1932

Abstract

HIV employs multiple means to evade the humoral immune response, particularly the elicitation of and recognition by broadly neutralizing antibodies (bnAbs). Such antibodies can act antivirally against a wide spectrum of viruses by targeting relatively conserved regions on the surface HIV envelope trimer spike. Elicitation of and recognition by bnAbs are hindered by the arrangement of spikes on virions and the relatively difficult access to bnAb epitopes on spikes, including the proximity of variable regions and a high density of glycans. Yet, in a small proportion of HIV-infected individuals, potent bnAb responses do develop, and isolation of the corresponding monoclonal antibodies has been facilitated by identification of favorable donors with potent bnAb sera and by development of improved methods for human antibody generation. Molecular studies of recombinant Env trimers, alone and in interaction with bnAbs, are providing new insights that are fueling the development and testing of promising immunogens aimed at the elicitation of bnAbs.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-041015-055515
2016-05-20
2024-06-25
Loading full text...

Full text loading...

/deliver/fulltext/immunol/34/1/annurev-immunol-041015-055515.html?itemId=/content/journals/10.1146/annurev-immunol-041015-055515&mimeType=html&fmt=ahah

Literature Cited

  1. Corti D, Lanzavecchia A. 1.  2013. Broadly neutralizing antiviral antibodies. Annu. Rev. Immunol. 31:1705–42 [Google Scholar]
  2. Burton DR, Poignard P, Stanfield RL, Wilson IA. 2.  2012. Broadly neutralizing antibodies present new prospects to counter highly antigenically diverse viruses. Science 337:6091183–86 [Google Scholar]
  3. Zanetti G, Briggs JA, Grunewald K, Sattentau QJ, Fuller SD. 3.  2006. Cryo-electron tomographic structure of an immunodeficiency virus envelope complex in situ. PLOS Pathog. 2:8e83 [Google Scholar]
  4. Zhu P, Liu J, Bess J, Chertova E, Lifson JD. 4.  et al. 2006. Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature 441:7095847–52 [Google Scholar]
  5. Brandenberg OF, Magnus C, Rusert P, Regoes RR, Trkola A. 5.  2015. Different infectivity of HIV-1 strains is linked to number of envelope trimers required for entry. PLOS Pathog. 11:1e1004595 [Google Scholar]
  6. Yang X, Kurteva S, Ren X, Lee S, Sodroski J. 6.  2005. Stoichiometry of envelope glycoprotein trimers in the entry of human immunodeficiency virus type 1. J. Virol. 79:1912132–47 [Google Scholar]
  7. Magnus C, Rusert P, Bonhoeffer S, Trkola A, Regoes RR. 7.  2009. Estimating the stoichiometry of human immunodeficiency virus entry. J. Virol. 83:31523–31 [Google Scholar]
  8. Klasse P-J. 8.  2007. Modeling how many envelope glycoprotein trimers per virion participate in human immunodeficiency virus infectivity and its neutralization by antibody. Virology 369:2245–62 [Google Scholar]
  9. Dintzis HM, Dintzis RZ, Vogelstein B. 9.  1976. Molecular determinants of immunogenicity: the immunon model of immune response. PNAS 73:103671–75 [Google Scholar]
  10. Bachmann M, Rohrer U, Kundig T, Hengartner H, Zinkernagel R. 10.  1993. The influence of antigen organization on B cell responsiveness. Science 262:51381448–51 [Google Scholar]
  11. Decroly E, Vandenbranden M, Ruysschaert JM, Cogniaux J, Jacob GS. 11.  et al. 1994. The convertases furin and PC1 can both cleave the human immunodeficiency virus (HIV)-1 envelope glycoprotein gp160 into gp120 (HIV-1 SU) and gp41 (HIV-I TM). J. Biol. Chem. 269:1612240–47 [Google Scholar]
  12. Korber B, Gaschen B, Yusim K, Thakallapally R, Kesmir C, Detours V. 12.  2001. Evolutionary and immunological implications of contemporary HIV-1 variation. Br. Med. Bull. 58:19–42 [Google Scholar]
  13. Doores KJ, Bonomelli C, Harvey DJ, Vasiljevic S, Dwek RA. 13.  et al. 2010. Envelope glycans of immunodeficiency virions are almost entirely oligomannose antigens. PNAS 107:3113800–5 [Google Scholar]
  14. Bonomelli C, Doores KJ, Dunlop DC, Thaney V, Dwek RA. 14.  et al. 2011. The glycan shield of HIV is predominantly oligomannose independently of production system or viral clade. PLOS ONE 6:8e23521 [Google Scholar]
  15. Pritchard LK, Vasiljevic S, Ozorowski G, Seabright GE, Cupo A. 15.  et al. 2015. Structural constraints determine the glycosylation of HIV-1 envelope trimers. Cell Rep. 11:101604–13 [Google Scholar]
  16. Poignard P, Moulard M, Golez E, Vivona V, Franti M. 16.  et al. 2003. Heterogeneity of envelope molecules expressed on primary human immunodeficiency virus type 1 particles as probed by the binding of neutralizing and nonneutralizing antibodies. J. Virol. 77:1353–65 [Google Scholar]
