Genome technologies have defined a complex genetic architecture in major infectious, inflammatory, and autoimmune disorders. High density marker arrays and Immunochips have powered genome-wide association studies (GWAS) that have mapped nearly 450 genetic risk loci in 22 major inflammatory diseases, including a core of common genes that play a central role in pathological inflammation. Whole-exome and whole-genome sequencing have identified more than 265 genes in which mutations cause primary immunodeficiencies and rare forms of severe inflammatory bowel disease. Combined analysis of inflammatory disease GWAS and primary immunodeficiencies point to shared proteins and pathways that are required for immune cell development and protection against infections and are also associated with pathological inflammation. Finally, sequencing of chromatin immunoprecipitates containing specific transcription factors, with parallel RNA sequencing, has charted epigenetic regulation of gene expression by proinflammatory transcription factors in immune cells, providing complementary information to characterize morbid genes at infectious and inflammatory disease loci.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Newport MJ, Finan C. 1.  2011. Genome-wide association studies and susceptibility to infectious diseases. Brief Funct. Genom. 10:98–107 [Google Scholar]
  2. Khor CC, Hibberd ML. 2.  2012. Host-pathogen interactions revealed by human genome-wide surveys. Trends Genet 28:233–43 [Google Scholar]
  3. Vannberg FO, Chapman SJ, Hill AV. 3.  2011. Human genetic susceptibility to intracellular pathogens. Immunol. Rev. 240:105–16 [Google Scholar]
  4. Bongfen SE, Laroque A, Berghout J, Gros P. 4.  2009. Genetic and genomic analyses of host-pathogen interactions in malaria. Trends Parasitol 25:417–22 [Google Scholar]
  5. Aidoo M, Terlouw DJ, Kolczak MS, McElroy PD, ter Kuile FO. 5.  et al. 2002. Protective effects of the sickle cell gene against malaria morbidity and mortality. Lancet 359:1311–12 [Google Scholar]
  6. Dean M, Carrington M, Winkler C, Huttley GA, Smith MW. 6.  et al. 1996. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Science 273:1856–62 [Google Scholar]
  7. Casanova JL, Abel L. 7.  2013. The genetic theory of infectious diseases: a brief history and selected illustrations. Annu. Rev. Genom. Hum. Genet. 14:215–43 [Google Scholar]
  8. Chapman SJ, Hill AV. 8.  2012. Human genetic susceptibility to infectious disease. Nat. Rev. Genet. 13:175–88 [Google Scholar]
  9. Picard C, Fischer A. 9.  2014. Contribution of high-throughput DNA sequencing to the study of primary immunodeficiencies. Eur. J. Immunol. 44:2854–61 [Google Scholar]
  10. Chou J, Ohsumi TK, Geha RS. 10.  2012. Use of whole exome and genome sequencing in the identification of genetic causes of primary immunodeficiencies. Curr. Opin. Allergy Clin. Immunol. 12:623–28 [Google Scholar]
  11. Casanova JL. 11.  2015. Severe infectious diseases of childhood as monogenic inborn errors of immunity. PNAS 112:E7128–37 [Google Scholar]
  12. Casanova JL. 12.  2015. Human genetic basis of interindividual variability in the course of infection. PNAS 112:E7118–27 [Google Scholar]
  13. Milner JD, Holland SM. 13.  2013. The cup runneth over: lessons from the ever-expanding pool of primary immunodeficiency diseases. Nat. Rev. Immunol. 13:635–48 [Google Scholar]
  14. Delogu LG, Deidda S, Delitala G, Manetti R. 14.  2011. Infectious diseases and autoimmunity. J. Infect. Dev. Ctries 5:679–87 [Google Scholar]
  15. Karlsson EK, Kwiatkowski DP, Sabeti PC. 15.  2014. Natural selection and infectious disease in human populations. Nat. Rev. Genet. 15:379–93 [Google Scholar]
  16. Abel L, Alcais A, Schurr E. 16.  2014. The dissection of complex susceptibility to infectious disease: bacterial, viral and parasitic infections. Curr. Opin. Immunol. 30:72–78 [Google Scholar]
  17. Parkes M, Cortes A, van Heel DA, Brown MA. 17.  2013. Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nat. Rev. Genet. 14:661–73 [Google Scholar]
  18. Anderson CA, Boucher G, Lees CW, Franke A, D'Amato M. 18.  et al. 2011. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat. Genet. 43:246–52 [Google Scholar]
  19. Franke A, McGovern DP, Barrett JC, Wang K, Radford-Smith GL. 19.  et al. 2010. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat. Genet. 42:1118–25 [Google Scholar]
  20. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP. 20.  et al. 2012. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491:119–24 [Google Scholar]
