani JP, Stowell SR, Mascanfroni ID, Arthur CM, Cummings RD, Rabinovich GA. 106.  2011. Expanding the universe of cytokines and pattern recognition receptors: galectins and glycans in innate immunity. J. Clin. Immunol. 31:10–21 [Google Scholar]
  107. Liu FT, Hsu DK, Zuberi RI, Kuwabara I, Chi EY, Henderson WR Jr. 107.  1995. Expression and function of galectin-3, a β-galactoside–binding lectin, in human monocytes and macrophages. Am. J. Pathol. 147:1016–28 [Google Scholar]
  108. Sano H, Hsu DK, Apgar JR, Yu L, Sharma BB. 108.  et al. 2003. Critical role of galectin-3 in phagocytosis by macrophages. J. Clin. Investig. 112:389–97 [Google Scholar]
  109. Yildirim C, Vogel DY, Hollander MR, Baggen JM, Fontijn RD. 109.  et al. 2015. Galectin-2 induces a proinflammatory, anti-arteriogenic phenotype in monocytes and macrophages. PLOS ONE 10:e0124347 [Google Scholar]
  110. Fulcher JA, Chang MH, Wang S, Almazan T, Hashimi ST. 110.  et al. 2009. Galectin-1 co-clusters CD43/CD45 on dendritic cells and induces cell activation and migration through Syk and protein kinase C signaling. J. Biol. Chem. 284:26860–70 [Google Scholar]
  111. Fulcher JA, Hashimi ST, Levroney EL, Pang M, Gurney KB. 111.  et al. 2006. Galectin-1–matured human monocyte–derived dendritic cells have enhanced migration through extracellular matrix. J. Immunol. 177:216–26 [Google Scholar]
  112. Kuo PL, Hung JY, Huang SK, Chou SH, Cheng DE. 112.  et al. 2011. Lung cancer-derived galectin-1 mediates dendritic cell anergy through inhibitor of DNA binding 3/IL-10 signaling pathway. J. Immunol. 186:1521–30 [Google Scholar]
  113. Baum LG. 113.  2011. Burn control, an adipocyte-specific function for galectin-12. PNAS 108:18575–76 [Google Scholar]
  114. Garner OB, Aguilar HC, Fulcher JA, Levroney EL, Harrison R. 114.  et al. 2010. Endothelial galectin-1 binds to specific glycans on Nipah virus fusion protein and inhibits maturation, mobility, and function to block syncytia formation. PLOS Pathog. 6:e1000993 [Google Scholar]
  115. Baum LG, Seilhamer JJ, Pang M, Levine WB, Beynon D, Berliner JA. 115.  1995. Synthesis of an endogeneous lectin, galectin-1, by human endothelial cells is up-regulated by endothelial cell activation. Glycoconj. J. 12:63–68 [Google Scholar]
  116. Thijssen VL, Hulsmans S, Griffioen AW. 116.  2008. The galectin profile of the endothelium: altered expression and localization in activated and tumor endothelial cells. Am. J. Pathol. 172:545–53 [Google Scholar]
  117. Earl LA, Bi S, Baum LG. 117.  2010. N- and O-glycans modulate galectin-1 binding, CD45 signaling, and T cell death. J. Biol. Chem. 285:2232–44 [Google Scholar]
  118. Lakshminarayan R, Wunder C, Becken U, Howes MT, Benzing C. 118.  et al. 2014. Galectin-3 drives glycosphingolipid-dependent biogenesis of clathrin-independent carriers. Nat. Cell Biol. 16:595–606 [Google Scholar]
  119. Mishra R, Grzybek M, Niki T, Hirashima M, Simons K. 119.  2010. Galectin-9 trafficking regulates apical-basal polarity in Madin-Darby canine kidney epithelial cells. PNAS 107:17633–38 [Google Scholar]
  120. Clark MC, Pang M, Hsu DK, Liu FT, de Vos S. 120.  et al. 2012. Galectin-3 binds to CD45 on diffuse large B-cell lymphoma cells to regulate susceptibility to cell death. Blood 120:4635–44 [Google Scholar]
  121. Pace KE, Lee C, Stewart PL, Baum LG. 121.  1999. Restricted receptor segregation into membrane microdomains occurs on human T cells during apoptosis induced by galectin-1. J. Immunol. 163:3801–11 [Google Scholar]