  17. Moore PL, Crooks ET, Porter L, Cayanan CS, Grise H. 17.  et al. 2006. Nature of nonfunctional envelope proteins on the surface of human immunodeficiency virus type 1. J. Virol. 80:52515–28 [Google Scholar]
  18. Crooks ET, Tong T, Osawa K, Binley JM. 18.  2011. Enzyme digests eliminate nonfunctional Env from HIV-1 particle surfaces, leaving native Env trimers intact and viral infectivity unaffected. J. Virol. 85:125825–39 [Google Scholar]
  19. Kwong PD, Wyatt R, Robinson J, Sweet RW, Sodroski J, Hendrickson WA. 19.  1998. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393:6686648–59 [Google Scholar]
  20. Ward AB, Wilson IA. 20.  2015. Insights into the trimeric HIV-1 envelope glycoprotein structure. Trends Biochem. Sci. 40:2101–7 [Google Scholar]
  21. Bartesaghi A, Merk A, Borgnia MJ, Milne JLS, Subramaniam S. 21.  2013. Prefusion structure of trimeric HIV-1 envelope glycoprotein determined by cryo-electron microscopy. Nat. Struct. Mol. Biol. 20:121352–57 [Google Scholar]
  22. Julien J-P, Cupo A, Sok D, Stanfield RL, Lyumkis D. 22.  et al. 2013. Crystal structure of a soluble cleaved HIV-1 envelope trimer. Science 342:61651477–83 [Google Scholar]
  23. Lyumkis D, Julien J-P, de Val N, Cupo A, Potter CS. 23.  et al. 2013. Cryo-EM structure of a fully glycosylated soluble cleaved HIV-1 envelope trimer. Science 342:61651484–90 [Google Scholar]
  24. Pancera M, Zhou T, Druz A, Georgiev IS, Soto C. 24.  et al. 2014. Structure and immune recognition of trimeric pre-fusion HIV-1 Env. Nature 514:7523455–61 [Google Scholar]
  25. Binley JM, Sanders RW, Clas B, Schuelke N, Master A. 25.  et al. 2000. A recombinant human immunodeficiency virus type 1 envelope glycoprotein complex stabilized by an intermolecular disulfide bond between the gp120 and gp41 subunits is an antigenic mimic of the trimeric virion-associated structure. J. Virol. 74:2627–43 [Google Scholar]
  26. Sanders RW, Vesanen M, Schuelke N, Master A, Schiffner L. 26.  et al. 2002. Stabilization of the soluble, cleaved, trimeric form of the envelope glycoprotein complex of human immunodeficiency virus type 1. J. Virol. 76:178875–89 [Google Scholar]
  27. Sanders RW, Derking R, Cupo A, Julien J-P, Yasmeen A. 27.  et al. 2013. A next-generation cleaved, soluble HIV-1 Env trimer, BG505 SOSIP.664 gp140, expresses multiple epitopes for broadly neutralizing but not non-neutralizing antibodies. PLOS Pathog 9:9e1003618 [Google Scholar]
  28. Harris A, Borgnia MJ, Shi D, Bartesaghi A, He H. 28.  et al. 2011. Trimeric HIV-1 glycoprotein gp140 immunogens and native HIV-1 envelope glycoproteins display the same closed and open quaternary molecular architectures. PNAS 108:2811440–45 [Google Scholar]
  29. Guttman M, Cupo A, Julien J-P, Sanders RW, Wilson IA. 29.  et al. 2015. Antibody potency relates to the ability to recognize the closed, pre-fusion form of HIV Env. Nat. Commun 6:6144 [Google Scholar]
  30. Gallo SA, Finnegan CM, Viard M, Raviv Y, Dimitrov A. 30.  et al. 2003. The HIV Env-mediated fusion reaction. Biochim. Biophys. Acta 1614:136–50 [Google Scholar]
  31. Do Kwon Y, Pancera M, Acharya P, Georgiev IS, Crooks ET. 31.  et al. 2015. Crystal structure, conformational fixation and entry-related interactions of mature ligand-free HIV-1 Env. Nat. Struct. Mol. Biol. 22:7522–31 [Google Scholar]
  32. White TA, Bartesaghi A, Borgnia MJ, Meyerson JR, de la Cruz JV. 32.  et al. 2010. Molecular architectures of trimeric SIV and HIV-1 envelope glycoproteins on intact viruses: strain-dependent variation in quaternary structure. PLOS Pathog. 6:12e1001249 [Google Scholar]
  33. Lee JH, Ozorowski G, Ward AB. 32a.  2016. CryoEM structure of a native, fully glycosylated, cleaved HIV-1 envelope trimer. Science 351:1043–48 [Google Scholar]
  34. Pugach P, Ozorowski G, Cupo A, Ringe R, Yasmeen A. 33.  et al. 2015. A native-like SOSIP.664 trimer based on an HIV-1 subtype B env gene. J. Virol. 89:63380–95 [Google Scholar]
  35. Guenaga J, de Val N, Tran K, Feng Y, Satchwell K. 34.  et al. 2015. Well-ordered trimeric HIV-1 subtype B and C soluble spike mimetics generated by negative selection display native-like properties. PLOS Pathog. 11:1e1004570 [Google Scholar]
  36. Sharma SK, de Val N, Bale S, Guenaga J, Tran K. 35.  et al. 2015. Cleavage-independent HIV-1 Env trimers engineered as soluble native spike mimetics for vaccine design. Cell Rep. 11:4539–50 [Google Scholar]
  37. Wei X, Decker JM, Wang S, Hui H, Kappes JC. 36.  et al. 2003. Antibody neutralization and escape by HIV-1. Nature 422:6929307–12 [Google Scholar]
  38. Rusert P, Krarup A, Magnus C, Brandenberg OF, Weber J. 37.  et al. 2011. Interaction of the gp120 V1V2 loop with a neighboring gp120 unit shields the HIV envelope trimer against cross-neutralizing antibodies. 208:71419–33 [Google Scholar]