  21. Okada Y, Wu D, Trynka G, Raj T, Terao C. 21.  et al. 2014. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506:376–81 [Google Scholar]
  22. Tsoi LC, Spain SL, Knight J, Ellinghaus E, Stuart PE. 22.  et al. 2012. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nat. Genet. 44:1341–48 [Google Scholar]
  23. Ellinghaus E, Ellinghaus D, Stuart PE, Nair RP, Debrus S. 23.  et al. 2010. Genome-wide association study identifies a psoriasis susceptibility locus at TRAF3IP2. Nat. Genet. 42:991–95 [Google Scholar]
  24. 24. Int. Mult. Scler. Genet. Consort., Wellcome Trust Case Control Consort. 2, Sawcer S, Hellenthal G, Pirinen M et al. 2011. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476:214–19 [Google Scholar]
  25. 25. Int. Mult. Scler. Genet. Consort., Beecham AH, Patsopoulos NA, Xifara DK, Davis MF et al. 2013. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat. Genet. 45:1353–60 [Google Scholar]
  26. Bentham J, Morris DL, Cunninghame Graham DS, Pinder CL, Tombleson P. 26.  et al. 2015. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nat. Genet. 47:1457–64 [Google Scholar]
  27. Ellinghaus D, Jostins L, Spain SL, Cortes A, Bethune J. 27.  et al. 2016. Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat. Genet. 48:510–18 [Google Scholar]
  28. Bentham J, Morris DL, Cunninghame Graham DS, Pinder CL, Tombleson P. 28.  et al. 2015. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nat. Genet. 47:1457–64 [Google Scholar]
  29. Ovsyannikova IG, Poland GA. 29.  2011. Vaccinomics: current findings, challenges and novel approaches for vaccine development. AAPS J 13:438–44 [Google Scholar]
  30. Poland GA, Kennedy RB, McKinney BA, Ovsyannikova IG, Lambert ND. 30.  et al. 2013. Vaccinomics, adversomics, and the immune response network theory: individualized vaccinology in the 21st century. Semin. Immunol. 25:89–103 [Google Scholar]
  31. Zentner GE, Henikoff S. 31.  2014. High-resolution digital profiling of the epigenome. Nat. Rev. Genet. 15:814–27 [Google Scholar]
  32. Flanagan JM. 32.  2015. Epigenome-wide association studies (EWAS): past, present, and future. Methods Mol. Biol. 1238:51–63 [Google Scholar]
  33. Martin P, McGovern A, Orozco G, Duffus K, Yarwood A. 33.  et al. 2015. Capture Hi-C reveals novel candidate genes and complex long-range interactions with related autoimmune risk loci. Nat. Commun. 6:10069 [Google Scholar]
  34. Bellamy R, Ruwende C, Corrah T, McAdam KP, Whittle HC, Hill AV. 34.  1998. Variations in the NRAMP1 gene and susceptibility to tuberculosis in West Africans. N. Engl. J. Med. 338:640–44 [Google Scholar]
  35. McLaren PJ, Carrington M. 35.  2015. The impact of host genetic variation on infection with HIV-1. Nat. Immunol. 16:577–83 [Google Scholar]
  36. Carvalho A, Cunha C, Pasqualotto AC, Pitzurra L, Denning DW, Romani L. 36.  2010. Genetic variability of innate immunity impacts human susceptibility to fungal diseases. Int. J. Infect. Dis. 14:e460–8 [Google Scholar]
  37. Ciancanelli MJ, Abel L, Zhang SY, Casanova JL. 37.  2016. Host genetics of severe influenza: from mouse Mx1 to human IRF7. Curr. Opin. Immunol. 38:109–20 [Google Scholar]
  38. Alcais A, Abel L, Casanova JL. 38.  2009. Human genetics of infectious diseases: between proof of principle and paradigm. J. Clin. Investig. 119:2506–14 [Google Scholar]
  39. Driss A, Hibbert JM, Wilson NO, Iqbal SA, Adamkiewicz TV, Stiles JK. 39.  2011. Genetic polymorphisms linked to susceptibility to malaria. Malar. J. 10:271 [Google Scholar]
  40. Timmann C, Thye T, Vens M, Evans J, May J. 40.  et al. 2012. Genome-wide association study indicates two novel resistance loci for severe malaria. Nature 489:443–46 [Google Scholar]
  41. Band G, Le QS, Jostins L, Pirinen M, Kivinen K. 41.  et al. 2013. Imputation-based meta-analysis of severe malaria in three African populations. PLOS Genet 9:e1003509 [Google Scholar]
  42. Rockett KA, Clarke GM, Fitzpatrick K, Hubbart C, Jeffreys AE. 42.  et al. for Malar. Genom. Epidemiol. Netw 2014. Reappraisal of known malaria resistance loci in a large multicenter study. Nat. Genet. 46:1197–204 [Google Scholar]
  43. Jallow M, Teo YY, Small KS, Rockett KA, Deloukas P. 43.  et al. 2009. Genome-wide and fine-resolution association analysis of malaria in West Africa. Nat. Genet. 41:657–65 [Google Scholar]
  44. 44. Malaria Genom. Epidemiol. Netw 2015. A novel locus of resistance to severe malaria in a region of ancient balancing selection. Nature 526:253–57 [Google Scholar]
