1932

Abstract

Genomic DNA sequencing technologies have been one of the great advances of the 21st century, having decreased in cost by seven orders of magnitude and opening up new fields of investigation throughout research and clinical medicine. Genomics coupled with biochemical investigation has allowed the molecular definition of a growing number of new genetic diseases that reveal new concepts of immune regulation. Also, defining the genetic pathogenesis of these diseases has led to improved diagnosis, prognosis, genetic counseling, and, most importantly, new therapies. We highlight the investigational journey from patient phenotype to treatment using the newly defined XMEN disease, caused by the genetic loss of the MAGT1 magnesium transporter, as an example. This disease illustrates how genomics yields new fundamental immunoregulatory insights as well as how research genomics is integrated into clinical immunology. At the end, we discuss two other recently described diseases, CHAI/LATAIE (CTLA-4 deficiency) and PASLI (PI3K dysregulation), as additional examples of the journey from unknown immunological diseases to new precision medicine treatments using genomics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-041015-055620
2016-05-20
2024-12-12
Loading full text...

Full text loading...

/deliver/fulltext/immunol/34/1/annurev-immunol-041015-055620.html?itemId=/content/journals/10.1146/annurev-immunol-041015-055620&mimeType=html&fmt=ahah

Literature Cited

  1. McKusick VA. 1.  1963. Genetics in medicine and medicine in genetics. Am. J. Med. 34:594–99 [Google Scholar]
  2. Bruton OC. 2.  1952. Agammaglobulinemia. Pediatrics 9:722–28 [Google Scholar]
  3. Tsukada S, Saffran DC, Rawlings DJ, Parolini O, Allen RC. 3.  et al. 1993. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell 72:279–90 [Google Scholar]
  4. Vetrie D, Vorechovsky I, Sideras P, Holland J, Davies A. 4.  et al. 1993. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature 361:226–33 [Google Scholar]
  5. Conley ME, Casanova JL. 5.  2014. Discovery of single-gene inborn errors of immunity by next generation sequencing. Curr. Opin. Immunol. 30:17–23 [Google Scholar]
  6. Picard C, Fischer A. 6.  2014. Contribution of high-throughput DNA sequencing to the study of primary immunodeficiencies. Eur. J. Immunol. 44:2854–61 [Google Scholar]
  7. Doudna JA, Charpentier E. 7.  2014. Genome editing: the new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096 [Google Scholar]
  8. Chun HJ, Zheng L, Ahmad M, Wang J, Speirs CK. 8.  et al. 2002. Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature 419:395–99 [Google Scholar]
  9. Kuehn HS, Ouyang W, Lo B, Deenick EK, Niemela JE. 9.  et al. 2014. Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science 345:1623–27 [Google Scholar]
  10. Pennisi E. 10.  2000. Human genome. Finally, the book of life and instructions for navigating it. Science 288:2304–7 [Google Scholar]
  11. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J. 11.  et al. 2002. The structure of haplotype blocks in the human genome. Science 296:2225–29 [Google Scholar]
  12. Cho JH, Feldman M. 12.  2015. Heterogeneity of autoimmune diseases: pathophysiologic insights from genetics and implications for new therapies. Nat. Med. 21:730–38 [Google Scholar]
  13. Visscher PM, Brown MA, McCarthy MI, Yang J. 13.  2012. Five years of GWAS discovery. Am. J. Hum. Genet. 90:7–24 [Google Scholar]
  14. Lupski JR, Belmont JW, Boerwinkle E, Gibbs RA. 14.  2011. Clan genomics and the complex architecture of human disease. Cell 147:32–43 [Google Scholar]