  39. Crooks ET, Tong T, Chakrabarti B, Narayan K, Georgiev IS. 38.  et al. 2015. Vaccine-elicited tier 2 HIV-1 neutralizing antibodies bind to quaternary epitopes involving glycan-deficient patches proximal to the CD4 binding site. PLOS Pathog. 11:5e1004932 [Google Scholar]
  40. Doria-Rose NA, Georgiev I, O’Dell S, Chuang G-Y, Staupe RP. 39.  et al. 2012. A short segment of the HIV-1 gp120 V1/V2 region is a major determinant of resistance to V1/V2 neutralizing antibodies. J. Virol. 86:158319–23 [Google Scholar]
  41. Liu J, Bartesaghi A, Borgnia MJ, Sapiro G, Subramaniam S. 40.  2008. Molecular architecture of native HIV-1 gp120 trimers. Nature 455:7209109–13 [Google Scholar]
  42. Meyerson JR, Tran EEH, Kuybeda O, Chen W, Dimitrov DS. 41.  et al. 2013. Molecular structures of trimeric HIV-1 Env in complex with small antibody derivatives. PNAS 110:2513–18 [Google Scholar]
  43. Munro JB, Gorman J, Ma X, Zhou Z, Arthos J. 42.  et al. 2014. Conformational dynamics of single HIV-1 envelope trimers on the surface of native virions. Science 346:6210759–63 [Google Scholar]
  44. Tomaras GD, Yates NL, Liu P, Qin L, Fouda GG. 43.  et al. 2008. Initial B-cell responses to transmitted human immunodeficiency virus type 1: virion-binding immunoglobulin M (IgM) and IgG antibodies followed by plasma anti-gp41 antibodies with ineffective control of initial viremia. J. Virol. 82:2412449–63 [Google Scholar]
  45. Richman DD, Wrin T, Little SJ, Petropoulos CJ. 44.  2003. Rapid evolution of the neutralizing antibody response to HIV type 1 infection. PNAS 100:74144–49 [Google Scholar]
  46. Rong R, Bibollet-Ruche F, Mulenga J, Allen S, Blackwell JL, Derdeyn CA. 45.  2007. Role of V1V2 and other human immunodeficiency virus type 1 envelope domains in resistance to autologous neutralization during clade C infection. J. Virol. 81:31350–59 [Google Scholar]
  47. Moore PL, Williamson C, Morris L. 46.  2015. Virological features associated with the development of broadly neutralizing antibodies to HIV-1. Trends Microbiol. 23:4204–11 [Google Scholar]
  48. Hraber P, Seaman MS, Bailer RT, Mascola JR, Montefiori DC, Korber BT. 47.  2014. Prevalence of broadly neutralizing antibody responses during chronic HIV-1 infection. AIDS 28:2163–69 [Google Scholar]
  49. Simek MD, Rida W, Priddy FH, Pung P, Carrow E. 48.  et al. 2009. Human immunodeficiency virus type 1 elite neutralizers: Individuals with broad and potent neutralizing activity identified by using a high-throughput neutralization assay together with an analytical selection algorithm. J. Virol. 83:147337–48 [Google Scholar]
  50. Locci M, Havenar-Daughton C, Landais E, Wu J, Kroenke MA. 49.  et al. 2013. Human circulating PD-1+CXCR3-CXCR5+ memory Tfh cells are highly functional and correlate with broadly neutralizing HIV antibody responses. Immunity 39:4758–69 [Google Scholar]
  51. Barbas CF, Bjorling E, Chiodi F, Dunlop N, Cababa D. 50.  et al. 1992. Recombinant human Fab fragments neutralize human type 1 immunodeficiency virus in vitro. PNAS 89:199339–43 [Google Scholar]
  52. Burton D, Pyati J, Koduri R, Sharp S, Thornton G. 51.  et al. 1994. Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. Science 266:51871024–27 [Google Scholar]
  53. Buchacher A, Predl R, Tauer C, Purtscher M, Gruber G. 52.  et al. 1992. Human monoclonal antibodies against gp41 and gp120 as potential agents for passive immunization. Vaccines ‘92: Modern Approaches to New Vaccines Including Prevention of AIDS F Brown, R Chanock, HS Ginsberg, R Lerner 191–94 Cold Spring Harbor, NY: Cold Spring Harb. Lab. Press [Google Scholar]
  54. Muster T, Steindl F, Purtscher M, Trkola A, Klima A. 53.  et al. 1993. A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1. J. Virol. 67:116642–47 [Google Scholar]
  55. Conley AJ, Kessler JA, Boots LJ, Tung JS, Arnold BA. 54.  et al. 1994. Neutralization of divergent human immunodeficiency virus type 1 variants and primary isolates by IAM-41-2F5, an anti-gp41 human monoclonal antibody. PNAS 91:83348–52 [Google Scholar]
  56. Zwick MB, Labrijn AF, Wang M, Spenlehauer C, Saphire EO. 54.  et al. 2001. Broadly neutralizing antibodies targeted to the membrane-proximal external region of human immunodeficiency virus type 1 glycoprotein gp41.. J. Virol. 75:2210892–905 [Google Scholar]
  57. Trkola A, Ballaun C, Buchacher A, Sullivan N, Srinivasan K. 55.  et al. 1996. Human monoclonal antibody 2G12 defines a distinctive neutralization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1. J. Virol. 70:21100–8 [Google Scholar]