  122. Pace KE, Hahn HP, Pang M, Nguyen JT, Baum LG. 122.  2000. CD7 delivers a pro-apoptotic signal during galectin-1-induced T cell death. J. Immunol. 165:2331–34 [Google Scholar]
  123. He J, Baum LG. 123.  2006. Endothelial cell expression of galectin-1 induced by prostate cancer cells inhibits T-cell transendothelial migration. Lab. Investig. 86:578–90 [Google Scholar]
  124. Inohara H, Akahani S, Koths K, Raz A. 124.  1996. Interactions between galectin-3 and Mac-2–binding protein mediate cell-cell adhesion. Cancer Res. 56:4530–34 [Google Scholar]
  125. Zhou Q, Cummings RD. 125.  1993. L-14 lectin recognition of laminin and its promotion of in vitro cell adhesion. Arch. Biochem. Biophys. 300:6–17 [Google Scholar]
  126. Ahmed H, Sharma A, DiCioccio RA, Allen HJ. 126.  1992. Lymphoblastoid cell adhesion mediated by a dimeric and polymeric endogenous β-galactoside–binding lectin (galaptin). J. Mol. Recognit. 5:1–8 [Google Scholar]
  127. Levi G, Tarrab-Hazdai R, Teichberg VI. 127.  1983. Prevention and therapy with electrolectin of experimental autoimmune myasthenia gravis in rabbits. Eur. J. Immunol. 13:500–7 [Google Scholar]
  128. Perillo NL, Uittenbogaart CH, Nguyen JT, Baum LG. 128.  1997. Galectin-1, an endogenous lectin produced by thymic epithelial cells, induces apoptosis of human thymocytes. J. Exp. Med. 185:1851–58 [Google Scholar]
  129. Perillo NL, Pace KE, Seilhamer JJ, Baum LG. 129.  1995. Apoptosis of T cells mediated by galectin-1. Nature 378:736–39 [Google Scholar]
  130. Hsu DK, Liu FT. 130.  2004. Regulation of cellular homeostasis by galectins. Glycoconj. J. 19:507–15 [Google Scholar]
  131. Perillo NL, Marcus ME, Baum LG. 131.  1998. Galectins: versatile modulators of cell adhesion, cell proliferation, and cell death. J. Mol. Med. 76:402–12 [Google Scholar]
  132. Thijssen VL, Poirier F, Baum LG, Griffioen AW. 132.  2007. Galectins in the tumor endothelium: opportunities for combined cancer therapy. Blood 110:2819–27 [Google Scholar]
  133. Rabinovich GA, Croci DO. 133.  2012. Regulatory circuits mediated by lectin-glycan interactions in autoimmunity and cancer. Immunity 36:322–35 [Google Scholar]
  134. Thiemann S, Man JH, Chang MH, Lee B, Baum LG. 134.  2015. Galectin-1 regulates tissue exit of specific dendritic cell populations. J. Biol. Chem 290:22662–77 [Google Scholar]
  135. Delacour D, Cramm-Behrens CI, Drobecq H, Le Bivic A, Naim HY, Jacob R. 135.  2006. Requirement for galectin-3 in apical protein sorting. Curr. Biol. 16:408–14 [Google Scholar]
  136. Braccia A, Villani M, Immerdal L, Niels-Christiansen LL, Nystrom BT. 136.  et al. 2003. Microvillar membrane microdomains exist at physiological temperature. Role of galectin-4 as lipid raft stabilizer revealed by “superrafts”. J. Biol. Chem. 278:15679–84 [Google Scholar]
  137. Rabinovich GA, van Kooyk Y, Cobb BA. 137.  2012. Glycobiology of immune responses. Ann. N. Y. Acad. Sci. 1253:1–15 [Google Scholar]
  138. Vasta GR. 138.  2009. Roles of galectins in infection. Nat. Rev. Microbiol. 7:424–38 [Google Scholar]
  139. Brockhurst MA. 139.  2011. Evolution. Sex, death, and the Red Queen. Science 333:166–67 [Google Scholar]
  140. Hedrick SM. 140.  2004. The acquired immune system: a vantage from beneath. Immunity 21:607–15 [Google Scholar]