  15. Cirulli ET, Goldstein DB. 15.  2010. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat. Rev. Genet. 11:415–25 [Google Scholar]
  16. Bittles AH, Black ML. 16.  2010. Consanguinity, human evolution, and complex diseases. PNAS 107:Suppl. 11779–86 [Google Scholar]
  17. Cavalli-Sforza LL, Menozzi P, Piazza A. 17.  1994. The History and Geography of Human Genes Princeton, NJ: Princeton Univ. Press [Google Scholar]
  18. Koboldt DC, Steinberg KM, Larson DE, Wilson RK, Mardis ER. 18.  2013. The next-generation sequencing revolution and its impact on genomics. Cell 155:27–38 [Google Scholar]
  19. Weischenfeldt J, Symmons O, Spitz F, Korbel JO. 19.  2013. Phenotypic impact of genomic structural variation: insights from and for human disease. Nat. Rev. Genet. 14:125–38 [Google Scholar]
  20. Michaelson JJ, Shi Y, Gujral M, Zheng H, Malhotra D. 20.  et al. 2012. Whole-genome sequencing in autism identifies hot spots for de novo germline mutation. Cell 151:1431–42 [Google Scholar]
  21. Ponting CP. 21.  2012. Loaded dice for human genome mutation. Cell 151:1399–400 [Google Scholar]
  22. Veltman JA, Brunner HG. 22.  2012. De novo mutations in human genetic disease. Nat. Rev. Genet. 13:565–75 [Google Scholar]
  23. Holzelova E, Vonarbourg C, Stolzenberg MC, Arkwright PD, Selz F. 23.  et al. 2004. Autoimmune lymphoproliferative syndrome with somatic Fas mutations. N. Engl. J. Med. 351:1409–18 [Google Scholar]
  24. Jing H, Zhang Q, Zhang Y, Hill BJ, Dove CG. 24.  et al. 2014. Somatic reversion in dedicator of cytokinesis 8 immunodeficiency modulates disease phenotype. J. Allergy Clin. Immunol. 133:1667–75 [Google Scholar]
  25. Al-Herz W, Bousfiha A, Casanova JL, Chatila T, Conley ME. 25.  et al. 2014. Primary immunodeficiency diseases: an update on the classification from the International Union of Immunological Societies expert committee for primary immunodeficiency. Front. Immunol. 5:162 [Google Scholar]
  26. MacArthur DG, Manolio TA, Dimmock DP, Rehm HL, Shendure J. 26.  et al. 2014. Guidelines for investigating causality of sequence variants in human disease. Nature 508:469–76 [Google Scholar]
  27. Angulo I, Vadas O, Garcon F, Banham-Hall E, Plagnol V. 27.  et al. 2013. Phosphoinositide 3-kinase delta gene mutation predisposes to respiratory infection and airway damage. Science 342:866–71 [Google Scholar]
  28. Lucas CL, Kuehn HS, Zhao F, Niemela JE, Deenick EK. 28.  et al. 2014. Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110δ result in T cell senescence and human immunodeficiency. Nat. Immunol. 15:88–97 [Google Scholar]
  29. MacArthur DG, Balasubramanian S, Frankish A, Huang N, Morris J. 29.  et al. 2012. A systematic survey of loss-of-function variants in human protein-coding genes. Science 335:823–28 [Google Scholar]
  30. Xue Y, Chen Y, Ayub Q, Huang N, Ball EV. 30.  1000 Genomes Proj. Consort 2012. Deleterious- and disease-allele prevalence in healthy individuals: insights from current predictions, mutation databases, and population-scale resequencing. Am. J. Hum. Genet. 91:1022–32 [Google Scholar]
  31. Ionita-Laza I, Makarov V, Yoon S, Raby B, Buxbaum J. 31.  et al. 2011. Finding disease variants in Mendelian disorders by using sequence data: methods and applications. Am. J. Hum. Genet. 89:701–12 [Google Scholar]
  32. Li FY, Chaigne-Delalande B, Kanellopoulou C, Davis JC, Matthews HF. 32.  et al. 2011. Second messenger role for Mg2+ revealed by human T-cell immunodeficiency. Nature 475:471–76 [Google Scholar]
  33. Chaigne-Delalande B, Li FY, O’Connor GM, Lukacs MJ, Jiang P. 33.  et al. 2013. Mg2+ regulates cytotoxic functions of NK and CD8 T cells in chronic EBV infection through NKG2D. Science 341:186–91 [Google Scholar]