  58. Buchacher A, Predl R, Strutzenberger K, Steinfellner W, Trkola A. 56.  et al. 1994. Generation of human monoclonal antibodies against HIV-1 proteins; electrofusion and Epstein-Barr virus transformation for peripheral blood lymphocyte immortalization. AIDS Res. Hum. Retrovir. 10:4359–69 [Google Scholar]
  59. Calarese DA, Scanlan CN, Zwick MB, Deechongkit S, Mimura Y. 57.  et al. 2003. Antibody domain exchange is an immunological solution to carbohydrate cluster recognition. Science 300:56282065–71 [Google Scholar]
  60. Huber M, Le KM, Doores KJ, Fulton Z, Stanfield RL. 58.  et al. 2010. Very few substitutions in a germ line antibody are required to initiate significant domain exchange. J. Virol. 84:2010700–7 [Google Scholar]
  61. Poignard P, Sabbe R, Picchio GR, Wang M, Gulizia RJ. 59.  et al. 1999. Neutralizing antibodies have limited effects on the control of established HIV-1 infection in vivo. Immunity 10:4431–38 [Google Scholar]
  62. Trkola A, Kuster H, Rusert P, Joos B, Fischer M. 60.  et al. 2005. Delay of HIV-1 rebound after cessation of antiretroviral therapy through passive transfer of human neutralizing antibodies. Nat. Med. 11:6615–22 [Google Scholar]
  63. Baba TW, Liska V, Hofmann-Lehmann R, Vlasak J, Xu W. 61.  et al. 2000. Human neutralizing monoclonal antibodies of the IgG1 subtype protect against mucosal simian-human immunodeficiency virus infection. Nat. Med. 6:2200–6 [Google Scholar]
  64. Shibata R, Igarashi T, Haigwood N, Buckler-White A, Ogert R. 62.  et al. 1999. Neutralizing antibody directed against the HIV-1 envelope glycoprotein can completely block HIV-1/SIV chimeric virus infections of macaque monkeys. Nat. Med. 5:2204–10 [Google Scholar]
  65. Hessell AJ, Rakasz EG, Tehrani DM, Huber M, Weisgrau KL. 63.  et al. 2010. Broadly neutralizing monoclonal antibodies 2F5 and 4E10 directed against the human immunodeficiency virus type 1 gp41 membrane-proximal external region protect against mucosal challenge by simian-human immunodeficiency virus SHIVBa-L. J. Virol. 84:31302–13 [Google Scholar]
  66. Parren PWHI, Marx PA, Hessell AJ, Luckay A, Harouse J. 64.  et al. 2001. Antibody protects macaques against vaginal challenge with a pathogenic R5 simian/human immunodeficiency virus at serum levels giving complete neutralization in vitro. J. Virol. 75:178340–47 [Google Scholar]
  67. Mascola JR, Stiegler G, VanCott TC, Katinger H, Carpenter CB. 65.  et al. 2000. Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nat. Med. 6:2207–10 [Google Scholar]
  68. Hessell AJ, Hangartner L, Hunter M, Havenith CEG, Beurskens FJ. 66.  et al. 2007. Fc receptor but not complement binding is important in antibody protection against HIV. Nature 449:7158101–4 [Google Scholar]
  69. Hessell AJ, Poignard P, Hunter M, Hangartner L, Tehrani DM. 67.  et al. 2009. Effective, low-titer antibody protection against low-dose repeated mucosal SHIV challenge in macaques. Nat. Med. 15:8951–54 [Google Scholar]
  70. Nishimura Y, Igarashi T, Haigwood N, Sadjadpour R, Plishka RJ. 68.  et al. 2002. Determination of a statistically valid neutralization titer in plasma that confers protection against simian-human immunodeficiency virus challenge following passive transfer of high-titered neutralizing antibodies. J. Virol. 76:52123–30 [Google Scholar]
  71. Gauduin M-C, Parren PWHI, Weir R, Barbas CF, Burton DR, Koup RA. 69.  1997. Passive immunization with a human monoclonal antibody protects hu-PBL-SCID mice against challenge by primary isolates of HIV-1. Nat. Med. 3:121389–93 [Google Scholar]
  72. Parren PWHI, Ditzel HJ, Gulizia RJ, Binley JM, Barbas CF III. 70.  et al. 1995. Protection against HIV-1 infection in hu-PBL-SCID mice by passive immunization with a neutralizing human monoclonal antibody against the gp120 CD4-binding site. AIDS 9:6F1–6 [Google Scholar]
  73. Poignard P, Moldt B, Maloveste K, Campos N, Olson WC. 71.  et al. 2012. Protection against high-dose highly pathogenic mucosal SIV challenge at very low serum neutralizing titers of the antibody-like molecule CD4-IgG2. PLOS ONE 7:7e42209 [Google Scholar]
  74. Hessell AJ, Rakasz EG, Poignard P, Hangartner L, Landucci G. 72.  et al. 2009. Broadly neutralizing human anti-HIV antibody 2G12 is effective in protection against mucosal SHIV challenge even at low serum neutralizing titers. PLOS Pathog. 5:5e1000433 [Google Scholar]
  75. Moldt B, Shibata-Koyama M, Rakasz EG, Schultz N, Kanda Y. 73.  et al. 2012. A nonfucosylated variant of the anti-HIV-1 monoclonal antibody b12 has enhanced FcγRIIIa-mediated antiviral activity in vitro but does not improve protection against mucosal SHIV challenge in macaques. J. Virol. 86:116189–96 [Google Scholar]
