The formation and accumulation of crystalline material in tissues is a hallmark of many metabolic and inflammatory conditions. The discovery that the phase transition of physiologically soluble substances to their crystalline forms can be detected by the immune system and activate innate immune pathways has revolutionized our understanding of how crystals cause inflammation. It is now appreciated that crystals are part of the pathogenesis of numerous diseases, including gout, silicosis, asbestosis, and atherosclerosis. In this review we discuss current knowledge of the complex mechanisms of crystal formation in diseased tissues and their interplay with the nutrients, metabolites, and immune cells that account for crystal-induced inflammation.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Poloni LN, Ward MD. 1.  2014. The materials science of pathological crystals. Chem. Mater. 26:1477–95 [Google Scholar]
  2. Khan SR, Glenton PA, Backov R, Talham DR. 2.  2002. Presence of lipids in urine, crystals and stones: implications for the formation of kidney stones. Kidney Int. 62:62062–72 [Google Scholar]
  3. Yoshimura Y, Lin Y, Yagi H, Lee Y-H, Kitayama H. 3.  et al. 2012. Distinguishing crystal-like amyloid fibrils and glass-like amorphous aggregates from their kinetics of formation. PNAS 109:3614446–51 [Google Scholar]
  4. Maji SK, Perrin MH, Sawaya MR, Jessberger S, Vadodaria K. 4.  et al. 2009. Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science 325:5938328–32 [Google Scholar]
  5. Jarrett JT, Lansbury PT. 5.  1993. Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie?. Cell 73:61055–58 [Google Scholar]
  6. Come JH, Fraser PE, Lansbury PT. 6.  1993. A kinetic model for amyloid formation in the prion diseases: importance of seeding. PNAS 90:135959–63 [Google Scholar]
  7. Chiti F, Dobson CM. 7.  2006. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75:333–66 [Google Scholar]
  8. Blancas-Mejía LM, Ramirez-Alvarado M. 8.  2013. Systemic amyloidoses. Annu. Rev. Biochem. 82:745–74 [Google Scholar]
  9. Kirschvink JL, Walker MM, Diebel CE. 9.  2001. Magnetite-based magnetoreception. Curr. Opin. Neurobiol. 11:4462–67 [Google Scholar]
  10. Ng G, Sharma K, Ward SM, Desrosiers MD, Stephens LA. 10.  et al. 2008. Receptor-independent, direct membrane binding leads to cell-surface lipid sorting and Syk kinase activation in dendritic cells. Immunity 29:5807–18 [Google Scholar]
  11. Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H. 11.  et al. 2008. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9:8847–56 [Google Scholar]
  12. Dostert C, Pétrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J. 12.  2008. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320:5876674–77 [Google Scholar]
  13. Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G. 13.  et al. 2010. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464:72931357–61 [Google Scholar]
  14. Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J. 14.  2006. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nat. Cell Biol. 440:7081237–41 [Google Scholar]
  15. Boya P, Kroemer G. 15.  2008. Lysosomal membrane permeabilization in cell death. Oncogene 27:506434–51 [Google Scholar]
  16. Lima H, Jacobson LS, Goldberg MF, Chandran K, Diaz-Griffero F. 16.  et al. 2013. Role of lysosome rupture in controlling Nlrp3 signaling and necrotic cell death. Cell Cycle 12:121868–78 [Google Scholar]
  17. Kuroda E, Ishii KJ, Uematsu S, Ohata K, Coban C. 17.  et al. 2011. Silica crystals and aluminum salts regulate the production of prostaglandin in macrophages via NALP3 inflammasome–independent mechanisms. Immunity 34:4514–26 [Google Scholar]
  18. Satpathy SR, Jala VR, Bodduluri SR, Krishnan E, Hegde B. 18.  et al. 2015. Crystalline silica-induced leukotriene B4-dependent inflammation promotes lung tumour growth. Nat. Commun. 6:7064 [Google Scholar]
  19. Dinarello CA. 19.  2009. Immunological and inflammatory functions of the interleukin-1 family. Annu. Rev. Immunol. 27:1519–50 [Google Scholar]
  20. Herseth J, Refsnes M, Låg M, Hetland G, Schwarze P. 20.  2008. IL-1β as a determinant in silica-induced cytokine responses in monocyte–endothelial cell co-cultures. Hum. Exp. Toxicol. 27:5387–99 [Google Scholar]
  21. Rabolli V, Badissi AA, Devosse R, Uwambayinema F, Yakoub Y. 21.  et al. 2014. The alarmin IL-1α is a master cytokine in acute lung inflammation induced by silica micro- and nanoparticles. Part. Fibre Toxicol. 11:169 [Google Scholar]
