1932

Abstract

T lymphocytes, the major effector cells in cellular immunity, produce cytokines in immune responses to mediate inflammation and regulate other types of immune cells. Work in the last three decades has revealed significant heterogeneity in CD4+ T cells, in terms of their cytokine expression, leading to the discoveries of T helper 1 (Th1), Th2, Th17, and T follicular helper (Tfh) cell subsets. These cells possess unique developmental and regulatory pathways and play distinct roles in immunity and immune-mediated pathologies. Other types of T cells, including regulatory T cells and γδ T cells, as well as innate lymphocytes, display similar features of subpopulations, which may play differential roles in immunity. Mechanisms exist to prevent cytokine production by T cells to maintain immune tolerance to self-antigens, some of which may also underscore immune exhaustion in the context of tumors. Understanding cytokine regulation and function has offered innovative treatment of many human diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-061020-053702
2021-04-26
2024-06-16
Loading full text...

Full text loading...

/deliver/fulltext/immunol/39/1/annurev-immunol-061020-053702.html?itemId=/content/journals/10.1146/annurev-immunol-061020-053702&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Mosmann TR, Coffman RL. 1989. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7:145–73
    [Google Scholar]
  2. 2. 
    Dong C, Flavell RA. 2001. Th1 and Th2 cells. Curr. Opin. Hematol. 8:47–51
    [Google Scholar]
  3. 3. 
    Cayrol C, Duval A, Schmitt P, Roga S, Camus M et al. 2018. Environmental allergens induce allergic inflammation through proteolytic maturation of IL-33. Nat. Immunol. 19:375–85
    [Google Scholar]
  4. 4. 
    Alvarez F, Fritz JH, Piccirillo CA. 2019. Pleiotropic effects of IL-33 on CD4+ T cell differentiation and effector functions. Front. Immunol. 10:522
    [Google Scholar]
  5. 5. 
    Guo L, Wei G, Zhu J, Liao W, Leonard WJ et al. 2009. IL-1 family members and STAT activators induce cytokine production by Th2, Th17, and Th1 cells. PNAS 106:13463–68
    [Google Scholar]
  6. 6. 
    Kurowska-Stolarska M, Kewin P, Murphy G, Russo RC, Stolarski B et al. 2008. IL-33 induces antigen-specific IL-5+ T cells and promotes allergic-induced airway inflammation independent of IL-4. J. Immunol. 181:4780–90
    [Google Scholar]
  7. 7. 
    Yu HS, Angkasekwinai P, Chang SH, Chung Y, Dong C 2010. Protease allergens induce the expression of IL-25 via Erk and p38 MAPK pathway. J. Korean Med. Sci. 25:829–34
    [Google Scholar]
  8. 8. 
    von Moltke J, Ji M, Liang HE, Locksley RM 2016. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 529:221–25
    [Google Scholar]
  9. 9. 
    Schneider C, O'Leary CE, von Moltke J, Liang H-E, Ang QY et al. 2018. A metabolite-triggered tuft cell-ILC2 circuit drives small intestinal remodeling. Cell 174:271–84
    [Google Scholar]
  10. 10. 
    Bankova LG, Dwyer DF, Yoshimoto E, Ualiyeva S, McGinty JW et al. 2018. The cysteinyl leukotriene 3 receptor regulates expansion of IL-25–producing airway brush cells leading to type 2 inflammation. Sci. Immunol. 3:eaat9453
    [Google Scholar]
  11. 11. 
    Angkasekwinai P, Park H, Wang YH, Chang SH, Corry DB et al. 2007. Interleukin 25 promotes the initiation of proallergic type 2 responses. J. Exp. Med. 204:1509–17
    [Google Scholar]
  12. 12. 
    Xu M, Dong C. 2017. IL-25 in allergic inflammation. Immunol. Rev. 278:185–91
    [Google Scholar]
  13. 13. 