  76. Walker LM, Chan-Hui PY, Wagner D, Phung P, Goss JL. 74.  et al. 2009. Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 326:5950285–89 [Google Scholar]
  77. Walker LM, Huber M, Doores KJ, Falkowska E, Pejchal R. 75.  et al. 2011. Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature 477:7365466–70 [Google Scholar]
  78. Falkowska E, Ramos A, Feng Y, Moquin S, Walker LM. 76.  et al. 2012. PGV04, an HIV-1 gp120 CD4 binding site antibody, is broad and potent in neutralization but does not induce conformational changes characteristic of CD4. J. Virol. 86:84394–403 [Google Scholar]
  79. Doria-Rose NA, Schramm CA, Gorman J, Moore PL, Bhiman JN. 77.  et al. 2014. Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies. Nature 509:749855–62 [Google Scholar]
  80. Huang J, Ofek G, Laub L, Louder MK, Doria-Rose NA. 78.  et al. 2012. Broad and potent neutralization of HIV-1 by a gp41-specific human antibody. Nature 491:7424406–12 [Google Scholar]
  81. Wu X, Yang Z-Y, Li Y, Hogerkorp C-M, Schief WR. 79.  et al. 2010. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 329:5993856–61 [Google Scholar]
  82. Scheid JF, Mouquet H, Feldhahn N, Seaman MS, Velinzon K. 80.  et al. 2009. Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals. Nature 458:7238636–40 [Google Scholar]
  83. Sok D, van Gils MJ, Pauthner M, Julien J-P, Saye-Francisco KL. 81.  et al. 2014. Recombinant HIV envelope trimer selects for quaternary-dependent antibodies targeting the trimer apex. PNAS 111:4917624–29 [Google Scholar]
  84. Balla-Jhagjhoorsingh SS, Corti D, Heyndrickx L, Willems E, Vereecken K. 82.  et al. 2013. The N276 glycosylation site is required for HIV-1 neutralization by the CD4 binding site specific HJ16 monoclonal antibody. PLOS ONE 8:7e68863 [Google Scholar]
  85. Mouquet H, Scharf L, Euler Z, Liu Y, Eden C. 83.  et al. 2012. Complex-type N-glycan recognition by potent broadly neutralizing HIV antibodies. PNAS 109:47E3268–77 [Google Scholar]
  86. Huang J, Kang BH, Pancera M, Lee JH, Tong T. 84.  et al. 2014. Broad and potent HIV-1 neutralization by a human antibody that binds the gp41-gp120 interface. Nature 515:7525138–42 [Google Scholar]
  87. Falkowska E, Le KM, Ramos A, Doores KJ, Lee JH. 85.  et al. 2014. Broadly neutralizing HIV antibodies define a glycan-dependent epitope on the prefusion conformation of gp41 on cleaved envelope trimers. Immunity 40:5657–68 [Google Scholar]
  88. Scharf L, Scheid JF, Lee JH, West AP, Chen C. 86.  et al. 2014. Antibody 8ANC195 reveals a site of broad vulnerability on the HIV-1 envelope spike. Cell Rep. 7:3785–95 [Google Scholar]
  89. Scheid JF, Mouquet H, Ueberheide B, Diskin R, Klein F. 87.  et al. 2011. Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding. Science 333:60491633–37 [Google Scholar]
  90. Zhou T, Georgiev I, Wu X, Yang ZY, Dai K. 88.  et al. 2010. Structural basis for broad and potent neutralization of HIV-1 by antibody VRC01. Science 329:5993811–17 [Google Scholar]
  91. Zhou T, Zhu J, Wu X, Moquin S, Zhang B. 89.  et al. 2013. Multidonor analysis reveals structural elements, genetic determinants, and maturation pathway for HIV-1 neutralization by VRC01-class antibodies. Immunity 39:2245–58 [Google Scholar]
  92. Zhou T, Lynch RM, Chen L, Acharya P, Wu X. 90.  et al. 2015. Structural Repertoire of HIV-1-Neutralizing Antibodies Targeting the CD4 Supersite in 14 Donors. Cell 161:61280–92 [Google Scholar]
  93. Roben P, Moore JP, Thali M, Sodroski J, Barbas CF, Burton DR. 91.  1994. Recognition properties of a panel of human recombinant Fab fragments to the CD4 binding site of gp120 that show differing abilities to neutralize human immunodeficiency virus type 1. J. Virol. 68:84821–28 [Google Scholar]
  94. Sattentau QJ. 92.  1995. Human immunodeficiency virus type 1 neutralization is determined by epitope exposure on the gp120 oligomer. J. Exp. Med. 182:1185–96 [Google Scholar]
  95. Ugolini S, Mondor I, Parren PW, Burton DR, Tilley SA. 93.  et al. 1997. Inhibition of virus attachment to CD4+ target cells is a major mechanism of T cell line-adapted HIV-1 neutralization. J. Exp. Med. 186:81287–98 [Google Scholar]
  96. Platt EJ, Gomes MM, Kabat D. 94.  2012. Kinetic mechanism for HIV-1 neutralization by antibody 2G12 entails reversible glycan binding that slows cell entry. PNAS 109:207829–34 [Google Scholar]
  97. Ruprecht CR, Krarup A, Reynell L, Mann AM, Brandenberg OF. 95.  et al. 2011. MPER-specific antibodies induce gp120 shedding and irreversibly neutralize HIV-1. J. Exp. Med. 208:3439–54 [Google Scholar]
  98. Pejchal R, Doores KJ, Walker LM, Khayat R, Huang P-S. 96.  et al. 2011. A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield. Science 334:60591097–103 [Google Scholar]