  22. Bäck M, Hansson GK. 22.  2015. Anti-inflammatory therapies for atherosclerosis. Nat. Rev. Cardiol. 12:4199–211 [Google Scholar]
  23. di Giovine FS, Malawista SE, Nuki G, Duff GW. 23.  1987. Interleukin 1 (IL 1) as a mediator of crystal arthritis. Stimulation of T cell and synovial fibroblast mitogenesis by urate crystal–induced IL 1. J. Immunol. 138:103213–18 [Google Scholar]
  24. So A, De Smedt T, Revaz S, Tschopp J. 24.  2007. A pilot study of IL-1 inhibition by anakinra in acute gout. Arthritis Res. Ther. 9:2R28 [Google Scholar]
  25. Terkeltaub R, Sundy JS, Schumacher HR, Murphy F, Bookbinder S. 25.  et al. 2009. The interleukin 1 inhibitor rilonacept in treatment of chronic gouty arthritis: results of a placebo-controlled, monosequence crossover, non-randomised, single-blind pilot study. Ann. Rheum. Dis. 68:101613–17 [Google Scholar]
  26. Martinon F, Mayor A, Tschopp J. 26.  2009. The inflammasomes: guardians of the body. Annu. Rev. Immunol. 27:1229–65 [Google Scholar]
  27. Cai X, Chen J, Xu H, Liu S, Jiang Q-X. 27.  et al. 2014. Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation. Cell 156:61207–22 [Google Scholar]
  28. Lu A, Magupalli VG, Ruan J, Yin Q, Atianand MK. 28.  et al. 2014. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156:61193–1206 [Google Scholar]
  29. Latz E, Xiao TS, Stutz A. 29.  2013. Activation and regulation of the inflammasomes. Nat. Rev. Immunol. 13:6397–411 [Google Scholar]
  30. Schaefer L. 30.  2014. Complexity of danger: the diverse nature of damage-associated molecular patterns. J. Biol. Chem. 289:5135237–45 [Google Scholar]
  31. Monção-Ribeiro LC, Faffe DS, Santana PT, Vieira FS, da Graça CLAL. 31.  et al. 2014. P2X7 receptor modulates inflammatory and functional pulmonary changes induced by silica. PLOS ONE 9:10e110185 [Google Scholar]
  32. Hornung V, Latz E. 32.  2010. Critical functions of priming and lysosomal damage for NLRP3 activation. Eur. J. Immunol. 40:3620–23 [Google Scholar]
  33. Murakami T, Ockinger J, Yu J, Byles V, McColl A. 33.  et al. 2012. Critical role for calcium mobilization in activation of the NLRP3 inflammasome. PNAS 109:2811282–87 [Google Scholar]
  34. Dostert C, Guarda G, Romero JF, Menu P, Gross O. 34.  et al. 2009. Malarial hemozoin is a Nalp3 inflammasome activating danger signal. PLOS ONE 4:8e6510 [Google Scholar]
  35. Petrilli V, Papin S, Dostert C, Mayor A, Martinon F, Tschopp J. 35.  2007. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ. 14:91583–89 [Google Scholar]
  36. Zhou R, Yazdi AS, Menu P, Tschopp J. 36.  2011. A role for mitochondria in NLRP3 inflammasome activation. Nature 469:7329221–25 [Google Scholar]
  37. Okada M, Matsuzawa A, Yoshimura A, Ichijo H. 37.  2014. The lysosome rupture-activated TAK1-JNK pathway regulates NLRP3 inflammasome activation. J. Biol. Chem. 289:4732926–36 [Google Scholar]
  38. Eisenbarth SC, Colegio OR, O’Connor W, Sutterwala FS, Flavell RA. 38.  2008. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453:71981122–26 [Google Scholar]
  39. Summersgill H, England H, Lopez-Castejon G, Lawrence CB, Luheshi NM. 39.  et al. 2014. Zinc depletion regulates the processing and secretion of IL-1. Cell Death Dis. 5:1e1040 [Google Scholar]
  40. Wei R, Wang J, Xu Y, Yin B, He F. 40.  et al. 2015. Probenecid protects against cerebral ischemia/reperfusion injury by inhibiting lysosomal and inflammatory damage in rats. Neuroscience 301:168–77 [Google Scholar]
  41. Cassel SL, Eisenbarth SC, Iyer SS, Sadler JJ, Colegio OR. 41.  et al. 2008. The Nalp3 inflammasome is essential for the development of silicosis. PNAS 105:269035–40 [Google Scholar]
  42. Meissner F, Seger RA, Moshous D, Fischer A, Reichenbach J, Zychlinsky A. 42.  2010. Inflammasome activation in NADPH oxidase defective mononuclear phagocytes from patients with chronic granulomatous disease. Blood 116:91570–73 [Google Scholar]
  43. Rada B, Park JJ, Sil P, Geiszt M, Leto TL. 43.  2014. NLRP3 inflammasome activation and interleukin-1β release in macrophages require calcium but are independent of calcium-activated NADPH oxidases. Inflamm. Res. 63:10821–30 [Google Scholar]
  44. van de Veerdonk FL, Smeekens SP, Joosten LAB, Kullberg B-J, Dinarello CA. 44.  et al. 2010. Reactive oxygen species–independent activation of the IL-1β inflammasome in cells from patients with chronic granulomatous disease. PNAS 107:73030–33 [Google Scholar]
  45. van Bruggen R, Köker MY, Jansen M, van Houdt M, Roos D. 45.  et al. 2010. Human NLRP3 inflammasome activation is Nox1-4 independent. Blood 115:265398–400 [Google Scholar]