  45. Teo YY, Small KS, Kwiatkowski DP. 45.  2010. Methodological challenges of genome-wide association analysis in Africa. Nat. Rev. Genet. 11:149–60 [Google Scholar]
  46. Mu J, Myers RA, Jiang H, Liu S, Ricklefs S. 46.  et al. 2010. Plasmodium falciparum genome-wide scans for positive selection, recombination hot spots and resistance to antimalarial drugs. Nat. Genet. 42:268–71 [Google Scholar]
  47. Monot M, Honore N, Garnier T, Zidane N, Sherafi D. 47.  et al. 2009. Comparative genomic and phylogeographic analysis of Mycobacterium leprae. Nat. Genet. 41:1282–89 [Google Scholar]
  48. Mira MT, Alcais A, Van Thuc N, Thai VH, Huong NT. 48.  et al. 2003. Chromosome 6q25 is linked to susceptibility to leprosy in a Vietnamese population. Nat. Genet. 33:412–15 [Google Scholar]
  49. Mira MT, Alcais A, Nguyen VT, Moraes MO, Di Flumeri C. 49.  et al. 2004. Susceptibility to leprosy is associated with PARK2 and PACRG. Nature 427:636–40 [Google Scholar]
  50. Davila S, Wright VJ, Khor CC, Sim KS, Binder A. 50.  et al. 2010. Genome-wide association study identifies variants in the CFH region associated with host susceptibility to meningococcal disease. Nat. Genet. 42:772–76 [Google Scholar]
  51. Zhang F, Liu H, Chen S, Low H, Sun L. 51.  et al. 2011. Identification of two new loci at IL23R and RAB32 that influence susceptibility to leprosy. Nat. Genet. 43:1247–51 [Google Scholar]
  52. Schurr E, Gros P. 52.  2009. A common genetic fingerprint in leprosy and Crohn's disease?. N. Engl. J. Med. 361:2666–68 [Google Scholar]
  53. Liu H, Irwanto A, Tian H, Fu X, Yu Y. 53.  et al. 2012. Identification of IL18RAP/IL18R1 and IL12B as leprosy risk genes demonstrates shared pathogenesis between inflammation and infectious diseases. Am. J. Hum. Genet. 91:935–41 [Google Scholar]
  54. Liu H, Irwanto A, Fu X, Yu G, Yu Y. 54.  et al. 2015. Discovery of six new susceptibility loci and analysis of pleiotropic effects in leprosy. Nat. Genet. 47:267–71 [Google Scholar]
  55. Thye T, Vannberg FO, Wong SH, Owusu-Dabo E, Osei I. 55.  et al. 2010. Genome-wide association analyses identifies a susceptibility locus for tuberculosis on chromosome 18q11.2. Nat. Genet. 42:739–41 [Google Scholar]
  56. Dai Y, Zhang X, Pan H, Tang S, Shen H, Wang J. 56.  2011. Fine mapping of genetic polymorphisms of pulmonary tuberculosis within chromosome 18q11.2 in the Chinese population: a case-control study. BMC Infect. Dis. 11:282 [Google Scholar]
  57. Thye T, Owusu-Dabo E, Vannberg FO, van Crevel R, Curtis J. 57.  et al. 2012. Common variants at 11p13 are associated with susceptibility to tuberculosis. Nat. Genet. 44:257–59 [Google Scholar]
  58. Curtis J, Luo Y, Zenner HL, Cuchet-Lourenco D, Wu C. 58.  et al. 2015. Susceptibility to tuberculosis is associated with variants in the ASAP1 gene encoding a regulator of dendritic cell migration. Nat. Genet. 47:523–27 [Google Scholar]
  59. Abel L, El-Baghdadi J, Bousfiha AA, Casanova JL, Schurr E. 59.  2014. Human genetics of tuberculosis: a long and winding road. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 369:20130428 [Google Scholar]
  60. Lewis LA, Ram S. 60.  2014. Meningococcal disease and the complement system. Virulence 5:98–126 [Google Scholar]
  61. Ko DC, Urban TJ. 61.  2013. Understanding human variation in infectious disease susceptibility through clinical and cellular GWAS. PLOS Pathog. 9:e1003424 [Google Scholar]
  62. Ge D, Fellay J, Thompson AJ, Simon JS, Shianna KV. 62.  et al. 2009. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 461:399–401 [Google Scholar]
  63. Duggal P, Thio CL, Wojcik GL, Goedert JJ, Mangia A. 63.  et al. 2013. Genome-wide association study of spontaneous resolution of hepatitis C virus infection: data from multiple cohorts. Ann. Intern. Med. 158:235–45 [Google Scholar]
  64. Thomas DL, Thio CL, Martin MP, Qi Y, Ge D. 64.  et al. 2009. Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. Nature 461:798–801 [Google Scholar]
  65. Bibert S, Roger T, Calandra T, Bochud M, Cerny A. 65.  et al. 2013. IL28B expression depends on a novel TT/-G polymorphism which improves HCV clearance prediction. J. Exp. Med. 210:1109–16 [Google Scholar]
  66. Romeo S, Kozlitina J, Xing C, Pertsemlidis A, Cox D. 66.  et al. 2008. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 40:1461–65 [Google Scholar]
  67. Valenti L, Al-Serri A, Daly AK, Galmozzi E, Rametta R. 67.  et al. 2010. Homozygosity for the patatin-like phospholipase-3/adiponutrin I148M polymorphism influences liver fibrosis in patients with nonalcoholic fatty liver disease. Hepatology 51:1209–17 [Google Scholar]