  99. Julien J-P, Sok D, Khayat R, Lee JH, Doores KJ. 97.  et al. 2013. Broadly neutralizing antibody PGT121 allosterically modulates CD4 binding via recognition of the HIV-1 gp120 V3 base and multiple surrounding glycans. PLOS Pathog. 9:5e1003342 [Google Scholar]
  100. Blattner C, Lee JH, Sliepen K, Derking R, Falkowska E. 98.  et al. 2014. Structural delineation of a quaternary, cleavage-dependent epitope at the gp41-gp120 interface on intact HIV-1 Env trimers. Immunity 40:5669–80 [Google Scholar]
  101. McLellan JS, Pancera M, Carrico C, Gorman J, Julien J-P. 99.  et al. 2011. Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature 480:7377336–43 [Google Scholar]
  102. Frey G, Peng H, Rits-Volloch S, Morelli M, Cheng Y, Chen B. 100.  2008. A fusion-intermediate state of HIV-1 gp41 targeted by broadly neutralizing antibodies. PNAS 105:103739–44 [Google Scholar]
  103. Chakrabarti BK, Walker LM, Guenaga JF, Ghobbeh A, Burton DR, Wyatt RT. 101.  2011. Direct antibody access to the HIV-1 membrane-proximal external region positively correlates with neutralization sensitivity. J. Virol. 85:168217–26 [Google Scholar]
  104. Yang X, Lipchina I, Cocklin S, Chaiken I, Sodroski J. 102.  2006. Antibody binding is a dominant determinant of the efficiency of human immunodeficiency virus type 1 neutralization. J. Virol. 80:2211404–8 [Google Scholar]
  105. Laird ME, Desrosiers RC. 103.  2007. Infectivity and neutralization of simian immunodeficiency virus with FLAG epitope insertion in gp120 variable loops. J. Virol. 81:2010838–48 [Google Scholar]
  106. Pantophlet R, Wang M, Aguilar-Sino RO, Burton DR. 104.  2009. The human immunodeficiency virus type 1 envelope spike of primary viruses can suppress antibody access to variable regions. 83:41649–59 [Google Scholar]
  107. Shingai M, Nishimura Y, Klein F, Mouquet H, Donau OK. 105.  et al. 2013. Antibody-mediated immunotherapy of macaques chronically infected with SHIV suppresses viraemia. Nature 503:7475277–80 [Google Scholar]
  108. Moldt B, Rakasz EG, Schultz N, Chan-Hui P-Y, Swiderek K. 106.  et al. 2012. Highly potent HIV-specific antibody neutralization in vitro translates into effective protection against mucosal SHIV challenge in vivo. PNAS 109:4618921–25 [Google Scholar]
  109. Barouch DH, Whitney JB, Moldt B, Klein F, Oliveira TY. 107.  et al. 2013. Therapeutic efficacy of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys. Nature 503:7475224–28 [Google Scholar]
  110. Saunders KO, Wang L, Joyce MG, Yang Z-Y, Balazs AB. 108.  et al. 2015. Broadly neutralizing human immunodeficiency virus type 1 antibody gene transfer protects non-human primates from mucosal simian-human immunodeficiency virus infection. J. Virol. 89:168334–45 [Google Scholar]
  111. Shingai M, Donau OK, Plishka RJ, Buckler-White A, Mascola JR. 109.  et al. 2014. Passive transfer of modest titers of potent and broadly neutralizing anti-HIV monoclonal antibodies block SHIV infection in macaques. J. Exp. Med. 211:102061–74 [Google Scholar]
  112. Halper-Stromberg A, Lu C-L, Klein F, Horwitz JA, Bournazos S. 110.  et al. 2014. Broadly neutralizing antibodies and viral inducers decrease rebound from HIV-1 latent reservoirs in humanized mice. Cell 158:5989–99 [Google Scholar]
  113. Klein F, Halper-Stromberg A, Horwitz JA, Gruell H, Scheid JF. 111.  et al. 2012. HIV therapy by a combination of broadly neutralizing antibodies in humanized mice. Nature 492:7427118–22 [Google Scholar]
  114. Gruell H, Bournazos S, Ravetch JV, Ploss A, Nussenzweig MC, Pietzsch J. 112.  2013. Antibody and antiretroviral preexposure prophylaxis prevent cervicovaginal HIV-1 infection in a transgenic mouse model. J. Virol. 87:158535–44 [Google Scholar]
  115. Pietzsch J, Gruell H, Bournazos S, Donovan BM, Klein F. 113.  et al. 2012. A mouse model for HIV-1 entry. PNAS 109:3915859–64 [Google Scholar]
  116. Burton DR, Mascola JR. 114.  2015. Antibody responses to envelope glycoproteins in HIV-1 infection. Nat. Immunol. 16:6571–76 [Google Scholar]
  117. Pegu A, Boyington JC, Ko S-Y, Schmidt SD, McKee K. 115.  et al. 2014. Neutralizing antibodies to HIV-1 envelope protect more effectively in vivo than those to the CD4 receptor. Sci. Transl. Med. 6:243243ra88 [Google Scholar]
  118. Bournazos S, Klein F, Pietzsch J, Seaman MS, Nussenzweig MC, Ravetch JV. 116.  2014. Broadly neutralizing anti-HIV-1 antibodies require Fc effector functions for in vivo activity. Cell 158:61243–53 [Google Scholar]
  119. Caskey M, Klein F, Lorenzi JCC, Seaman MS, West AP. 117.  et al. 2015. Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117. Nature 522:7557487–91 [Google Scholar]