  46. Franchi L, Eigenbrod T, Nuñez G. 46.  2009. Cutting edge: TNF-α mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation. J. Immunol. 183:2792–96 [Google Scholar]
  47. Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K. 47.  et al. 2009. Cutting edge: NF-κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol. 183:2787–91 [Google Scholar]
  48. An LL, Mehta P, Xu L, Turman S, Reimer T. 48.  et al. 2014. Complement C5a potentiates uric acid crystal–induced IL-1β production. Eur. J. Immunol. 44:123669–79 [Google Scholar]
  49. Nymo S, Niyonzima N, Espevik T, Mollnes TE. 49.  2014. Cholesterol crystal–induced endothelial cell activation is complement-dependent and mediated by TNF. Immunobiology 219:10786–92 [Google Scholar]
  50. Samstad EO, Niyonzima N, Nymo S, Aune MH, Ryan L. 50.  et al. 2014. Cholesterol crystals induce complement-dependent inflammasome activation and cytokine release. J. Immunol. 192:62837–45 [Google Scholar]
  51. Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J. 51.  et al. 2009. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat. Immunol. 11:155–61 [Google Scholar]
  52. Netea MG, van de Veerdonk FL, van der Meer JWM, Dinarello CA, Joosten LAB. 52.  2015. Inflammasome-independent regulation of IL-1–family cytokines. Annu. Rev. Immunol. 33:149–77 [Google Scholar]
  53. Jacobson LS, Lima H, Goldberg MF, Gocheva V, Tsiperson V. 53.  et al. 2013. Cathepsin-mediated necrosis controls the adaptive immune response by Th2 (T helper type 2)-associated adjuvants. J. Biol. Chem. 288:117481–91 [Google Scholar]
  54. Gross O, Yazdi AS, Thomas CJ, Masin M, Heinz LX. 54.  et al. 2012. Inflammasome activators induce interleukin-1α secretion via distinct pathways with differential requirement for the protease function of caspase-1. Immunity 36:3388–400 [Google Scholar]
  55. Hari A, Zhang Y, Tu Z, Detampel P, Stenner M. 55.  et al. 2014. Activation of NLRP3 inflammasome by crystalline structures via cell surface contact. Sci. Rep. 4:7281 [Google Scholar]
  56. Kim ML, Chae JJ, Park YH, De Nardo D, Stirzaker RA. 56.  et al. 2015. Aberrant actin depolymerization triggers the pyrin inflammasome and autoinflammatory disease that is dependent on IL-18, not IL-1. J. Exp. Med. 212:6927–38 [Google Scholar]
  57. Mansfield E, Chae JJ, Komarow HD, Brotz TM, Frucht DM. 57.  et al. 2001. The familial Mediterranean fever protein, pyrin, associates with microtubules and colocalizes with actin filaments. Blood 98:3851–59 [Google Scholar]
  58. Richards N, Schaner P, Diaz A, Stuckey J, Shelden E. 58.  et al. 2001. Interaction between pyrin and the apoptotic speck protein (ASC) modulates ASC-induced apoptosis. J. Biol. Chem. 276:4239320–29 [Google Scholar]
  59. Waite AL, Schaner P, Hu C, Richards N, Balci-Peynircioglu B. 59.  et al. 2009. Pyrin and ASC co-localize to cellular sites that are rich in polymerizing actin. Exp. Biol. Med. 234:140–52 [Google Scholar]
  60. Schotte P, Denecker G, Van Den Broeke A, Vandenabeele P, Cornelis GR, Beyaert R. 60.  2004. Targeting Rac1 by the Yersinia effector protein YopE inhibits caspase-1–mediated maturation and release of interleukin-1β. J. Biol. Chem. 279:2425134–42 [Google Scholar]
  61. Aktories K. 61.  2011. Bacterial protein toxins that modify host regulatory GTPases. Nat. Rev. Microbiol. 9:487–98 [Google Scholar]
  62. Beningo KA, Wang Y-L. 62.  2002. Fc-receptor–mediated phagocytosis is regulated by mechanical properties of the target. J. Cell Sci. 115:Pt. 4849–56 [Google Scholar]
  63. Small DM. 63.  1988. George Lyman Duff memorial lecture. Progression and regression of atherosclerotic lesions: insights from lipid physical biochemistry. Arteriosclerosis 8:2103–29 [Google Scholar]
  64. Tabas I. 64.  2002. Consequences of cellular cholesterol accumulation: basic concepts and physiological implications. J. Clin. Investig. 110:7905–11 [Google Scholar]
  65. Sedaghat A, Grundy SM. 65.  1980. Cholesterol crystals and the formation of cholesterol gallstones. N. Engl. J. Med. 302:231274–77 [Google Scholar]
  66. Bély M, Apáthy A. 66.  2013. Mönckeberg's sclerosis—crystal induced angiopathy. Orv. Hetil. 154:23908–13 [Google Scholar]
  67. Tsirpanlis G. 67.  2007. Is inflammation the link between atherosclerosis and vascular calcification in chronic kidney disease?. Blood Purif. 25:2179–82 [Google Scholar]