    Wang YH, Angkasekwinai P, Lu N, Voo KS, Arima K et al. 2007. IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC activated Th2 memory cells. J. Exp. Med. 204:1837–47
    [Google Scholar]
  14. 14. 
    Reynolds JM, Lee YH, Shi Y, Wang X, Angkasekwinai P et al. 2015. Interleukin-17B antagonizes interleukin-25-mediated mucosal inflammation. Immunity 42:692–703
    [Google Scholar]
  15. 15. 
    Wei L, Vahedi G, Sun HW, Watford WT, Takatori H et al. 2010. Discrete roles of STAT4 and STAT6 transcription factors in tuning epigenetic modifications and transcription during T helper cell differentiation. Immunity 32:840–51
    [Google Scholar]
  16. 16. 
    Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH. 2000. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100:655–69
    [Google Scholar]
  17. 17. 
    Szabo SJ, Sullivan BM, Stemmann C, Satoskar AR, Sleckman BP, Glimcher LH. 2002. Distinct effects of T-bet in TH1 lineage commitment and IFN-γ production in CD4 and CD8 T cells. Science 295:338–42
    [Google Scholar]
  18. 18. 
    Nakayamada S, Kanno Y, Takahashi H, Jankovic D, Lu KT et al. 2011. Early Th1 cell differentiation is marked by a Tfh cell-like transition. Immunity 35:919–31
    [Google Scholar]
  19. 19. 
    Zheng W, Flavell RA. 1997. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89:587–96
    [Google Scholar]
  20. 20. 
    Ouyang W, Ranganath SH, Weindel K, Bhattacharya D, Murphy TL et al. 1998. Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism. Immunity 9:745–55
    [Google Scholar]
  21. 21. 
    Lee GR, Fields PE, Flavell RA. 2001. Regulation of IL-4 gene expression by distal regulatory elements and GATA-3 at the chromatin level. Immunity 14:447–59
    [Google Scholar]
  22. 22. 
    Lee GR, Spilianakis CG, Flavell RA. 2005. Hypersensitive site 7 of the TH2 locus control region is essential for expressing TH2 cytokine genes and for long-range intrachromosomal interactions. Nat. Immunol. 6:42–48
    [Google Scholar]
  23. 23. 
    Wei G, Abraham BJ, Yagi R, Jothi R, Cui K et al. 2011. Genome-wide analyses of transcription factor GATA3-mediated gene regulation in distinct T cell types. Immunity 35:299–311
    [Google Scholar]
  24. 24. 
    Zhu J, Min B, Hu-Li J, Watson CJ, Grinberg A et al. 2004. Conditional deletion of Gata3 shows its essential function in TH1-TH2 responses. Nat. Immunol. 5:1157–65
    [Google Scholar]
  25. 25. 
    Bleecker ER, FitzGerald JM, Chanez P, Papi A, Weinstein SF et al. 2016. Efficacy and safety of benralizumab for patients with severe asthma uncontrolled with high-dosage inhaled corticosteroids and long-acting β2-agonists (SIROCCO): a randomised, multicentre, placebo-controlled phase 3 trial. Lancet 388:2115–27
    [Google Scholar]
  26. 26. 
    Castro M, Zangrilli J, Wechsler ME, Bateman ED, Brusselle GG et al. 2015. Reslizumab for inadequately controlled asthma with elevated blood eosinophil counts: results from two multicentre, parallel, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet Respir. Med. 3:355–66
    [Google Scholar]
  27. 27. 
    Matsunaga K, Katoh N, Fujieda S, Izuhara K, Oishi K. 2020. Dupilumab: basic aspects and applications to allergic diseases. Allergol. Int. 69:187–96
    [Google Scholar]
  28. 28. 
    Baghoomian W, Na C, Simpson EL. 2020. New and emerging biologics for atopic dermatitis. Am. J. Clin. Dermatol. 21:457–65
    [Google Scholar]
  29. 29. 