  68. Kamatani Y, Wattanapokayakit S, Ochi H, Kawaguchi T, Takahashi A. 68.  et al. 2009. A genome-wide association study identifies variants in the HLA-DP locus associated with chronic hepatitis B in Asians. Nat. Genet. 41:591–95 [Google Scholar]
  69. Mbarek H, Ochi H, Urabe Y, Kumar V, Kubo M. 69.  et al. 2011. A genome-wide association study of chronic hepatitis B identified novel risk locus in a Japanese population. Hum. Mol. Genet. 20:3884–92 [Google Scholar]
  70. Hu Z, Liu Y, Zhai X, Dai J, Jin G. 70.  et al. 2013. New loci associated with chronic hepatitis B virus infection in Han Chinese. Nat. Genet. 45:1499–503 [Google Scholar]
  71. Limou S, Coulonges C, Herbeck JT, van Manen D, An P. 71.  et al. 2010. Multiple-cohort genetic association study reveals CXCR6 as a new chemokine receptor involved in long-term nonprogression to AIDS. J. Infect. Dis. 202:908–15 [Google Scholar]
  72. McLaren PJ, Coulonges C, Bartha I, Lenz TL, Deutsch AJ. 72.  et al. 2015. Polymorphisms of large effect explain the majority of the host genetic contribution to variation of HIV-1 virus load. PNAS 112:14658–63 [Google Scholar]
  73. Haralambieva IH, Ovsyannikova IG, Dhiman N, Kennedy RB, O'Byrne M. 73.  et al. 2011. Common SNPs/haplotypes in IL18R1 and IL18 genes are associated with variations in humoral immunity to smallpox vaccination in Caucasians and African Americans. J. Infect. Dis. 204:433–41 [Google Scholar]
  74. Ovsyannikova IG, Kennedy RB, O'Byrne M, Jacobson RM, Pankratz VS, Poland GA. 74.  2012. Genome-wide association study of antibody response to smallpox vaccine. Vaccine 30:4182–89 [Google Scholar]
  75. Kennedy RB, Ovsyannikova IG, Pankratz VS, Haralambieva IH, Vierkant RA. 75.  et al. 2012. Genome-wide genetic associations with IFNγ response to smallpox vaccine. Hum. Genet. 131:1433–51 [Google Scholar]
  76. Kennedy RB, Ovsyannikova IG, Pankratz VS, Haralambieva IH, Vierkant RA, Poland GA. 76.  2012. Genome-wide analysis of polymorphisms associated with cytokine responses in smallpox vaccine recipients. Hum. Genet. 131:1403–21 [Google Scholar]
  77. Howell MD, Gallo RL, Boguniewicz M, Jones JF, Wong C. 77.  et al. 2006. Cytokine milieu of atopic dermatitis skin subverts the innate immune response to vaccinia virus. Immunity 24:341–48 [Google Scholar]
  78. Reefer AJ, Satinover SM, Solga MD, Lannigan JA, Nguyen JT. 78.  et al. 2008. Analysis of CD25hiCD4+ “regulatory” T-cell subtypes in atopic dermatitis reveals a novel TH2-like population. J. Allergy Clin. Immunol. 121:415–22.e3 [Google Scholar]
  79. Kennedy RB, Ovsyannikova IG, Haralambieva IH, Lambert ND, Pankratz VS, Poland GA. 79.  2014. Genome-wide SNP associations with rubella-specific cytokine responses in measles-mumps-rubella vaccine recipients. Immunogenetics 66:493–99 [Google Scholar]
  80. Feenstra B, Pasternak B, Geller F, Carstensen L, Wang T. 80.  et al. 2014. Common variants associated with general and MMR vaccine-related febrile seizures. Nat. Genet. 46:1274–82 [Google Scholar]
  81. Haralambieva IH, Kennedy RB, Ovsyannikova IG, Whitaker JA, Poland GA. 81.  2015. Variability in humoral immunity to measles vaccine: new developments. Trends Mol. Med. 21:789–801 [Google Scholar]
  82. Dhiman N, Poland GA, Cunningham JM, Jacobson RM, Ovsyannikova IG. 82.  et al. 2007. Variations in measles vaccine-specific humoral immunity by polymorphisms in SLAM and CD46 measles virus receptors. J. Allergy Clin. Immunol. 120:666–72 [Google Scholar]
  83. Clifford HD, Hayden CM, Khoo SK, Naniche D, Mandomando IM. 83.  et al. 2012. Polymorphisms in key innate immune genes and their effects on measles vaccine responses and vaccine failure in children from Mozambique. Vaccine 30:6180–85 [Google Scholar]
  84. Bousfiha AA, Jeddane L, Ailal F. Herz W, Conley ME. 84. , Al et al. 2013. A phenotypic approach for IUIS PID classification and diagnosis: guidelines for clinicians at the bedside. J. Clin. Immunol. 33:1078–87 [Google Scholar]
  85. Parvaneh N, Quartier P, Rostami P, Casanova JL, de Lonlay P. 85.  2014. Inborn errors of metabolism underlying primary immunodeficiencies. J. Clin. Immunol. 34:753–71 [Google Scholar]
  86. Casanova JL, Conley ME, Seligman SJ, Abel L, Notarangelo LD. 86.  2014. Guidelines for genetic studies in single patients: lessons from primary immunodeficiencies. J. Exp. Med. 211:2137–49 [Google Scholar]
  87. Boisson B, Quartier P, Casanova JL. 87.  2015. Immunological loss-of-function due to genetic gain-of-function in humans: autosomal dominance of the third kind. Curr. Opin. Immunol. 32:90–105 [Google Scholar]