  68. Nadra I, Mason JC, Philippidis P, Florey O, Smythe CDW. 68.  et al. 2005. Proinflammatory activation of macrophages by basic calcium phosphate crystals via protein kinase C and MAP kinase pathways: a vicious cycle of inflammation and arterial calcification?. Circ. Res. 96:121248–56 [Google Scholar]
  69. McGonagle D, Tan AL, Madden J, Emery P, McDermott MF. 69.  2008. Successful treatment of resistant pseudogout with anakinra. Arthritis Rheum. 58:2631–33 [Google Scholar]
  70. Lu H, Guo Y-N, Liu S-N, Zhang D-C. 70.  2012. Nanobacteria may be linked to calcification in placenta. Ultrastruct. Pathol. 36:3160–65 [Google Scholar]
  71. Chistiakov DA, Sobenin IA, Orekhov AN, Bobryshev YV. 71.  2014. Mechanisms of medial arterial calcification in diabetes. Curr. Pharm. Des. 20:375870–83 [Google Scholar]
  72. Reaven PD, Sacks J. 72.  Investigators for the VADT 2005. Coronary artery and abdominal aortic calcification are associated with cardiovascular disease in type 2 diabetes. Diabetologia 48:2379–85 [Google Scholar]
  73. Towler DA, Bidder M, Latifi T, Coleman T, Semenkovich CF. 73.  1998. Diet-induced diabetes activates an osteogenic gene regulatory program in the aortas of low density lipoprotein receptor–deficient mice. J. Biol. Chem. 273:4630427–34 [Google Scholar]
  74. Yin TT, Patel J, Parhami F, Demer LL. 74.  2000. Tumor necrosis factor-α promotes in vitro calcification of vascular cells via the cAMP pathway. Circulation 102:212636–42 [Google Scholar]
  75. Govindaraj A, Selvam R. 75.  2001. Increased calcium oxalate crystal nucleation and aggregation by peroxidized protein of human kidney stone matrix and renal cells. Urol. Res. 29:3194–98 [Google Scholar]
  76. Worcester EM. 76.  2002. Stones from bowel disease. Endocrinol. Metab. Clin. N. Am. 31:4979–99 [Google Scholar]
  77. Neogi T. 77.  2011. Clinical practice: gout. N. Engl. J. Med. 364:5443–52 [Google Scholar]
  78. Shi Y, Evans JE, Rock KL. 78.  2003. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425:6957516–21 [Google Scholar]
  79. di Giovine FS, Malawista SE, Thornton E, Duff GW. 79.  1991. Urate crystals stimulate production of tumor necrosis factor α from human blood monocytes and synovial cells. Cytokine mRNA and protein kinetics, and cellular distribution. J. Clin. Investig. 87:41375–81 [Google Scholar]
  80. Zhang W, Doherty M, Bardin T, Pascual E, Barskova V. 80.  et al. 2006. EULAR evidence based recommendations for gout. Part II: management. Report of a task force of the EULAR Standing Committee for International Clinical Studies Including Therapeutics (ESCISIT). Ann. Rheum. Dis. 65:1312–24 [Google Scholar]
  81. Taskiran EZ, Cetinkaya A, Balci-Peynircioglu B, Akkaya YZ, Yilmaz E. 81.  2012. The effect of colchicine on pyrin and pyrin interacting proteins. J. Cell Biochem. 113:113536–46 [Google Scholar]
  82. Balci-Peynircioglu B, Waite AL, Schaner P, Taskiran ZE, Richards N. 82.  et al. 2008. Expression of ASC in renal tissues of familial Mediterranean fever patients with amyloidosis: postulating a role for ASC in AA type amyloid deposition. Exp. Biol. Med. 233:111324–33 [Google Scholar]
  83. Finck S, Lepièce G, Bonnet S. 83.  2014. Diagnosis of chronic retinal detachment following the discovery of a crystalline retinopathy. Rev. Med. Liege 69:11586–89 [Google Scholar]
  84. 84. World Health Organ 2014. Global Health Observatory Data: Exposure to Ambient Air Pollution Geneva: World Health Organ http://www.who.int/gho/phe/outdoor_air_pollution/exposure/en [Google Scholar]
  85. Becker S, Soukup JM, Gilmour MI, Devlin RB. 85.  1996. Stimulation of human and rat alveolar macrophages by urban air particulates: effects on oxidant radical generation and cytokine production. Toxicol. Appl. Pharmacol. 141:2637–48 [Google Scholar]
  86. van Eeden SF, Tan WC, Suwa T, Mukae H, Terashima T. 86.  et al. 2001. Cytokines involved in the systemic inflammatory response induced by exposure to particulate matter air pollutants (PM10). Am. J. Respir. Crit. Care Med. 164:5826–30 [Google Scholar]
  87. Madden MC, Richards JH, Dailey LA, Hatch GE, Ghio AJ. 87.  2000. Effect of ozone on diesel exhaust particle toxicity in rat lung. Toxicol. Appl. Pharmacol. 168:2140–48 [Google Scholar]
  88. McWhinney RD, Gao SS, Zhou S, Abbatt JPD. 88.  2011. Evaluation of the effects of ozone oxidation on redox-cycling activity of two-stroke engine exhaust particles. Environ. Sci. Technol. 45:62131–36 [Google Scholar]
  89. Rattanavaraha W, Rosen E, Zhang H, Li Q, Pantong K, Kamens RM. 89.  2011. The reactive oxidant potential of different types of aged atmospheric particles: an outdoor chamber study. Atmos. Environ. 45:233848–55 [Google Scholar]