    Dong C, Nurieva RI. 2003. Regulation of immune and autoimmune responses by ICOS. J. Autoimmun. 21:255–60
    [Google Scholar]
  30. 30. 
    Murphy CA, Langrish CL, Chen Y, Blumenschein W, McClanahan T et al. 2003. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J. Exp. Med. 198:1951–57
    [Google Scholar]
  31. 31. 
    Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B et al. 2005. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201:233–40
    [Google Scholar]
  32. 32. 
    Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL et al. 2005. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6:1123–32
    [Google Scholar]
  33. 33. 
    Park H, Li Z, Yang XO, Chang SH, Nurieva R et al. 2005. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6:1133–41
    [Google Scholar]
  34. 34. 
    Bettelli E, Carrier Y, Gao W, Korn T, Strom TB et al. 2006. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–38
    [Google Scholar]
  35. 35. 
    Mangan PR, Harrington LE, O'Quinn DB, Helms WS, Bullard DC et al. 2006. Transforming growth factor-β induces development of the TH17 lineage. Nature 441:231–34
    [Google Scholar]
  36. 36. 
    Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. 2006. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24:179–89
    [Google Scholar]
  37. 37. 
    Veldhoen M, Hocking RJ, Flavell RA, Stockinger B. 2006. Signals mediated by transforming growth factor-β initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease. Nat. Immunol. 7:1151–56
    [Google Scholar]
  38. 38. 
    Li MO, Wan YY, Flavell RA. 2007. T cell-produced transforming growth factor-β1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. Immunity 26:579–91
    [Google Scholar]
  39. 39. 
    Harris TJ, Grosso JF, Yen H-R, Xin H, Kortylewski M et al. 2007. Cutting edge: an in vivo requirement for STAT3 signaling in TH17 development and TH17-dependent autoimmunity. J. Immunol. 179:4313–17
    [Google Scholar]
  40. 40. 
    Yang XO, Panopoulos AD, Nurieva R, Chang SH, Wang D et al. 2007. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J. Biol. Chem. 282:9358–63
    [Google Scholar]
  41. 41. 
    Nurieva R, Yang XO, Martinez G, Zhang Y, Panopoulos AD et al. 2007. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448:480–83
    [Google Scholar]
  42. 42. 
    Zhou L, Ivanov II, Spolski R, Min R, Shenderov K et al. 2007. IL-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat. Immunol. 8:967–74
    [Google Scholar]
  43. 43. 
    Korn T, Bettelli E, Gao W, Awasthi A, Jager A et al. 2007. IL-21 initiates an alternative pathway to induce proinflammatory TH17 cells. Nature 448:484–87
    [Google Scholar]
  44. 44. 
    McGeachy MJ, Chen Y, Tato CM, Laurence A, Joyce-Shaikh B et al. 2009. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat. Immunol. 10:314–24
    [Google Scholar]
  45. 45. 
    Chung Y, Chang SH, Martinez GJ, Yang XO, Nurieva R et al. 2009. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity 30:576–87
    [Google Scholar]
  46. 46. 
    Ghoreschi K, Laurence A, Yang XP, Tato CM, McGeachy MJ et al. 2010. Generation of pathogenic TH17 cells in the absence of TGF-β signalling. Nature 467:967–71
    [Google Scholar]
  47. 47. 
    Lee Y, Awasthi A, Yosef N, Quintana FJ, Xiao S et al. 2012. Induction and molecular signature of pathogenic TH17 cells. Nat. Immunol. 13:991–99
    [Google Scholar]
  48. 48. 
    McGeachy MJ, Bak-Jensen KS, Chen Y, Tato CM, Blumenschein W et al. 2007. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat. Immunol. 8:1390–7
    [Google Scholar]
  49. 49. 
    Wang C, Yosef N, Gaublomme J, Wu C, Lee Y et al. 2015. CD5L/AIM regulates lipid biosynthesis and restrains Th17 cell pathogenicity. Cell 163:1413–27
    [Google Scholar]
  50. 50. 