  88. Anderson MS, Casanova JL. 88.  2015. More than meets the eye: monogenic autoimmunity strikes again. Immunity 42:986–88 [Google Scholar]
  89. Fischer A, Le Deist F, Hacein-Bey-Abina S, Andre-Schmutz I, de Saint Basile G. 89.  et al. 2005. Severe combined immunodeficiency: a model disease for molecular immunology and therapy. Immunol. Rev. 203:98–109 [Google Scholar]
  90. Al-Herz W, Bousfiha A, Casanova JL, Chatila T, Conley ME. 90.  et al. 2014. Primary immunodeficiency diseases: an update on the classification from the international union of immunological societies expert committee for primary immunodeficiency. Front. Immunol. 5:162 [Google Scholar]
  91. Song E, Jaishankar GB, Saleh H, Jithpratuck W, Sahni R, Krishnaswamy G. 91.  2011. Chronic granulomatous disease: a review of the infectious and inflammatory complications. Clin. Mol. Allergy 9:10 [Google Scholar]
  92. Trapani V, Shomer N, Rajcan-Separovic E. 92.  2015. The role of MAGT1 in genetic syndromes. Magnes. Res. 28:46–55 [Google Scholar]
  93. Hambleton S, Salem S, Bustamante J, Bigley V, Boisson-Dupuis S. 93.  et al. 2011. IRF8 mutations and human dendritic-cell immunodeficiency. N. Engl. J. Med. 365:127–38 [Google Scholar]
  94. Zhang SY, Jouanguy E, Ugolini S, Smahi A, Elain G. 94.  et al. 2007. TLR3 deficiency in patients with herpes simplex encephalitis. Science 317:1522–27 [Google Scholar]
  95. Zhang SY, Boisson-Dupuis S, Chapgier A, Yang K, Bustamante J. 95.  et al. 2008. Inborn errors of interferon (IFN)-mediated immunity in humans: insights into the respective roles of IFN-alpha/beta, IFN-gamma, and IFN-lambda in host defense. Immunol. Rev. 226:29–40 [Google Scholar]
  96. Puel A, Cypowyj S, Marodi L, Abel L, Picard C, Casanova JL. 96.  2012. Inborn errors of human IL-17 immunity underlie chronic mucocutaneous candidiasis. Curr. Opin. Allergy Clin. Immunol. 12:616–22 [Google Scholar]
  97. Bustamante J, Boisson-Dupuis S, Abel L, Casanova JL. 97.  2014. Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-gamma immunity. Semin. Immunol. 26:454–70 [Google Scholar]
  98. Dupuis S, Dargemont C, Fieschi C, Thomassin N, Rosenzweig S. 98.  et al. 2001. Impairment of mycobacterial but not viral immunity by a germline human STAT1 mutation. Science 293:300–3 [Google Scholar]
  99. Liu L, Okada S, Kong XF, Kreins AY, Cypowyj S. 99.  et al. 2011. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J. Exp. Med. 208:1635–48 [Google Scholar]
  100. Devriendt K, Kim AS, Mathijs G, Frints SG, Schwartz M. 100.  et al. 2001. Constitutively activating mutation in WASP causes X-linked severe congenital neutropenia. Nat. Genet. 27:313–17 [Google Scholar]
  101. Salem S, Langlais D, Lefebvre F, Bourque G, Bigley V. 101.  et al. 2014. Functional characterization of the human dendritic cell immunodeficiency associated with the IRF8(K108E) mutation. Blood 124:1894–904 [Google Scholar]
  102. Hahn CN, Chong CE, Carmichael CL, Wilkins EJ, Brautigan PJ. 102.  et al. 2011. Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia. Nat. Genet. 43:1012–17 [Google Scholar]
  103. Hsu AP, Sampaio EP, Khan J, Calvo KR, Lemieux JE. 103.  et al. 2011. Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome. Blood 118:2653–55 [Google Scholar]
  104. Dickinson RE, Griffin H, Bigley V, Reynard LN, Hussain R. 104.  et al. 2011. Exome sequencing identifies GATA-2 mutation as the cause of dendritic cell, monocyte, B and NK lymphoid deficiency. Blood 118:2656–58 [Google Scholar]
  105. Minegishi Y, Saito M, Morio T, Watanabe K, Agematsu K. 105.  et al. 2006. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity 25:745–55 [Google Scholar]
  106. Kreins AY, Ciancanelli MJ, Okada S, Kong XF, Ramirez-Alejo N. 106.  et al. 2015. Human TYK2 deficiency: mycobacterial and viral infections without hyper-IgE syndrome. J. Exp. Med. 212:1641–62 [Google Scholar]
  107. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP. 107.  et al. 2009. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. PNAS 106:9362–67 [Google Scholar]
  108. Li MJ, Wang P, Liu X, Lim EL, Wang Z. 108.  et al. 2012. GWASdb: a database for human genetic variants identified by genome-wide association studies. Nucleic Acids Res 40:D1047–54 [Google Scholar]
  109. Webb AJ, Thorisson GA, Brookes AJ, Consortium GP. 109.  2011. An informatics project and online “Knowledge Centre” supporting modern genotype-to-phenotype research. Hum. Mutat. 32:543–50 [Google Scholar]