  90. Mendis S, Puska P, Norrving B. 90.  2011. Global Atlas on Cardiovascular Disease Prevention and Control: Policies, Strategies and Interventions. Geneva: World Health Organ. [Google Scholar]
  91. Künzli N, Jerrett M, Mack WJ, Beckerman B, LaBree L. 91.  et al. 2005. Ambient air pollution and atherosclerosis in Los Angeles. Environ. Health Perspect. 113:2201–6 [Google Scholar]
  92. Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A. 92.  2015. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525:7569367–71 [Google Scholar]
  93. Saputra D, Yoon J-H, Park H, Heo Y, Yang H. 93.  et al. 2014. Inhalation of carbon black nanoparticles aggravates pulmonary inflammation in mice. Toxicol. Res. 30:283–90 [Google Scholar]
  94. Evans KA, Halterman JS, Hopke PK, Fagnano M, Rich DQ. 94.  2014. Increased ultrafine particles and carbon monoxide concentrations are associated with asthma exacerbation among urban children. Environ. Res. 129:11–19 [Google Scholar]
  95. Gurgueira SA, Lawrence J, Coull B, Murthy GGK, González-Flecha B. 95.  2002. Rapid increases in the steady-state concentration of reactive oxygen species in the lungs and heart after particulate air pollution inhalation. Environ. Health Perspect. 110:8749–55 [Google Scholar]
  96. González-Flecha B. 96.  2004. Oxidant mechanisms in response to ambient air particles. Mol. Aspects Med. 25:1–2169–82 [Google Scholar]
  97. Yamawaki H, Iwai N. 97.  2006. Mechanisms underlying nano-sized air-pollution–mediated progression of atherosclerosis: Carbon black causes cytotoxic injury/inflammation and inhibits cell growth in vascular endothelial cells. Circ. J. 70:1129–40 [Google Scholar]
  98. Valavanidis A, Vlachogianni T, Fiotakis K. 98.  2009. Tobacco smoke: involvement of reactive oxygen species and stable free radicals in mechanisms of oxidative damage, carcinogenesis and synergistic effects with other respirable particles. Int. J. Environ. Res. Public Health 6:2445–62 [Google Scholar]
  99. Churg A, Dai J, Tai H, Xie C, Wright JL. 99.  2002. Tumor necrosis factor-α is central to acute cigarette smoke–induced inflammation and connective tissue breakdown. Am. J. Respir. Crit. Care Med. 166:6849–54 [Google Scholar]
  100. Angelis N, Porpodis K, Zarogoulidis P, Spyratos D, Kioumis I. 100.  et al. 2014. Airway inflammation in chronic obstructive pulmonary disease. J. Thorac. Dis. 6:Suppl. 1S167–72 [Google Scholar]
  101. Doz E, Noulin N, Boichot E, Guénon I, Fick L. 101.  et al. 2008. Cigarette smoke–induced pulmonary inflammation is TLR4/MyD88 and IL-1R1/MyD88 signaling dependent. J. Immunol. 180:21169–78 [Google Scholar]
  102. Lappalainen U, Whitsett JA, Wert SE, Tichelaar JW, Bry K. 102.  2005. Interleukin-1β causes pulmonary inflammation, emphysema, and airway remodeling in the adult murine lung. Am. J. Respir. Cell Mol. Biol. 32:4311–18 [Google Scholar]
  103. Hoshino T, Kato S, Oka N, Imaoka H, Kinoshita T. 103.  et al. 2007. Pulmonary inflammation and emphysema: role of the cytokines IL-18 and IL-13. Am. J. Respir. Crit. Care Med. 176:149–62 [Google Scholar]
  104. Pauwels NS, Bracke KR, Dupont LL, Van Pottelberge GR, Provoost S. 104.  et al. 2011. Role of IL-1α and the Nlrp3/caspase-1/IL-1β axis in cigarette smoke–induced pulmonary inflammation and COPD. Eur. Respir. J. 38:51019–28 [Google Scholar]
  105. Petersen AMW, Penkowa M, Iversen M, Frydelund-Larsen L, Andersen JL. 105.  et al. 2007. Elevated levels of IL-18 in plasma and skeletal muscle in chronic obstructive pulmonary disease. Lung 185:3161–71 [Google Scholar]
  106. Kang M-J, Homer RJ, Gallo A, Lee CG, Crothers KA. 106.  et al. 2007. IL-18 is induced and IL-18 receptor α plays a critical role in the pathogenesis of cigarette smoke–induced pulmonary emphysema and inflammation. J. Immunol. 178:31948–59 [Google Scholar]
  107. Botelho FM, Bauer CMT, Finch D, Nikota JK, Zavitz CCJ. 107.  et al. 2011. IL-1α/IL-1R1 expression in chronic obstructive pulmonary disease and mechanistic relevance to smoke-induced neutrophilia in mice. PLOS ONE 6:12e28457 [Google Scholar]
  108. Eltom S, Belvisi MG, Stevenson CS, Maher SA, Dubuis E. 108.  et al. 2014. Role of the inflammasome–caspase1/11-IL-1/18 axis in cigarette smoke driven airway inflammation: an insight into the pathogenesis of COPD. PLOS ONE 9:11e112829 [Google Scholar]
  109. Franklin BS, Bossaller L, De Nardo D, Ratter JM, Stutz A. 109.  et al. 2014. The adaptor ASC has extracellular and “prionoid” activities that propagate inflammation. Nat. Immunol. 15:8727–37 [Google Scholar]