  141. Ohtsubo K, Takamatsu S, Minowa MT, Yoshida A, Takeuchi M, Marth JD. 141.  2005. Dietary and genetic control of glucose transporter 2 glycosylation promotes insulin secretion in suppressing diabetes. Cell 123:1307–21 [Google Scholar]
  142. Baum LG, Blackall DP, Arias-Magallano S, Nanigian D, Uh SY. 142.  et al. 2003. Amelioration of graft versus host disease by galectin-1. Clin. Immunol. 109:295–307 [Google Scholar]
  143. Rabinovich GA, Daly G, Dreja H, Tailor H, Riera CM. 143.  et al. 1999. Recombinant galectin-1 and its genetic delivery suppress collagen-induced arthritis via T cell apoptosis. J. Exp. Med. 190:385–98 [Google Scholar]
  144. Santucci L, Fiorucci S, Cammilleri F, Servillo G, Federici B, Morelli A. 144.  2000. Galectin-1 exerts immunomodulatory and protective effects on concanavalin A-induced hepatitis in mice. Hepatology 31:399–406 [Google Scholar]
  145. Ilarregui JM, Croci DO, Bianco GA, Toscano MA, Salatino M. 145.  et al. 2009. Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1–driven immunoregulatory circuit involving interleukin 27 and interleukin 10. Nat. Immunol. 10:981–91 [Google Scholar]
  146. Katoh S, Shimizu H, Obase Y, Oomizu S, Niki T. 146.  et al. 2013. Preventive effect of galectin-9 on double-stranded RNA-induced airway hyperresponsiveness in an exacerbation model of mite antigen-induced asthma in mice. Exp. Lung. Res. 39:453–62 [Google Scholar]
  147. Madireddi S, Eun SY, Lee SW, Nemcovicova I, Mehta AK. 147.  et al. 2014. Galectin-9 controls the therapeutic activity of 4-1BB–targeting antibodies. J. Exp. Med. 211:1433–48 [Google Scholar]
  148. Zhang Q, Luan H, Wang L, He F, Zhou H. 148.  et al. 2014. Galectin-9 ameliorates anti-GBM glomerulonephritis by inhibiting Th1 and Th17 immune responses in mice. Am. J. Physiol. Ren. Physiol. 306:F822–32 [Google Scholar]
  149. Mengshol JA, Golden-Mason L, Arikawa T, Smith M, Niki T. 149.  et al. 2010. A crucial role for Kupffer cell–derived galectin-9 in regulation of T cell immunity in hepatitis C infection. PLOS ONE 5:e9504 [Google Scholar]
  150. Sano H, Hsu DK, Yu L, Apgar JR, Kuwabara I. 150.  et al. 2000. Human galectin-3 is a novel chemoattractant for monocytes and macrophages. J. Immunol. 165:2156–64 [Google Scholar]
  151. Sato S, Ouellet N, Pelletier I, Simard M, Rancourt A, Bergeron MG. 151.  2002. Role of galectin-3 as an adhesion molecule for neutrophil extravasation during streptococcal pneumonia. J. Immunol. 168:1813–22 [Google Scholar]
  152. Sato S, Nieminen J. 152.  2004. Seeing strangers or announcing “danger”: galectin-3 in two models of innate immunity. Glycoconj. J. 19:583–91 [Google Scholar]
  153. Colnot C, Ripoche MA, Milon G, Montagutelli X, Crocker PR, Poirier F. 153.  1998. Maintenance of granulocyte numbers during acute peritonitis is defective in galectin-3–null mutant mice. Immunology 94:290–96 [Google Scholar]
  154. Chen HY, Fermin A, Vardhana S, Weng IC, Lo KF. 154.  et al. 2009. Galectin-3 negatively regulates TCR-mediated CD4+ T-cell activation at the immunological synapse. PNAS 106:14496–501 [Google Scholar]
  155. Cao Z, Said N, Amin S, Wu HK, Bruce A. 155.  et al. 2002. Galectins-3 and -7, but not galectin-1, play a role in re-epithelialization of wounds. J. Biol. Chem. 277:42299–305 [Google Scholar]
/content/journals/10.1146/annurev-immunol-041015-055402
Loading
/content/journals/10.1146/annurev-immunol-041015-055402
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error