  120. Wadman M. 118.  2013. HIV trial under scrutiny. Nature 17:279–80 [Google Scholar]
  121. Andrabi R, Voss JE, Liang C-H, Briney B, McCoy LE. 119.  et al. 2015. Identification of common features in prototype broadly neutralizing antibodies to HIV envelope V2 apex to facilitate vaccine design. Immunity 43:5959–73 [Google Scholar]
  122. Garces F, Sok D, Kong L, McBride R, Kim HJ. 120.  et al. 2014. Structural evolution of glycan recognition by a family of potent HIV antibodies. Cell 159:169–79 [Google Scholar]
  123. Mouquet H, Scheid JF, Zoller MJ, Krogsgaard M, Ott RG. 121.  et al. 2010. Polyreactivity increases the apparent affinity of anti-HIV antibodies by heteroligation. Nature 467:7315591–95 [Google Scholar]
  124. 122.  Deleted in proof
  125. Haynes BF, Moody MA, Verkoczy L, Kelsoe G, Alam SM. 123.  2005. Antibody polyspecificity and neutralization of HIV-1: a hypothesis. Hum. Antibodies 14:3–459–67 [Google Scholar]
  126. Irimia A, Sarkar A, Stanfield RL, Wilson IA. 124.  2016. Crystallographic identification of lipid as an integral component of the epitope of HIV broadly neutralizing antibody 4E10. Immunity 44:121–31 [Google Scholar]
  127. Doyle-Cooper C, Hudson KE, Cooper AB, Ota T, Skog P. 125.  et al. 2013. Immune tolerance negatively regulates B cells in knock-in mice expressing broadly neutralizing HIV antibody 4E10. J. Immunol. 191:63186–91 [Google Scholar]
  128. Liu M, Yang G, Wiehe K, Nicely NI, Vandergrift NA. 126.  et al. 2015. Polyreactivity and autoreactivity among HIV-1 antibodies. J. Virol. 89:1784–98 [Google Scholar]
  129. Verkoczy L, Diaz M, Holl TM, Ouyang Y-B, Bouton-Verville H. 127.  et al. 2010. Autoreactivity in an HIV-1 broadly reactive neutralizing antibody variable region heavy chain induces immunologic tolerance. PNAS 107:1181–86 [Google Scholar]
  130. Verkoczy L, Chen Y, Zhang J, Bouton-Verville H, Newman A. 128.  et al. 2013. Induction of HIV-1 broad neutralizing antibodies in 2F5 knock-in mice: Selection against membrane proximal external region-associated autoreactivity limits T-dependent responses. J. Immunol. 191:52538–50 [Google Scholar]
  131. Verkoczy L, Chen Y, Bouton-Verville H, Zhang J, Diaz M. 129.  et al. 2011. Rescue of HIV-1 broad neutralizing antibody-expressing B cells in 2F5 VH×VL knockin mice reveals multiple tolerance controls. J. Immunol. 187:73785–97 [Google Scholar]
  132. Kim AS, Leaman DP, Zwick MB. 130.  2014. Antibody to gp41 MPER alters functional properties of HIV-1 Env without complete neutralization. PLOS Pathog. 10:7e1004271 [Google Scholar]
  133. McCoy LE, Falkowska E, Doores KJ, Le K, Sok D. 131.  et al. 2015. Incomplete neutralization and deviation from sigmoidal neutralization curves for HIV broadly neutralizing monoclonal antibodies. PLOS Pathog. 11:8e1005110 [Google Scholar]
  134. Liao H-X, Lynch R, Gao F, Alam SM, Boyd SD. 132.  et al. 2013. Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature 496:7446469–76 [Google Scholar]
  135. Zhou T, Xu L, Dey B, Hessell AJ, Van Ryk D. 133.  et al. 2007. Structural definition of a conserved neutralization epitope on HIV-1 gp120. Nature 445:7129732–37 [Google Scholar]
  136. Scanlan CN, Pantophlet R, Wormald MR, Ollmann Saphire E, Stanfield R. 134.  et al. 2002. The broadly neutralizing anti-human immunodeficiency virus type 1 antibody 2G12 recognizes a cluster of α1→2 mannose residues on the outer face of gp120. J. Virol. 76:147306–21 [Google Scholar]
  137. Murin CD, Julien J-P, Sok D, Stanfield RL, Khayat R. 135.  et al. 2014. Structure of 2G12 Fab2 in complex with soluble and fully glycosylated HIV-1 Env by negative-stain single-particle electron microscopy. J. Virol. 88:1710177–88 [Google Scholar]
  138. Kong L, Lee JH, Doores KJ, Murin CD, Julien J-P. 136.  et al. 2013. Supersite of immune vulnerability on the glycosylated face of HIV-1 envelope glycoprotein gp120. Nat. Struct. Mol. Biol. 20:7796–803 [Google Scholar]
  139. Pritchard LK, Spencer DIR, Royle L, Bonomelli C, Seabright GE. 137.  et al. 2015. Glycan clustering stabilizes the mannose patch of HIV-1 and preserves vulnerability to broadly neutralizing antibodies. Nat. Commun. 6:7479 [Google Scholar]
  140. Sok D, Doores KJ, Briney B, Le KM, Saye-Francisco KL. 138.  et al. 2014. Promiscuous glycan site recognition by antibodies to the high-mannose patch of gp120 broadens neutralization of HIV. Sci. Transl. Med. 6:236236ra63 [Google Scholar]
  141. Xiao X, Chen W, Feng Y, Zhu Z, Prabakaran P. 139.  et al. 2009. Germline-like predecessors of broadly neutralizing antibodies lack measurable binding to HIV-1 envelope glycoproteins: implications for evasion of immune responses and design of vaccine immunogens. Biochem. Biophys. Res. Commun. 390:3404–9 [Google Scholar]