  110. Leung CC, Yu ITS, Chen W. 110.  2012. Silicosis. Lancet 379:98302008–18 [Google Scholar]
  111. Peeters PM, Perkins TN, Wouters EFM, Mossman BT, Reynaert NL. 111.  2013. Silica induces NLRP3 inflammasome activation in human lung epithelial cells. Part. Fibre Toxicol. 10:3 [Google Scholar]
  112. Lee S, Matsuzaki H, Kumagai-Takei N, Yoshitome K, Maeda M. 112.  et al. 2014. Silica exposure and altered regulation of autoimmunity. Environ. Health Prev. Med. 19:5322–29 [Google Scholar]
  113. Di Giuseppe M, Gambelli F, Hoyle GW, Lungarella G, Studer SM. 113.  et al. 2009. Systemic inhibition of NF-κB activation protects from silicosis. PLOS ONE 4:5e5689 [Google Scholar]
  114. Guo J, Gu N, Chen J, Shi T, Zhou Y. 114.  et al. 2013. Neutralization of interleukin-1 β attenuates silica-induced lung inflammation and fibrosis in C57BL/6 mice. Arch. Toxicol. 87:111963–73 [Google Scholar]
  115. Maeda M, Nishimura Y, Kumagai N, Hayashi H, Hatayama T. 115.  et al. 2010. Dysregulation of the immune system caused by silica and asbestos. J. Immunotoxicol. 7:4268–78 [Google Scholar]
  116. Song L, Weng D, Dai W, Tang W, Chen S. 116.  et al. 2014. Th17 can regulate silica-induced lung inflammation through an IL-1β–dependent mechanism. J. Cell Mol. Med. 18:91773–84 [Google Scholar]
  117. Guo J, Shi T, Cui X, Rong Y, Zhou T. 117.  et al. 2015. Effects of silica exposure on the cardiac and renal inflammatory and fibrotic response and the antagonistic role of interleukin-1 β in C57BL/6 mice. Arch. Toxicol. 2015:1–12 [Google Scholar]
  118. Hillegass JM, Miller JM, MacPherson MB, Westbom CM, Sayan M. 118.  et al. 2013. Asbestos and erionite prime and activate the NLRP3 inflammasome that stimulates autocrine cytokine release in human mesothelial cells. Part. Fibre Toxicol. 10:39 [Google Scholar]
  119. Thompson JK, Westbom CM, MacPherson MB, Mossman BT, Heintz NH. 119.  et al. 2014. Asbestos modulates thioredoxin–thioredoxin interacting protein interaction to regulate inflammasome activation. Part. Fibre Toxicol. 11:24 [Google Scholar]
  120. Murthy S, Adamcakova-Dodd A, Perry SS, Tephly LA, Keller RM. 120.  et al. 2009. Modulation of reactive oxygen species by Rac1 or catalase prevents asbestos-induced pulmonary fibrosis. Am. J. Physiol. Lung Cell Mol. Physiol. 297:5L846–55 [Google Scholar]
  121. Perkins TN, Peeters PM, Shukla A, Arijs I, Dragon J. 121.  et al. 2015. Indications for distinct pathogenic mechanisms of asbestos and silica through gene expression profiling of the response of lung epithelial cells. Hum. Mol. Genet. 24:51374–89 [Google Scholar]
  122. Chow MT, Tschopp J, Möller A, Smyth MJ. 122.  2012. NLRP3 promotes inflammation-induced skin cancer but is dispensable for asbestos-induced mesothelioma. Immunol. Cell Biol. 90:10983–86 [Google Scholar]
  123. Yang H, Pellegrini L, Napolitano A, Giorgi C, Jube S. 123.  et al. 2015. Aspirin delays mesothelioma growth by inhibiting HMGB1-mediated tumor progression. Cell Death Dis. 6:e1786 [Google Scholar]
  124. 124. World Health Organ 2014. Global Health Observatory Data: World Health Statistics 2014. Geneva: World Health Organ http://www.who.int/gho/publications/world_health_statistics/2014/en/ [Google Scholar]
  125. Krishnegowda G, Hajjar AM, Zhu J, Douglass EJ, Uematsu S. 125.  et al. 2005. Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum: cell signaling receptors, glycosylphosphatidylinositol (GPI) structural requirement, and regulation of GPI activity. J. Biol. Chem. 280:98606–16 [Google Scholar]
  126. Parroche P, Lauw FN, Goutagny N, Latz E, Monks BG. 126.  et al. 2007. Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. PNAS 104:61919–24 [Google Scholar]
  127. Kalantari P, Deoliveira RB, Chan J, Corbett Y, Rathinam V. 127.  et al. 2013. Dual engagement of the NLRP3 and AIM2 inflammasomes by Plasmodium-derived hemozoin and DNA during malaria. Cell Rep. 16:1–15 [Google Scholar]
  128. Clarke CA, Lee CM, Furbert-Harris PM. 128.  2015. The enigmatic Charcot-Leyden crystal protein (Galectin-10): speculative role(s) in the eosinophil biology and function. J. Clin. Cell Immunol. 6:323 [Google Scholar]
  129. Weller PF, Goetzl EJ. 129.  1979. The regulatory and effector roles of eosinophils. Adv. Immunol. 27:339–71 [Google Scholar]
  130. Manny JS, Ellis LR. 130.  2012. Acute myeloid leukemia with Charcot-Leyden crystals. Blood 120:3503 [Google Scholar]