  110. Thorisson GA, Lancaster O, Free RC, Hastings RK, Sarmah P. 110.  et al. 2009. HGVbaseG2P: a central genetic association database. Nucleic Acids Res 37:D797–802 [Google Scholar]
  111. Cortes A, Brown MA. 111.  2011. Promise and pitfalls of the Immunochip. Arthritis Res. Ther. 13:101 [Google Scholar]
  112. Siddle KJ, Quintana-Murci L. 112.  2014. The Red Queen's long race: human adaptation to pathogen pressure. Curr. Opin. Genet. Dev. 29:31–38 [Google Scholar]
  113. Lenardo M, Lo B, Lucas CL. 113.  2016. Genomics of immune diseases and new therapies. Annu. Rev. Immunol. 34:121–49 [Google Scholar]
  114. Steinman L. 114.  2009. A molecular trio in relapse and remission in multiple sclerosis. Nat. Rev. Immunol. 9:440–47 [Google Scholar]
  115. Allan SM, Tyrrell PJ, Rothwell NJ. 115.  Interleukin-1 and neuronal injury. Nat. Rev. Immunol. 5:629–40 [Google Scholar]
  116. Benson RA, McInnes IB, Brewer JM, Garside P. 116.  Cellular imaging in rheumatic diseases. Nat. Rev. Rheumatol. 11357–67
  117. Nestle FO, Di Meglio P, Qin JZ, Nickoloff BJ. 117.  Skin immune sentinels in health and disease. Nat. Rev. Immunol. 9:679–91 [Google Scholar]
  118. Bianco AM, Girardelli M, Tommasini A. 118.  2015. Genetics of inflammatory bowel disease from multifactorial to monogenic forms. World J. Gastroenterol. 21:12296–310 [Google Scholar]
  119. Salzer E, Kansu A, Sic H, Majek P, Ikinciogullari A. 119.  et al. 2014. Early-onset inflammatory bowel disease and common variable immunodeficiency-like disease caused by IL-21 deficiency. J. Allergy Clin. Immunol. 133:1651–59.e12 [Google Scholar]
  120. Glocker EO, Frede N, Perro M, Sebire N, Elawad M. 120.  et al. 2010. Infant colitis—it's in the genes. Lancet 376:1272 [Google Scholar]
  121. Glocker EO, Kotlarz D, Boztug K, Gertz EM, Schaffer AA. 121.  et al. 2009. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N. Engl. J. Med. 361:2033–45 [Google Scholar]
  122. Kotlarz D, Beier R, Murugan D, Diestelhorst J, Jensen O. 122.  et al. 2012. Loss of interleukin-10 signaling and infantile inflammatory bowel disease: implications for diagnosis and therapy. Gastroenterology 143:347–55 [Google Scholar]
  123. Romberg N, Al Moussawi K, Nelson-Williams C, Stiegler AL, Loring E. 123.  et al. 2014. Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat. Genet. 46:1135–39 [Google Scholar]
  124. Borte S, Celiksoy MH, Menzel V, Ozkaya O, Ozen FZ. 124.  et al. 2014. Novel NLRP12 mutations associated with intestinal amyloidosis in a patient diagnosed with common variable immunodeficiency. Clin. Immunol. 154:105–11 [Google Scholar]
  125. Blaydon DC, Biancheri P, Di WL, Plagnol V, Cabral RM. 125.  et al. 2011. Inflammatory skin and bowel disease linked to ADAM17 deletion. N. Engl. J. Med. 365:1502–8 [Google Scholar]
  126. Cheng LE, Kanwar B, Tcheurekdjian H, Grenert JP, Muskat M. 126.  et al. 2009. Persistent systemic inflammation and atypical enterocolitis in patients with NEMO syndrome. Clin. Immunol. 132:124–31 [Google Scholar]
  127. Mizukami T, Obara M, Nishikomori R, Kawai T, Tahara Y. 127.  et al. 2012. Successful treatment with infliximab for inflammatory colitis in a patient with X-linked anhidrotic ectodermal dysplasia with immunodeficiency. J. Clin. Immunol. 32:39–49 [Google Scholar]
  128. Aguilar C, Lenoir C, Lambert N, Begue B, Brousse N. 128.  et al. 2014. Characterization of Crohn disease in X-linked inhibitor of apoptosis-deficient male patients and female symptomatic carriers. J. Allergy Clin. Immunol. 134:1131–41.e9 [Google Scholar]
  129. Dziadzio M, Ammann S, Canning C, Boyle F, Hassan A. 129.  et al. 2015. Symptomatic males and female carriers in a large Caucasian kindred with XIAP deficiency. J. Clin. Immunol. 35:439–44 [Google Scholar]
  130. Yang X, Kanegane H, Nishida N, Imamura T, Hamamoto K. 130.  et al. 2012. Clinical and genetic characteristics of XIAP deficiency in Japan. J. Clin. Immunol. 32:411–20 [Google Scholar]
  131. Zeissig Y, Petersen BS, Milutinovic S, Bosse E, Mayr G. 131.  et al. 2015. XIAP variants in male Crohn's disease. Gut 64:66–76 [Google Scholar]
  132. Conley ME, Dobbs AK, Quintana AM, Bosompem A, Wang YD. 132.  et al. 2012. Agammaglobulinemia and absent B lineage cells in a patient lacking the p85α subunit of PI3K. J. Exp. Med. 209:463–70 [Google Scholar]
  133. Avitzur Y, Guo C, Mastropaolo LA, Bahrami E, Chen H. 133.  et al. 2014. Mutations in tetratricopeptide repeat domain 7A result in a severe form of very early onset inflammatory bowel disease. Gastroenterology 146:1028–39 [Google Scholar]