  142. Ota T, Doyle-Cooper C, Cooper AB, Huber M, Falkowska E. 140.  et al. 2012. Anti-HIV B cell lines as candidate vaccine biosensors. J. Immunol. 189:104816–24 [Google Scholar]
  143. Kulp DW, Schief WR. 141.  2013. Advances in structure-based vaccine design. Curr. Opin. Virol. 3:3322–31 [Google Scholar]
  144. Stamatatos L. 142.  2012. HIV vaccine design: the neutralizing antibody conundrum. Curr. Opin. Immunol. 24:3316–23 [Google Scholar]
  145. Haynes BF. 143.  2015. New approaches to HIV vaccine development. Curr. Opin. Immunol. 35:39–47 [Google Scholar]
  146. Trama AM, Moody MA, Alam SM, Jaeger FH, Lockwood B. 144.  et al. 2014. HIV-1 envelope gp41 antibodies can originate from terminal ileum B cells that share cross-reactivity with commensal bacteria. Cell Host Microbe 16:2215–26 [Google Scholar]
  147. Briney BS, Willis JR, Crowe JE. 145.  2012. Human peripheral blood antibodies with long HCDR3s are established primarily at original recombination using a limited subset of germline genes. PLOS ONE 7:5e36750 [Google Scholar]
  148. Zhang Z, Schramm CA, Joyce MG, Do Kwon Y, Sheng Z. 146.  et al. 2015. Maturation and diversity of the VRC01-antibody lineage over 15 years of chronic HIV-1 infection. Cell 161:3470–85 [Google Scholar]
  149. Klein F, Diskin R, Scheid JF, Gaebler C, Mouquet H. 147.  et al. 2013. Somatic mutations of the immunoglobulin framework are generally required for broad and potent HIV-1 neutralization. Cell 153:1126–38 [Google Scholar]
  150. Kepler TB, Liao H-X, Alam SM, Bhaskarabhatla R, Zhang R. 148.  et al. 2014. Immunoglobulin gene insertions and deletions in the affinity maturation of HIV-1 broadly reactive neutralizing antibodies. Cell Host Microbe 16:3304–13 [Google Scholar]
  151. Sok D, Laserson U, Laserson J, Liu Y, Vigneault F. 149.  et al. 2013. The effects of somatic hypermutation on neutralization and binding in the PGT121 family of broadly neutralizing HIV antibodies. PLOS Pathog. 9:11e1003754 [Google Scholar]
  152. Gao F, Bonsignori M, Liao H-X, Kumar A, Xia S-M. 150.  et al. 2014. Cooperation of B cell lineages in induction of HIV-1-broadly neutralizing antibodies. Cell 158:3481–91 [Google Scholar]
  153. Haynes B. 151.  2015. Ontogeny of broadly neutralizing antibodies during HIV infection Presented at HIV Vaccines (X5) Keyst. Symp. Mol. Cell. Biol., Banff, Can. [Google Scholar]
  154. Sanders RW, van Gils MJ, Derking R, Sok D, Ketas TJ. 152.  et al. 2015. HIV-1 neutralizing antibodies induced by native-like envelope trimers. Science 349:6244aac4223 [Google Scholar]
  155. Jardine JG, Ota T, Sok D, Pauthner M, Kulp DW. 153.  et al. 2015. Priming a broadly neutralizing antibody response to HIV-1 using a germline-targeting immunogen. Science 349:6244156–61 [Google Scholar]
  156. Ota T, Doyle-Cooper C, Cooper AB, Doores KJ, Aoki-Ota M. 154.  et al. 2013. B cells from knock-in mice expressing broadly neutralizing HIV antibody b12 carry an innocuous B cell receptor responsive to HIV vaccine candidates. J. Immunol. 191:63179–85 [Google Scholar]
  157. Pascal KE, Coleman CM, Mujica AO, Kamat V, Badithe A. 155.  et al. 2015. Pre- and postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection. PNAS 112:288738–43 [Google Scholar]
  158. Lee E-C, Liang Q, Ali H, Bayliss L, Beasley A. 156.  et al. 2014. Complete humanization of the mouse immunoglobulin loci enables efficient therapeutic antibody discovery. Nat. Biotechnol. 32:4356–63 [Google Scholar]
  159. Dosenovic P, von Boehmer L, Escolano A, Jardine J, Freund NT. 157.  et al. 2015. Immunization for HIV-1 broadly neutralizing antibodies in human Ig knockin mice. Cell 161:71505–15 [Google Scholar]
  160. Klein F, Gaebler C, Mouquet H, Sather DN, Lehmann C. 158.  et al. 2012. Broad neutralization by a combination of antibodies recognizing the CD4 binding site and a new conformational epitope on the HIV-1 envelope protein. J. Exp. Med. 209:81469–79 [Google Scholar]
  161. Rudicell RS, Kwon YD, Ko S-Y, Pegu A, Louder MK. 159.  et al. 2014. Enhanced potency of a broadly neutralizing HIV-1 antibody in vitro improves protection against lentiviral infection in vivo. J. Virol. 88:12669–82 [Google Scholar]
  162. Pantophlet R, Ollmann Saphire E, Poignard P, Parren PHI, Wilson IA, Burton DR. 159.  2003. Fine mapping of the interaction of neutralizing and nonneutralizing monoclonal antibodies with the CD4 binding site of human immunodeficiency virus type 1 gp120. J. Virol. 77:642–58 [Google Scholar]
/content/journals/10.1146/annurev-immunol-041015-055515
Loading
/content/journals/10.1146/annurev-immunol-041015-055515
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error