  131. Weller PF, Goetzl EJ, Austen KF. 131.  1980. Identification of human eosinophil lysophospholipase as the constituent of Charcot-Leyden crystals. PNAS 77:127440–43 [Google Scholar]
  132. Arora VK, Singh N, Bhatia A. 132.  1997. Charcot-Leyden crystals in fine needle aspiration cytology. Acta Cytol. 41:2409–12 [Google Scholar]
  133. Brewster UC, Perazella MA. 133.  2004. Acute interstitial nephritis associated with atazanavir, a new protease inhibitor. Am. J. Kidney Dis. 44:5e81–84 [Google Scholar]
  134. Izzedine H, M’rad MB, Bardier A, Daudon M, Salmon D. 134.  2007. Atazanavir crystal nephropathy. AIDS 21:172357–58 [Google Scholar]
  135. Hara M, Suganuma A, Yanagisawa N, Imamura A, Hishima T, Ando M. 135.  2015. Atazanavir nephrotoxicity. Clin. Kidney J. 8:2137–42 [Google Scholar]
  136. Viglietti D, Verine J, De Castro N, Scemla A, Daudon M. 136.  et al. 2011. Chronic interstitial nephritis in an HIV type-1–infected patient receiving ritonavir-boosted atazanavir. Antivir. Ther. 16:1119–21 [Google Scholar]
  137. Kanzaki G, Tsuboi N, Miyazaki Y, Yokoo T, Utsunomiya Y, Hosoya T. 137.  2012. Diffuse tubulointerstitial nephritis accompanied by renal crystal formation in an HIV-infected patient undergoing highly active antiretroviral therapy. Intern. Med. 51:121543–48 [Google Scholar]
  138. Coelho S, Aparício SR, Manso R, Soto K. 138.  2012. Kidney failure in an HIV-positive patient. Am. J. Kidney Dis. 59:6A27–30 [Google Scholar]
  139. Swanson BJ, Limketkai BN, Liu T-C, Montgomery E, Nazari K. 139.  et al. 2013. Sevelamer crystals in the gastrointestinal tract (GIT): a new entity associated with mucosal injury. Am. J. Surg. Pathol. 37:111686–93 [Google Scholar]
  140. Lindblad EB. 140.  2004. Aluminium compounds for use in vaccines. Immunol. Cell Biol. 82:5497–505 [Google Scholar]
  141. Kool M, Pétrilli V, De Smedt T, Rolaz A, Hammad H. 141.  et al. 2008. Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J. Immunol. 181:63755–59 [Google Scholar]
  142. McKee AS, Munks MW, MacLeod MKL, Fleenor CJ, Van Rooijen N. 142.  et al. 2009. Alum induces innate immune responses through macrophage and mast cell sensors, but these sensors are not required for alum to act as an adjuvant for specific immunity. J. Immunol. 183:74403–14 [Google Scholar]
  143. Franchi L, Nuñez G. 143.  2008. The Nlrp3 inflammasome is critical for aluminium hydroxide–mediated IL-1β secretion but dispensable for adjuvant activity. Eur. J. Immunol. 38:82085–89 [Google Scholar]
  144. Cain DW, Sanders SE, Cunningham MM, Kelsoe G. 144.  2013. Disparate adjuvant properties among three formulations of “alum.”. Vaccine 31:4653–60 [Google Scholar]
  145. Gavin AL, Hoebe K, Duong B, Ota T, Martin C. 145.  et al. 2006. Adjuvant-enhanced antibody responses in the absence of Toll-like receptor signaling. Science 314:58071936–38 [Google Scholar]
  146. Flach TL, Ng G, Hari A, Desrosiers MD, Zhang P. 146.  et al. 2011. Alum interaction with dendritic cell membrane lipids is essential for its adjuvanticity. Nat. Med. 17:4479–87 [Google Scholar]
  147. Cannon GJ, Swanson JA. 147.  1992. The macrophage capacity for phagocytosis. J. Cell Sci. 101:Pt. 4907–13 [Google Scholar]
  148. Shanbhag AS, Jacobs JJ, Black J, Galante JO, Glant TT. 148.  1993. Macrophage/particle interactions: effect of size, composition and surface area. J. Biomed. Mater. Res. 28:181–90 [Google Scholar]
  149. Vaine CA, Patel MK, Zhu J, Lee E, Finberg RW. 149.  et al. 2013. Tuning innate immune activation by surface texturing of polymer microparticles: the role of shape in inflammasome activation. J. Immunol. 190:73525–32 [Google Scholar]
  150. Zhang W, Wang L, Liu Y, Chen X, Li J. 150.  et al. 2014. Comparison of PLA microparticles and alum as adjuvants for H5N1 influenza split vaccine: adjuvanticity evaluation and preliminary action mode analysis. Pharm. Res. 31:41015–31 [Google Scholar]
  151. Williams GR, Fierens K, Preston SG, Lunn D, Rysnik O. 151.  et al. 2014. Immunity induced by a broad class of inorganic crystalline materials is directly controlled by their chemistry. J. Exp. Med. 211:61019–25 [Google Scholar]
  152. Caicedo MS, Samelko L, McAllister K, Jacobs JJ, Hallab NJ. 152.  2013. Increasing both CoCrMo-alloy particle size and surface irregularity induces increased macrophage inflammasome activation in vitro potentially through lysosomal destabilization mechanisms. J. Orthop. Res. 31:101633–42 [Google Scholar]