    Gaublomme JT, Yosef N, Lee Y, Gertner RS, Yang LV et al. 2015. Single-cell genomics unveils critical regulators of Th17 cell pathogenicity. Cell 163:1400–12
    [Google Scholar]
  51. 51. 
    Lee JY, Hall JA, Kroehling L, Wu L, Najar T et al. 2020. Serum amyloid A proteins induce pathogenic Th17 cells and promote inflammatory disease. Cell 180:79–91.e16
    [Google Scholar]
  52. 52. 
    Laurence A, Tato CM, Davidson TS, Kanno Y, Chen Z et al. 2007. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 26:371–81
    [Google Scholar]
  53. 53. 
    Dong C. 2008. TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat. Rev. Immunol. 8:337–48
    [Google Scholar]
  54. 54. 
    Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A et al. 2006. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126:1121–33
    [Google Scholar]
  55. 55. 
    Yang XO, Pappu BP, Nurieva R, Akimzhanov A, Kang HS et al. 2008. T helper 17 lineage differentiation is programmed by orphan nuclear receptors RORα and RORγ. Immunity 28:29–39
    [Google Scholar]
  56. 56. 
    Holland SM, DeLeo FR, Elloumi HZ, Hsu AP, Uzel G et al. 2007. STAT3 mutations in the hyper-IgE syndrome. N. Engl. J. Med. 357:1608–19
    [Google Scholar]
  57. 57. 
    Durant L, Watford WT, Ramos HL, Laurence A, Vahedi G et al. 2010. Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis. Immunity 32:605–15
    [Google Scholar]
  58. 58. 
    Ciofani M, Madar A, Galan C, Sellars M, Mace K et al. 2012. A validated regulatory network for Th17 cell specification. Cell 151:289–303
    [Google Scholar]
  59. 59. 
    Jiang Y, Liu Y, Lu H, Sun SC, Jin W et al. 2018. Epigenetic activation during T helper 17 cell differentiation is mediated by Tripartite motif containing 28. Nat. Commun. 9:1424
    [Google Scholar]
  60. 60. 
    Martinez GJ, Zhang Z, Chung Y, Reynolds JM, Lin X et al. 2009. Smad3 differentially regulates the induction of regulatory and inflammatory T cell differentiation. J. Biol. Chem. 284:35283–86
    [Google Scholar]
  61. 61. 
    Martinez GJ, Zhang Z, Reynolds JM, Tanaka S, Chung Y et al. 2010. Smad2 positively regulates the generation of Th17 cells. J. Biol. Chem. 285:29039–43
    [Google Scholar]
  62. 62. 
    Yang XO, Nurieva R, Martinez GJ, Kang HS, Chung Y et al. 2008. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity 29:44–56
    [Google Scholar]
  63. 63. 
    Takimoto T, Wakabayashi Y, Sekiya T, Inoue N, Morita R et al. 2010. Smad2 and Smad3 are redundantly essential for the TGF-β–mediated regulation of regulatory T plasticity and Th1 development. J. Immunol. 185:842–55
    [Google Scholar]
  64. 64. 
    Tanaka S, Jiang Y, Martinez GJ, Tanaka K, Yan X et al. 2018. Trim33 mediates the proinflammatory function of Th17 cells. J. Exp. Med. 215:1853–68
    [Google Scholar]
  65. 65. 
    Bauquet AT, Jin H, Paterson AM, Mitsdoerffer M, Ho IC et al. 2009. The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and TH-17 cells. Nat. Immunol. 10:167–75
    [Google Scholar]
  66. 66. 
    Brustle A, Heink S, Huber M, Rosenplanter C, Stadelmann C et al. 2007. The development of inflammatory TH-17 cells requires interferon-regulatory factor 4. Nat. Immunol. 8:958–66
    [Google Scholar]
  67. 67. 