  134. Chen R, Giliani S, Lanzi G, Mias GI, Lonardi S. 134.  et al. 2013. Whole-exome sequencing identifies tetratricopeptide repeat domain 7A (TTC7A) mutations for combined immunodeficiency with intestinal atresias. J. Allergy Clin. Immunol. 132:656–64.e17 [Google Scholar]
  135. Okou DT, Mondal K, Faubion WA, Kobrynski LJ, Denson LA. 135.  et al. 2014. Exome sequencing identifies a novel FOXP3 mutation in a 2-generation family with inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 58:561–68 [Google Scholar]
  136. Dhillon SS, Fattouh R, Elkadri A, Xu W, Murchie R. 136.  et al. 2014. Variants in nicotinamide adenine dinucleotide phosphate oxidase complex components determine susceptibility to very early onset inflammatory bowel disease. Gastroenterology 147:680–89.e2 [Google Scholar]
  137. Zhou Q, Lee GS, Brady J, Datta S, Katan M. 137.  et al. 2012. A hypermorphic missense mutation in PLCG2, encoding phospholipase Cγ2, causes a dominantly inherited autoinflammatory disease with immunodeficiency. Am. J. Hum. Genet. 91:713–20 [Google Scholar]
  138. Zeissig S, Petersen BS, Tomczak M, Melum E, Huc-Claustre E. 138.  et al. 2015. Early-onset Crohn's disease and autoimmunity associated with a variant in CTLA-4. Gut 64:1889–97 [Google Scholar]
  139. Liang L, Morar N, Dixon AL, Lathrop GM, Abecasis GR. 139.  et al. 2013. A cross-platform analysis of 14,177 expression quantitative trait loci derived from lymphoblastoid cell lines. Genome Res 23:716–26 [Google Scholar]
  140. Langlais D, Barreiro LB, Gros P. 140.  2016. The macrophage IRF8/IRF1 regulome is required for protection against infections and is associated with chronic inflammation. J. Exp. Med. 213:585–603 [Google Scholar]
  141. Fehr T, Schoedon G, Odermatt B, Holtschke T, Schneemann M. 141.  et al. 1997. Crucial role of interferon consensus sequence binding protein, but neither of interferon regulatory factor 1 nor of nitric oxide synthesis for protection against murine listeriosis. J. Exp. Med. 185:921–31 [Google Scholar]
  142. Marquis JF, LaCourse R, Ryan L, North RJ, Gros P. 142.  2009. Disseminated and rapidly fatal tuberculosis in mice bearing a defective allele at IFN regulatory factor 8. J. Immunol. 182:3008–15 [Google Scholar]
  143. Berghout J, Langlais D, Radovanovic I, Tam M, MacMicking JD. 143.  et al. 2013. Irf8-regulated genomic responses drive pathological inflammation during cerebral malaria. PLOS Pathog. 9:e1003491 [Google Scholar]
  144. Fairfax BP, Humburg P, Makino S, Naranbhai V, Wong D. 144.  et al. 2014. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression. Science 343:1246949 [Google Scholar]
  145. Kennedy JM, Fodil N, Torre S, Bongfen SE, Olivier JF. 145.  et al. 2014. CCDC88B is a novel regulator of maturation and effector functions of T cells during pathological inflammation. J. Exp. Med. 211:2519–35 [Google Scholar]
  146. Radovanovic I, Leung V, Iliescu A, Bongfen SE, Mullick A. 146.  et al. 2014. Genetic control of susceptibility to Candida albicans in SM/J mice. J. Immunol. 193:1290–300 [Google Scholar]
  147. Petukhova L, Duvic M, Hordinsky M, Norris D, Price V. 147.  et al. 2010. Genome-wide association study in alopecia areata implicates both innate and adaptive immunity. Nature 466:113–17 [Google Scholar]
  148. Juran BD, Hirschfield GM, Invernizzi P, Atkinson EJ, Li Y. 148.  et al. 2012. Immunochip analyses identify a novel risk locus for primary biliary cirrhosis at 13q14, multiple independent associations at four established risk loci and epistasis between 1p31 and 7q32 risk variants. Hum. Mol. Genet. 21:5209–21 [Google Scholar]
  149. Fischer A, Schmid B, Ellinghaus D, Nothnagel M, Gaede KI. 149.  et al. 2012. A novel sarcoidosis risk locus for Europeans on chromosome 11q13.1. Am. J. Respir. Crit. Care Med. 186:877–85 [Google Scholar]
  150. Jin Y, Birlea SA, Fain PR, Ferrara TM, Ben S. 150.  et al. 2012. Genome-wide association analyses identify 13 new susceptibility loci for generalized vitiligo. Nat. Genet. 44:676–80 [Google Scholar]
  151. Todd JA, Walker NM, Cooper JD, Smyth DJ, Downes K. 151.  et al. 2007. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat. Genet. 39:857–64 [Google Scholar]
  152. Ferreira RC, Pan-Hammarstrom Q, Graham RR, Gateva V, Fontan G. 152.  et al. 2010. Association of IFIH1 and other autoimmunity risk alleles with selective IgA deficiency. Nat. Genet. 42:777–80 [Google Scholar]
  153. Sutherland A, Davies J, Owen CJ, Vaikkakara S, Walker C. 153.  et al. 2007. Genomic polymorphism at the interferon-induced helicase (IFIH1) locus contributes to Graves’ disease susceptibility. J. Clin. Endocrinol. Metab. 92:3338–41 [Google Scholar]