  153. Nadra I, Boccaccini AR, Philippidis P, Whelan LC, McCarthy GM. 153.  et al. 2008. Effect of particle size on hydroxyapatite crystal–induced tumor necrosis factor α secretion by macrophages. Atherosclerosis 196:198–105 [Google Scholar]
  154. Oberdörster G, Ferin J, Lehnert BE. 154.  1994. Correlation between particle size, in vivo particle persistence, and lung injury. Environ. Health Perspect. 102:Suppl. 5173–79 [Google Scholar]
  155. Kusaka T, Nakayama M, Nakamura K, Ishimiya M, Furusawa E, Ogasawara K. 155.  2014. Effect of silica particle size on macrophage inflammatory responses. PLOS ONE 9:3e92634 [Google Scholar]
  156. Schorn C, Janko C, Krenn V, Zhao Y, Munoz LE. 156.  et al. 2012. Bonding the foe—NETting neutrophils immobilize the pro-inflammatory monosodium urate crystals. Front. Immunol. 3:376 [Google Scholar]
  157. Schauer C, Janko C, Munoz LE, Zhao Y, Kienhöfer D. 157.  et al. 2014. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat. Med. 20:5511–17 [Google Scholar]
  158. Gould S, Scott RC. 158.  2005. 2-Hydroxypropyl-β-cyclodextrin (HP-β-CD): a toxicology review. Food Chem. Toxicol. 43:101451–59 [Google Scholar]
  159. Kilsdonk E, Yancey PG, Stoudt GW, Bangerter FW, Johnson WJ. 159.  et al. 1995. Cellular cholesterol efflux mediated by cyclodextrins. J. Biol. Chem. 270:2917250–56 [Google Scholar]
  160. Liu SM, Cogny A, Kockx M, Dean RT, Gaus K. 160.  et al. 2003. Cyclodextrins differentially mobilize free and esterified cholesterol from primary human foam cell macrophages. J. Lipid Res. 44:61156–66 [Google Scholar]
  161. Kritharides L, Kus M, Brown AJ, Jessup W, Dean RT. 161.  1996. Hydroxypropyl-β-cyclodextrin–mediated efflux of 7-ketocholesterol from macrophage foam cells. J. Biol. Chem. 271:4427450–55 [Google Scholar]
  162. Atger VM, de la Llera Moya M, Stoudt GW, Rodrigueza WV, Phillips MC, Rothblat GH. 162.  1997. Cyclodextrins as catalysts for the removal of cholesterol from macrophage foam cells. J. Clin. Investig. 99:4773–80 [Google Scholar]
  163. Sheng X. 163.  2005. Crystal surface adhesion explains the pathological activity of calcium oxalate hydrates in kidney stone formation. J. Am. Soc. Nephrol. 16:71904–8 [Google Scholar]
  164. Sun B, Ji Z, Liao Y-P, Wang M, Wang X. 164.  et al. 2013. Engineering an effective immune adjuvant by designed control of shape and crystallinity of aluminum oxyhydroxide nanoparticles. ACS Nano 7:1210834–49 [Google Scholar]
  165. Watson KE, Boström K, Ravindranath R, Lam T, Norton B, Demer LL. 165.  1994. TGF-β 1 and 25-hydroxycholesterol stimulate osteoblast-like vascular cells to calcify. J. Clin. Investig. 93:52106–13 [Google Scholar]
  166. Alman AC, Kinney GL, Tracy RP, Maahs DM, Hokanson JE. 166.  et al. 2013. Prospective association between inflammatory markers and progression of coronary artery calcification in adults with and without type 1 diabetes. Diabetes Care 36:71967–73 [Google Scholar]
  167. Thomsen SB, Rathcke CN, Zerahn B, Vestergaard H. 167.  2010. Increased levels of the calcification marker matrix Gla protein and the inflammatory markers YKL-40 and CRP in patients with type 2 diabetes and ischemic heart disease. Cardiovasc. Diabetol. 9:86 [Google Scholar]
  168. Al-Aly Z, Shao J-S, Lai C-F, Huang E, Cai J. 168.  et al. 2007. Aortic Msx2-Wnt calcification cascade is regulated by TNF-α–dependent signals in diabetic Ldlr−/− mice. Arterioscler. Thromb. Vasc. Biol. 27:122589–96 [Google Scholar]
  169. Mulder WJM, Jaffer FA, Fayad ZA, Nahrendorf M. 169.  2014. Imaging and nanomedicine in inflammatory atherosclerosis. Sci. Transl. Med. 6:239239sr1 [Google Scholar]
  170. Yazdi AS, Guarda G, Riteau N, Drexler SK, Tardivel A. 170.  et al. 2010. Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1α and IL-1β. PNAS 107:4519449–54 [Google Scholar]
  171. Dong J, Porter DW, Batteli LA, Wolfarth MG, Richardson DL, Ma Q. 171.  2015. Pathologic and molecular profiling of rapid-onset fibrosis and inflammation induced by multi-walled carbon nanotubes. Arch. Toxicol. 89:4621–33 [Google Scholar]
  172. Husain M, Wu D, Saber AT, Decan N, Jacobsen NR. 172.  et al. 2015. Intratracheally instilled titanium dioxide nanoparticles translocate to heart and liver and activate complement cascade in the heart of C57BL/6 mice. Nanotoxicology 9:1013–22 [Google Scholar]
  173. Marzaioli V, Aguilar-Pimentel JA, Weichenmeier I, Luxenhofer G, Wiemann M. 173.  et al. 2014. Surface modifications of silica nanoparticles are crucial for their inert versus proinflammatory and immunomodulatory properties. Int. J. Nanomed. 9:2815–32 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error