    Okamoto K, Iwai Y, Oh-Hora M, Yamamoto M, Morio T et al. 2010. IκBζ regulates TH17 development by cooperating with ROR nuclear receptors. Nature 464:1381–85
    [Google Scholar]
  68. 68. 
    Schraml BU, Hildner K, Ise W, Lee WL, Smith WA et al. 2009. The AP-1 transcription factor Batf controls TH17 differentiation. Nature 460:405–9
    [Google Scholar]
  69. 69. 
    Wang Y, Godec J, Ben-Aissa K, Cui K, Zhao K et al. 2014. The transcription factors T-bet and Runx are required for the ontogeny of pathogenic interferon-γ-producing T helper 17 cells. Immunity 40:355–66
    [Google Scholar]
  70. 70. 
    Zhang F, Meng G, Strober W. 2008. Interactions among the transcription factors Runx1, RORγt and Foxp3 regulate the differentiation of interleukin 17-producing T cells. Nat. Immunol. 9:1297–306
    [Google Scholar]
  71. 71. 
    Yosef N, Shalek AK, Gaublomme JT, Jin H, Lee Y et al. 2013. Dynamic regulatory network controlling TH17 cell differentiation. Nature 496:461–68
    [Google Scholar]
  72. 72. 
    Ichiyama K, Chen T, Wang X, Yan X, Kim BS et al. 2015. The methylcytosine dioxygenase Tet2 promotes DNA demethylation and activation of cytokine gene expression in T cells. Immunity 42:613–26
    [Google Scholar]
  73. 73. 
    Wei G, Wei L, Zhu J, Zang C, Hu-Li J et al. 2009. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 30:155–67
    [Google Scholar]
  74. 74. 
    Liu Z, Cao W, Xu L, Chen X, Zhan Y et al. 2015. The histone H3 lysine-27 demethylase Jmjd3 plays a critical role in specific regulation of Th17 cell differentiation. J. Mol. Cell Biol. 7:505–16
    [Google Scholar]
  75. 75. 
    Xu T, Stewart KM, Wang X, Liu K, Xie M et al. 2017. Metabolic control of TH17 and induced Treg cell balance by an epigenetic mechanism. Nature 548:228–33
    [Google Scholar]
  76. 76. 
    Tanaka K, Martinez GJ, Yan X, Long W, Ichiyama K et al. 2018. Regulation of pathogenic T helper 17 cell differentiation by steroid receptor coactivator-3. Cell Rep 23:2318–29
    [Google Scholar]
  77. 77. 
    Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T et al. 2009. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139:485–98
    [Google Scholar]
  78. 78. 
    Ivanov II, de Llanos Frutos R, Manel N, Yoshinaga K, Rifkin DB et al. 2008. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4:337–49
    [Google Scholar]
  79. 79. 
    Wu H-J, Ivanov II, Darce J, Hattori K, Shima T et al. 2010. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32:815–27
    [Google Scholar]
  80. 80. 
    Haghikia A, Jörg S, Duscha A, Berg J, Manzel A et al. 2015. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity 43:817–29
    [Google Scholar]
  81. 81. 
    Hang S, Paik D, Yao L, Kim E, Jamma T et al. 2019. Bile acid metabolites control TH17 and Treg cell differentiation. Nature 576:143–48
    [Google Scholar]
  82. 82. 
    Atarashi K, Nishimura J, Shima T, Umesaki Y, Yamamoto M et al. 2008. ATP drives lamina propria TH17 cell differentiation. Nature 455:808–12
    [Google Scholar]
  83. 83. 
    Gagliani N, Amezcua Vesely MC, Iseppon A, Brockmann L, Xu H et al. 2015. Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature 523:221–25
    [Google Scholar]
  84. 84. 
    Kleinewietfeld M, Manzel A, Titze J, Kvakan H, Yosef N et al. 2013. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 496:518–22
    [Google Scholar]
  85. 85. 