  34. Li FY, Chaigne-Delalande B, Su H, Uzel G, Matthews H, Lenardo MJ. 34.  2014. XMEN disease: a new primary immunodeficiency affecting Mg2+ regulation of immunity against Epstein-Barr virus. Blood 123:2148–52 [Google Scholar]
  35. Dobbs K, Dominguez Conde C, Zhang SY, Parolini S, Audry M. 35.  et al. 2015. Inherited DOCK2 deficiency in patients with early-onset invasive infections. N. Engl. J. Med. 372:2409–22 [Google Scholar]
  36. Okada S, Markle JG, Deenick EK, Mele F, Averbuch D. 36.  et al. 2015. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations. Science 349:606–13 [Google Scholar]
  37. Zhang Q, Davis JC, Lamborn IT, Freeman AF, Jing H. 37.  et al. 2009. Combined immunodeficiency associated with DOCK8 mutations. N. Engl. J. Med. 361:2046–55 [Google Scholar]
  38. Zhang Y, Yu X, Ichikawa M, Lyons JJ, Datta S. 38.  et al. 2014. Autosomal recessive phosphoglucomutase 3 (PGM3) mutations link glycosylation defects to atopy, immune deficiency, autoimmunity, and neurocognitive impairment. J. Allergy Clin. Immunol. 133:1400–9.e5 [Google Scholar]
  39. Deau MC, Heurtier L, Frange P, Suarez F, Bole-Feysot C. 39.  et al. 2014. A human immunodeficiency caused by mutations in the PIK3R1 gene. J. Clin. Investig. 124:3923–28 [Google Scholar]
  40. Lucas CL, Zhang Y, Venida A, Wang Y, Hughes J. 40.  et al. 2014. Heterozygous splice mutation in PIK3R1 causes human immunodeficiency with lymphoproliferation due to dominant activation of PI3K. J. Exp. Med. 211:2537–47 [Google Scholar]
  41. Price S, Shaw PA, Seitz A, Joshi G, Davis J. 41.  et al. 2014. Natural history of autoimmune lymphoproliferative syndrome associated with FAS gene mutations. Blood 123:1989–99 [Google Scholar]
  42. Siegel RM, Frederiksen JK, Zacharias DA, Chan FK, Johnson M. 42.  et al. 2000. Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science 288:2354–57 [Google Scholar]
  43. Oftedal BE, Hellesen A, Erichsen MM, Bratland E, Vardi A. 43.  et al. 2015. Dominant mutations in the autoimmune regulator AIRE are associated with common organ-specific autoimmune diseases. Immunity 42:1185–96 [Google Scholar]
  44. Boisson B, Quartier P, Casanova JL. 44.  2015. Immunological loss-of-function due to genetic gain-of-function in humans: autosomal dominance of the third kind. Curr. Opin. Immunol. 32:90–105 [Google Scholar]
  45. Rieux-Laucat F, Casanova JL. 45.  2014. Immunology. Autoimmunity by haploinsufficiency. Science 345:1560–61 [Google Scholar]
  46. Schubert D, Bode C, Kenefeck R, Hou TZ, Wing JB. 46.  et al. 2014. Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat. Med. 20:1410–16 [Google Scholar]
  47. Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ. 47.  et al. 2001. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 27:20–21 [Google Scholar]
  48. Noguchi M, Yi H, Rosenblatt HM, Filipovich AH, Adelstein S. 48.  et al. 1993. Interleukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 73:147–57 [Google Scholar]
  49. Acuna-Hidalgo R, Bo T, Kwint MP, van de Vorst M, Pinelli M. 49.  et al. 2015. Post-zygotic point mutations are an underrecognized source of de novo genomic variation. Am. J. Hum. Genet. 97:67–74 [Google Scholar]
  50. de Ligt J, Willemsen MH, van Bon BW, Kleefstra T, Yntema HG. 50.  et al. 2012. Diagnostic exome sequencing in persons with severe intellectual disability. N. Engl. J. Med. 367:1921–29 [Google Scholar]
  51. Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ. 51.  et al. 2011. Exome sequencing as a tool for Mendelian disease gene discovery. Nat. Rev. Genet. 12:745–55 [Google Scholar]