  154. 154. Genet. Anal. Psoriasis Consort., Wellcome Trust Case Control Consort 2010. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat. Genet. 42:985–90 [Google Scholar]
  155. Nejentsev S, Walker N, Riches D, Egholm M, Todd JA. 155.  2009. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 324:387–89 [Google Scholar]
  156. Cen H, Wang W, Leng RX, Wang TY, Pan HF. 156.  et al. 2013. Association of IFIH1 rs1990760 polymorphism with susceptibility to autoimmune diseases: a meta-analysis. Autoimmunity 46:455–62 [Google Scholar]
  157. Gateva V, Sandling JK, Hom G, Taylor KE, Chung SA. 157.  et al. 2009. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat. Genet. 41:1228–33 [Google Scholar]
  158. Molineros JE, Maiti AK, Sun C, Looger LL, Han S. 158.  et al. 2013. Admixture mapping in lupus identifies multiple functional variants within IFIH1 associated with apoptosis, inflammation, and autoantibody production. PLOS Genet 9:e1003222 [Google Scholar]
  159. Funabiki M, Kato H, Miyachi Y, Toki H, Motegi H. 159.  et al. 2014. Autoimmune disorders associated with gain of function of the intracellular sensor MDA5. Immunity 40:199–212 [Google Scholar]
  160. Rice GI, del Toro Duany Y, Jenkinson EM, Forte GM, Anderson BH. 160.  et al. 2014. Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat. Genet. 46:503–9 [Google Scholar]
  161. Oda H, Nakagawa K, Abe J, Awaya T, Funabiki M. 161.  et al. 2014. Aicardi-Goutieres syndrome is caused by IFIH1 mutations. Am. J. Hum. Genet. 95:121–25 [Google Scholar]
  162. Gazzinelli RT, Kalantari P, Fitzgerald KA, Golenbock DT. 162.  2014. Innate sensing of malaria parasites. Nat. Rev. Immunol. 14:744–57 [Google Scholar]
  163. Crompton PD, Moebius J, Portugal S, Waisberg M, Hart G. 163.  et al. 2014. Malaria immunity in man and mosquito: insights into unsolved mysteries of a deadly infectious disease. Annu. Rev. Immunol. 32:157–87 [Google Scholar]
  164. Lastoria JC, Abreu MA. 164.  2014. Leprosy: review of the epidemiological, clinical, and etiopathogenic aspects—Part 1. Bras. Dermatol. 89:205–18 [Google Scholar]
  165. Eichelmann K, Gonzalez Gonzalez SE, Salas-Alanis JC, Ocampo-Candiani J. 165.  2013. Leprosy: an update; definition, pathogenesis, classification, diagnosis, and treatment. Actas Dermosifiliogr 104:554–63 [Google Scholar]
  166. Tebruegge M, Curtis N. 166.  2008. Epidemiology, etiology, pathogenesis, and diagnosis of recurrent bacterial meningitis. Clin. Microbiol. Rev. 21:519–37 [Google Scholar]
  167. Kim KS. 167.  2003. Pathogenesis of bacterial meningitis: from bacteraemia to neuronal injury. Nat. Rev. Neurosci. 4:376–85 [Google Scholar]
  168. Moir S, Chun TW, Fauci AS. 168.  2011. Pathogenic mechanisms of HIV disease. Annu. Rev. Pathol. 6:223–48 [Google Scholar]
  169. Maartens G, Celum C, Lewin SR. 169.  2014. HIV infection: epidemiology, pathogenesis, treatment, and prevention. Lancet 384:258–71 [Google Scholar]
  170. St John AL, Abraham SN, Gubler DJ. 170.  2013. Barriers to preclinical investigations of anti-dengue immunity and dengue pathogenesis. Nat. Rev. Microbiol. 11:420–26 [Google Scholar]
  171. de Souza HS, Fiocchi C. 171.  2016. Immunopathogenesis of IBD: current state of the art. Nat. Rev. Gastroenterol. Hepatol. 13:13–27 [Google Scholar]
  172. Liu TC, Stappenbeck TS. 172.  2016. Genetics and pathogenesis of inflammatory bowel disease. Annu. Rev. Pathol. 11:127–48 [Google Scholar]
  173. Abadie V, Sollid LM, Barreiro LB, Jabri B. 173.  2011. Integration of genetic and immunological insights into a model of celiac disease pathogenesis. Annu. Rev. Immunol. 29:493–525 [Google Scholar]
  174. Dendrou CA, Fugger L, Friese MA. 174.  2015. Immunopathology of multiple sclerosis. Nat. Rev. Immunol. 15:545–58 [Google Scholar]
  175. Ontaneda D, Hyland M, Cohen JA. 175.  2012. Multiple sclerosis: new insights in pathogenesis and novel therapeutics. Annu. Rev. Med. 63:389–404 [Google Scholar]
  176. Picerno V, Ferro F, Adinolfi A, Valentini E, Tani C, Alunno A. 176.  2015. One year in review: the pathogenesis of rheumatoid arthritis. Clin. Exp. Rheumatol. 33:551–58 [Google Scholar]
  177. McInnes IB, Buckley CD, Isaacs JD. 177.  2016. Cytokines in rheumatoid arthritis—shaping the immunological landscape. Nat. Rev. Rheumatol. 12:63–68 [Google Scholar]
  178. Lowes MA, Bowcock AM, Krueger JG. 178.  2007. Pathogenesis and therapy of psoriasis. Nature 445:866–73 [Google Scholar]

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error