    Wu C, Yosef N, Thalhamer T, Zhu C, Xiao S et al. 2013. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature 496:513–17
    [Google Scholar]
  86. 86. 
    Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K et al. 2017. Salt-responsive gut commensal modulates TH17 axis and disease. Nature 551:585–89
    [Google Scholar]
  87. 87. 
    Dang EV, Barbi J, Yang HY, Jinasena D, Yu H et al. 2011. Control of TH17/Treg balance by hypoxia-inducible factor 1. Cell 146:772–84
    [Google Scholar]
  88. 88. 
    Wang H, Flach H, Onizawa M, Wei L, McManus MT, Weiss A. 2014. Negative regulation of Hif1a expression and TH17 differentiation by the hypoxia-regulated microRNA miR-210. Nat. Immunol. 15:393–401
    [Google Scholar]
  89. 89. 
    Wang X, Ni L, Wan S, Zhao X, Ding X et al. 2020. Febrile temperature critically controls the differentiation and pathogenicity of T helper 17 cells. Immunity 52:328–41.e5
    [Google Scholar]
  90. 90. 
    Milner JD, Brenchley JM, Laurence A, Freeman AF, Hill BJ et al. 2008. Impaired TH17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452:773–76
    [Google Scholar]
  91. 91. 
    Puel A, Cypowyj S, Bustamante J, Wright JF, Liu L et al. 2011. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 332:65–68
    [Google Scholar]
  92. 92. 
    Boisson B, Wang C, Pedergnana V, Wu L, Cypowyj S et al. 2013. An ACT1 mutation selectively abolishes interleukin-17 responses in humans with chronic mucocutaneous candidiasis. Immunity 39:676–86
    [Google Scholar]
  93. 93. 
    Chang SH, Park H, Dong C. 2006. Act1 adaptor protein is an immediate and essential signaling component of interleukin-17 receptor. J. Biol. Chem. 281:35603–7
    [Google Scholar]
  94. 94. 
    Cargill M, Schrodi SJ, Chang M, Garcia VE, Brandon R et al. 2007. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am. J. Hum. Genet. 80:273–90
    [Google Scholar]
  95. 95. 
    Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS et al. 2006. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314:1461–63
    [Google Scholar]
  96. 96. 
    Liu Y, Helms C, Liao W, Zaba LC, Duan S et al. 2008. A genome-wide association study of psoriasis and psoriatic arthritis identifies new disease loci. PLOS Genet 4:e1000041
    [Google Scholar]
  97. 97. 
    Lai Y, Dong C. 2016. Therapeutic antibodies that target inflammatory cytokines in autoimmune diseases. Int. Immunol. 28:181–88
    [Google Scholar]
  98. 98. 
    Hueber W, Patel DD, Dryja T, Wright AM, Koroleva I et al. 2010. Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis. Sci. Transl. Med. 2:52ra72
    [Google Scholar]
  99. 99. 
    Xiao S, Yosef N, Yang J, Wang Y, Zhou L et al. 2014. Small-molecule RORγt antagonists inhibit T helper 17 cell transcriptional network by divergent mechanisms. Immunity 40:477–89
    [Google Scholar]
  100. 100. 
    Asadzadeh Z, Mohammadi H, Safarzadeh E, Hemmatzadeh M, Mahdian-Shakib A et al. 2017. The paradox of Th17 cell functions in tumor immunity. Cell. Immunol. 322:15–25
    [Google Scholar]
  101. 101. 
    Dong C. 2017. Helper T cells and cancer-associated inflammation: a new direction for immunotherapy?. J. Interferon Cytokine Res. 37:383–85
    [Google Scholar]
  102. 102. 
    Kryczek I, Banerjee M, Cheng P, Vatan L, Szeliga W et al. 2009. Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood 114:1141–49
    [Google Scholar]
  103. 103. 