  52. Cooper DN, Krawczak M, Polychronakos C, Tyler-Smith C, Kehrer-Sawatzki H. 52.  2013. Where genotype is not predictive of phenotype: towards an understanding of the molecular basis of reduced penetrance in human inherited disease. Hum. Genet. 132:1077–130 [Google Scholar]
  53. Shawky R. 53.  2014. Reduced penetrance in human inherited disease. Egypt. J. Med. Hum. Genet. 15:103–11 [Google Scholar]
  54. Vu V, Verster AJ, Schertzberg M, Chuluunbaatar T, Spensley M. 54.  et al. 2015. Natural variation in gene expression modulates the severity of mutant phenotypes. Cell 162:391–402 [Google Scholar]
  55. Zlotogora J. 55.  2003. Penetrance and expressivity in the molecular age. Genet. Med. 5:347–52 [Google Scholar]
  56. Bustamante J, Boisson-Dupuis S, Abel L, Casanova JL. 56.  2014. Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-gamma immunity. Semin. Immunol. 26:454–70 [Google Scholar]
  57. Ciancanelli MJ, Huang SX, Luthra P, Garner H, Itan Y. 57.  et al. 2015. Infectious disease: life-threatening influenza and impaired interferon amplification in human IRF7 deficiency. Science 348:448–53 [Google Scholar]
  58. Gilissen C, Hoischen A, Brunner HG, Veltman JA. 58.  2012. Disease gene identification strategies for exome sequencing. Eur. J. Hum. Genet. 20:490–97 [Google Scholar]
  59. Knecht C, Krawczak M. 59.  2014. Molecular genetic epidemiology of human diseases: from patterns to predictions. Hum. Genet. 133:425–30 [Google Scholar]
  60. Ng SB, Nickerson DA, Bamshad MJ, Shendure J. 60.  2010. Massively parallel sequencing and rare disease. Hum. Mol. Genet. 19:R119–24 [Google Scholar]
  61. Hsu AP, Johnson KD, Falcone EL, Sanalkumar R, Sanchez L. 61.  et al. 2013. GATA2 haploinsufficiency caused by mutations in a conserved intronic element leads to MonoMAC syndrome. Blood 121:3830–37 [Google Scholar]
  62. Liadaki K, Sun J, Hammarstrom L, Pan-Hammarstrom Q. 62.  2013. New facets of antibody deficiencies. Curr. Opin. Immunol. 25:629–38 [Google Scholar]
  63. Lougaris V, Tampella G, Baronio M, Vitali M, Plebani A. 63.  2014. The genetic heterogeneity of common variable immunodeficiency (CVID): an update. J. Vaccines Vaccin 5:223 [Google Scholar]
  64. Frousios K, Iliopoulos CS, Schlitt T, Simpson MA. 64.  2013. Predicting the functional consequences of non-synonymous DNA sequence variants—evaluation of bioinformatics tools and development of a consensus strategy. Genomics 102:223–28 [Google Scholar]
  65. Sengupta M, Sarkar D, Ganguly K, Sengupta D, Bhaskar S, Ray K. 65.  2015. In silico analyses of missense mutations in coagulation factor VIII: identification of severity determinants of haemophilia A. Haemophilia 21:662–69 [Google Scholar]
  66. van der Velde KJ, Kuiper J, Thompson BA, Plazzer JP, van Valkenhoef G. 66.  et al. 2015. Evaluation of CADD scores in curated mismatch repair gene variants yields a model for clinical validation and prioritization. Hum. Mutat. 36:712–19 [Google Scholar]
  67. Wu J, Li Y, Jiang R. 67.  2014. Integrating multiple genomic data to predict disease-causing nonsynonymous single nucleotide variants in exome sequencing studies. PLOS Genet. 10:e1004237 [Google Scholar]
  68. Casanova JL, Conley ME, Seligman SJ, Abel L, Notarangelo LD. 68.  2014. Guidelines for genetic studies in single patients: lessons from primary immunodeficiencies. J. Exp. Med. 211:2137–49 [Google Scholar]
  69. Zhang Y, Su HC, Lenardo MJ. 69.  2015. Genomics is rapidly advancing precision medicine for immunological disorders. Nat. Immunol. 16:1001–4 [Google Scholar]
  70. Mohr SE, Smith JA, Shamu CE, Neumuller RA, Perrimon N. 70.  2014. RNAi screening comes of age: improved techniques and complementary approaches. Nat. Rev. Mol. Cell Biol. 15:591–600 [Google Scholar]
  71. Oliveira JB, Bidere N, Niemela JE, Zheng L, Sakai K. 71.  et al. 2007. NRAS mutation causes a human autoimmune lymphoproliferative syndrome. PNAS 104:8953–58 [Google Scholar]
  72. Plotkin JB. 72.  2010. Transcriptional regulation is only half the story. Mol. Syst. Biol. 6:406 [Google Scholar]
  73. Chakravarti A, Clark AG, Mootha VK. 73.  2013. Distilling pathophysiology from complex disease genetics. Cell 155:21–26 [Google Scholar]
  74. Candotti F, O’Shea JJ, Villa A. 74.  1998. Severe combined immune deficiencies due to defects of the common gamma chain-JAK3 signaling pathway. Springer Semin. Immunopathol. 19:401–15 [Google Scholar]
  75. Miller JN, Pearce DA. 75.  2014. Nonsense-mediated decay in genetic disease: friend or foe?. Mutat. Res. Rev. Mutat. Res. 762:52–64 [Google Scholar]
  76. Kousi M, Katsanis N. 76.  2015. Genetic modifiers and oligogenic inheritance. Cold Spring Harb. Perspect. Med. 5:a017145 [Google Scholar]
  77. Girard SL, Dion PA, Bourassa CV, Geoffroy S, Lachance-Touchette P. 77.  et al. 2015. Mutation burden of rare variants in schizophrenia candidate genes. PLOS ONE 10:e0128988 [Google Scholar]
  78. Parikshak NN, Gandal MJ, Geschwind DH. 78.  2015. Systems biology and gene networks in neurodevelopmental and neurodegenerative disorders. Nat. Rev. Genet. 16:441–58 [Google Scholar]
  79. Miller JH, Page SE. 79.  2007. Complex Adaptive Systems: An Introduction to Computational Models of Social Life Princeton, NJ: Princeton Univ. Press [Google Scholar]
  80. Holland JH. 80.  2014. Signals and Boundaries: Building Blocks for Complex Adaptive Systems Cambridge, MA: MIT Press [Google Scholar]
  81. Gursky VV, Surkova SY, Samsonova MG. 81.  2012. Mechanisms of developmental robustness. Biosystems 109:329–35 [Google Scholar]
  82. Naujokat C, Fuchs D, Berges C. 82.  2007. Adaptive modification and flexibility of the proteasome system in response to proteasome inhibition. Biochim. Biophys. Acta 1773:1389–97 [Google Scholar]
  83. Rossi A, Kontarakis Z, Gerri C, Nolte H, Holper S. 83.  et al. 2015. Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 524:230–33 [Google Scholar]
  84. Milner JD, Brenchley JM, Laurence A, Freeman AF, Hill BJ. 84.  et al. 2008. Impaired TH17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452:773–76 [Google Scholar]
  85. Flanagan SE, Haapaniemi E, Russell MA, Caswell R, Lango Allen H. 85.  et al. 2014. Activating germline mutations in STAT3 cause early-onset multi-organ autoimmune disease. Nat. Genet. 46:812–14 [Google Scholar]
  86. Haapaniemi EM, Kaustio M, Rajala HL, van Adrichem AJ, Kainulainen L. 86.  et al. 2015. Autoimmunity, hypogammaglobulinemia, lymphoproliferation, and mycobacterial disease in patients with activating mutations in STAT3. Blood 125:639–48 [Google Scholar]
  87. Milner JD, Vogel TP, Forbes L, Ma CA, Stray-Pedersen A. 87.  et al. 2015. Early-onset lymphoproliferation and autoimmunity caused by germline STAT3 gain-of-function mutations. Blood 125:591–99 [Google Scholar]
  88. Boisson-Dupuis S, Kong XF, Okada S, Cypowyj S, Puel A. 88.  et al. 2012. Inborn errors of human STAT1: allelic heterogeneity governs the diversity of immunological and infectious phenotypes. Curr. Opin. Immunol. 24:364–78 [Google Scholar]
  89. Emison ES, Garcia-Barcelo M, Grice EA, Lantieri F, Amiel J. 89.  et al. 2010. Differential contributions of rare and common, coding and noncoding Ret mutations to multifactorial Hirschsprung disease liability. Am. J. Hum. Genet. 87:60–74 [Google Scholar]