    Martin-Orozco N, Muranski P, Chung Y, Yang XO, Yamazaki T et al. 2009. T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity 31:787–98
    [Google Scholar]
  104. 104. 
    Choi GB, Yim YS, Wong H, Kim S, Kim H et al. 2016. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science 351:933–39
    [Google Scholar]
  105. 105. 
    Kim S, Kim H, Yim YS, Ha S, Atarashi K et al. 2017. Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring. Nature 549:528–32
    [Google Scholar]
  106. 106. 
    Shin Yim Y, Park A, Berrios J, Lafourcade M, Pascual LM et al. 2017. Reversing behavioural abnormalities in mice exposed to maternal inflammation. Nature 549:482–87
    [Google Scholar]
  107. 107. 
    Ribeiro M, Brigas HC, Temido-Ferreira M, Pousinha PA, Regen T et al. 2019. Meningeal γδ T cell-derived IL-17 controls synaptic plasticity and short-term memory. Sci. Immunol. 4:40eaay5199
    [Google Scholar]
  108. 108. 
    Liu X, Nurieva RI, Dong C. 2013. Transcriptional regulation of follicular T-helper (Tfh) cells. Immunol. Rev. 252:139–45
    [Google Scholar]
  109. 109. 
    Spolski R, Leonard WJ. 2008. Interleukin-21: basic biology and implications for cancer and autoimmunity. Annu. Rev. Immunol. 26:57–79
    [Google Scholar]
  110. 110. 
    Ansel KM, McHeyzer-Williams LJ, Ngo VN, McHeyzer-Williams MG, Cyster JG 1999. In vivo-activated CD4 T cells upregulate CXC chemokine receptor 5 and reprogram their response to lymphoid chemokines. J. Exp. Med. 190:1123–34
    [Google Scholar]
  111. 111. 
    Kim CH, Rott LS, Clark-Lewis I, Campbell DJ, Wu L, Butcher EC. 2001. Subspecialization of CXCR5+ T cells: B helper activity is focused in a germinal center-localized subset of CXCR5+ T cells. J. Exp. Med. 193:1373–81
    [Google Scholar]
  112. 112. 
    Nurieva RI, Chung Y, Hwang D, Yang XO, Kang HS et al. 2008. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity 29:138–49
    [Google Scholar]
  113. 113. 
    Johnston RJ, Poholek AC, DiToro D, Yusuf I, Eto D et al. 2009. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325:1006–10
    [Google Scholar]
  114. 114. 
    Nurieva RI, Chung Y, Martinez GJ, Yang XO, Tanaka S et al. 2009. Bcl6 mediates the development of T follicular helper cells. Science 325:1001–5
    [Google Scholar]
  115. 115. 
    Yu D, Rao S, Tsai LM, Lee SK, He Y et al. 2009. The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity 31:457–68
    [Google Scholar]
  116. 116. 
    Nurieva RI, Liu X, Dong C. 2011. Molecular mechanisms of T-cell tolerance. Immunol. Rev. 241:133–44
    [Google Scholar]
  117. 117. 
    Akiba H, Takeda K, Kojima Y, Usui Y, Harada N et al. 2005. The role of ICOS in the CXCR5+ follicular B helper T cell maintenance in vivo. J. Immunol. 175:2340–48
    [Google Scholar]
  118. 118. 
    Gigoux M, Shang J, Pak Y, Xu M, Choe J et al. 2009. Inducible costimulator promotes helper T-cell differentiation through phosphoinositide 3-kinase. PNAS 106:20371–76
    [Google Scholar]
  119. 119. 
    Wan Z, Shao X, Ji X, Dong L, Wei J et al. 2020. Transmembrane domain-mediated Lck association underlies bystander and costimulatory ICOS signaling. Cell Mol. Immunol. 17:143–52
    [Google Scholar]
  120. 120. 