  90. Brown MS, Goldstein JL. 90.  1992. Koch's postulates for cholesterol. Cell 71:187–88 [Google Scholar]
  91. Katsanis SH, Katsanis N. 91.  2013. Molecular genetic testing and the future of clinical genomics. Nat. Rev. Genet. 14:415–26 [Google Scholar]
  92. Rizzo JM, Buck MJ. 92.  2012. Key principles and clinical applications of “next-generation” DNA sequencing. Cancer Prev. Res. 5:887–900 [Google Scholar]
  93. Javitt GH, Carner KS. 93.  2014. Regulation of next generation sequencing. J. Law Med. Ethics 42:Suppl. 19–21 [Google Scholar]
  94. Tabor HK, Auer PL, Jamal SM, Chong JX, Yu JH. 94.  et al. 2014. Pathogenic variants for Mendelian and complex traits in exomes of 6,517 European and African Americans: implications for the return of incidental results. Am. J. Hum. Genet. 95:183–93 [Google Scholar]
  95. Green RC, Berg JS, Grody WW, Kalia SS, Korf BR. 95.  et al. 2013. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet. Med. 15:565–74 [Google Scholar]
  96. Burke W, Antommaria AH, Bennett R, Botkin J, Clayton EW. 96.  et al. 2013. Recommendations for returning genomic incidental findings? We need to talk!. Genet. Med. 15:854–59 [Google Scholar]
  97. Gargis AS, Kalman L, Bick DP, da Silva C, Dimmock DP. 97.  et al. 2015. Good laboratory practice for clinical next-generation sequencing informatics pipelines. Nat. Biotechnol. 33:689–93 [Google Scholar]
  98. Collins FS, Varmus H. 98.  2015. A new initiative on precision medicine. N. Engl. J. Med. 372:793–95 [Google Scholar]
  99. Sassi A, Lazaroski S, Wu G, Haslam SM, Fliegauf M. 99.  et al. 2014. Hypomorphic homozygous mutations in phosphoglucomutase 3 (PGM3) impair immunity and increase serum IgE levels. J. Allergy Clin. Immunol. 133:1410–19.e13 [Google Scholar]
  100. Stray-Pedersen A, Backe PH, Sorte HS, Morkrid L, Chokshi NY. 100.  et al. 2014. PGM3 mutations cause a congenital disorder of glycosylation with severe immunodeficiency and skeletal dysplasia. Am. J. Hum. Genet. 95:96–107 [Google Scholar]
  101. Maguire ME, Cowan JA. 101.  2002. Magnesium chemistry and biochemistry. Biometals 15:203–10 [Google Scholar]
  102. Alangari A, Alsultan A, Adly N, Massaad MJ, Kiani IS. 102.  et al. 2012. LPS-responsive beige-like anchor (LRBA) gene mutation in a family with inflammatory bowel disease and combined immunodeficiency. J. Allergy Clin. Immunol. 130:481–88.e2 [Google Scholar]
  103. Burns SO, Zenner HL, Plagnol V, Curtis J, Mok K. 103.  et al. 2012. LRBA gene deletion in a patient presenting with autoimmunity without hypogammaglobulinemia. J. Allergy Clin. Immunol. 130:1428–32 [Google Scholar]
  104. Lopez-Herrera G, Tampella G, Pan-Hammarstrom Q, Herholz P, Trujillo-Vargas CM. 104.  et al. 2012. Deleterious mutations in LRBA are associated with a syndrome of immune deficiency and autoimmunity. Am. J. Hum. Genet. 90:986–1001 [Google Scholar]
  105. Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH. 105.  1995. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3:541–47 [Google Scholar]
  106. Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A. 106.  et al. 1995. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270:985–88 [Google Scholar]
  107. Walker LS, Sansom DM. 107.  2011. The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat. Rev. Immunol. 11:852–63 [Google Scholar]
  108. Wing K, Yamaguchi T, Sakaguchi S. 108.  2011. Cell-autonomous and -non-autonomous roles of CTLA-4 in immune regulation. Trends Immunol. 32:428–33 [Google Scholar]
  109. Warnatz K, Denz A, Drager R, Braun M, Groth C. 109.  et al. 2002. Severe deficiency of switched memory B cells (CD27+IgMIgD) in subgroups of patients with common variable immunodeficiency: a new approach to classify a heterogeneous disease. Blood 99:1544–51 [Google Scholar]
  110. Isnardi I, Ng YS, Menard L, Meyers G, Saadoun D. 110.  et al. 2010. Complement receptor 2/CD21 human naive B cells contain mostly autoreactive unresponsive clones. Blood 115:5026–36 [Google Scholar]
  111. Lo B, Zhang K, Lu W, Zheng L, Zhang Q. 111.  et al. 2015. Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science 349:436–40 [Google Scholar]
  112. Wang JW, Howson J, Haller E, Kerr WG. 112.  2001. Identification of a novel lipopolysaccharide-inducible gene with key features of both a kinase anchor proteins and chs1/beige proteins. J. Immunol. 166:4586–95 [Google Scholar]
  113. Gebauer D, Li J, Jogl G, Shen Y, Myszka DG, Tong L. 113.  2004. Crystal structure of the PH-BEACH domains of human LRBA/BGL. Biochemistry 43:14873–80 [Google Scholar]
  114. de Souza N, Vallier LG, Fares H, Greenwald I. 114.  2007. SEL-2, the C. elegans neurobeachin/LRBA homolog, is a negative regulator of lin-12/Notch activity and affects endosomal traffic in polarized epithelial cells. Development 134:691–702 [Google Scholar]
  115. Qureshi OS, Kaur S, Hou TZ, Jeffery LE, Poulter NS. 115.  et al. 2012. Constitutive clathrin-mediated endocytosis of CTLA-4 persists during T cell activation. J. Biol. Chem. 287:9429–40 [Google Scholar]
  116. Mead KI, Zheng Y, Manzotti CN, Perry LC, Liu MK. 116.  et al. 2005. Exocytosis of CTLA-4 is dependent on phospholipase D and ADP ribosylation factor-1 and stimulated during activation of regulatory T cells. J. Immunol. 174:4803–11 [Google Scholar]
  117. 117. HERA Study Group 1995. A randomized trial of hydroxychloroquine in early rheumatoid arthritis: the HERA Study. Am. J. Med. 98:156–68 [Google Scholar]
  118. Clegg DO, Dietz F, Duffy J, Willkens RF, Hurd E. 118.  et al. 1997. Safety and efficacy of hydroxychloroquine as maintenance therapy for rheumatoid arthritis after combination therapy with methotrexate and hydroxychloroquine. J. Rheumatol. 24:1896–902 [Google Scholar]
  119. Costedoat-Chalumeau N, Dunogue B, Morel N, Le Guern V, Guettrot-Imbert G. 119.  2014. Hydroxychloroquine: a multifaceted treatment in lupus. Presse Med. 43:e167–80 [Google Scholar]
  120. Crank MC, Grossman JK, Moir S, Pittaluga S, Buckner CM. 120.  et al. 2014. Mutations in PIK3CD can cause hyper IgM syndrome (HIGM) associated with increased cancer susceptibility. J. Clin. Immunol. 34:272–76 [Google Scholar]
  121. Hartman HN, Niemela J, Hintermeyer MK, Garofalo M, Stoddard J. 121.  et al. 2015. Gain of function mutations of PIK3CD as a cause of primary sclerosing cholangitis. J. Clin. Immunol. 35:11–14 [Google Scholar]
  122. Kracker S, Curtis J, Ibrahim MA, Sediva A, Salisbury J. 122.  et al. 2014. Occurrence of B-cell lymphomas in patients with activated phosphoinositide 3-kinase delta syndrome. J. Allergy Clin. Immunol. 134:233–36 [Google Scholar]
  123. Cantley LC. 123.  2002. The phosphoinositide 3-kinase pathway. Science 296:1655–57 [Google Scholar]
  124. Yuan TL, Cantley LC. 124.  2008. PI3K pathway alterations in cancer: variations on a theme. Oncogene 27:5497–510 [Google Scholar]
  125. Furman RR, Sharman JP, Coutre SE, Cheson BD, Pagel JM. 125.  et al. 2014. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 370:997–1007 [Google Scholar]
  126. Shah A, Mangaonkar A. 126.  2015. Idelalisib: a novel PI3Kδ inhibitor for chronic lymphocytic leukemia. Ann. Pharmacother. 49:1162–70 [Google Scholar]
/content/journals/10.1146/annurev-immunol-041015-055620
Loading
/content/journals/10.1146/annurev-immunol-041015-055620
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error