    Pedros C, Zhang Y, Hu JK, Choi YS, Canonigo-Balancio AJ et al. 2016. A TRAF-like motif of the inducible costimulator ICOS controls development of germinal center TFH cells via the kinase TBK1. Nat. Immunol. 17:825–33
    [Google Scholar]
  121. 121. 
    Johnston RJ, Choi YS, Diamond JA, Yang JA, Crotty S. 2012. STAT5 is a potent negative regulator of TFH cell differentiation. J. Exp. Med. 209:243–50
    [Google Scholar]
  122. 122. 
    Nurieva RI, Podd A, Chen Y, Alekseev AM, Yu M et al. 2012. STAT5 protein negatively regulates T follicular helper (Tfh) cell generation and function. J. Biol. Chem. 287:11234–39
    [Google Scholar]
  123. 123. 
    Liu X, Lu H, Chen T, Nallaparaju KC, Yan X et al. 2016. Genome-wide analysis identifies Bcl6-controlled regulatory networks during T follicular helper cell differentiation. Cell Rep 14:1735–47
    [Google Scholar]
  124. 124. 
    Choi YS, Kageyama R, Eto D, Escobar TC, Johnston RJ et al. 2011. ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor Bcl6. Immunity 34:932–46
    [Google Scholar]
  125. 125. 
    Kitano M, Moriyama S, Ando Y, Hikida M, Mori Y et al. 2011. Bcl6 protein expression shapes pre-germinal center B cell dynamics and follicular helper T cell heterogeneity. Immunity 34:961–72
    [Google Scholar]
  126. 126. 
    Baumjohann D, Okada T, Ansel KM. 2011. Cutting edge: distinct waves of BCL6 expression during T follicular helper cell development. J. Immunol. 187:2089–92
    [Google Scholar]
  127. 127. 
    Liu X, Yan X, Zhong B, Nurieva RI, Wang A et al. 2012. Bcl6 expression specifies the T follicular helper cell program in vivo. J. Exp. Med. 209:1841–52
    [Google Scholar]
  128. 128. 
    Gu H, Zou YR, Rajewsky K. 1993. Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre–loxP-mediated gene targeting. Cell 73:1155–64
    [Google Scholar]
  129. 129. 
    Crotty S, Johnston RJ, Schoenberger SP. 2010. Effectors and memories: Bcl-6 and Blimp-1 in T and B lymphocyte differentiation. Nat. Immunol. 11:114–20
    [Google Scholar]
  130. 130. 
    Hatzi K, Nance JP, Kroenke MA, Bothwell M, Haddad EK et al. 2015. BCL6 orchestrates Tfh cell differentiation via multiple distinct mechanisms. J. Exp. Med. 212:539–53
    [Google Scholar]
  131. 131. 
    Ma CS, Avery DT, Chan A, Batten M, Bustamante J et al. 2012. Functional STAT3 deficiency compromises the generation of human T follicular helper cells. Blood 119:3997–4008
    [Google Scholar]
  132. 132. 
    Choi YS, Eto D, Yang JA, Lao C, Crotty S. 2013. Cutting edge: STAT1 is required for IL-6-mediated Bcl6 induction for early follicular helper cell differentiation. J. Immunol. 190:3049–53
    [Google Scholar]
  133. 133. 
    Xu W, Zhao X, Wang X, Feng H, Gou M et al. 2019. The transcription factor Tox2 drives T follicular helper cell development via regulating chromatin accessibility. Immunity 51:826–39.e5
    [Google Scholar]
  134. 134. 
    Bollig N, Brüstle A, Kellner K, Ackermann W, Abass E et al. 2012. Transcription factor IRF4 determines germinal center formation through follicular T-helper cell differentiation. PNAS 109:8664–69
    [Google Scholar]
  135. 135. 
    Ise W, Kohyama M, Schraml BU, Zhang T, Schwer B et al. 2011. The transcription factor BATF controls the global regulators of class-switch recombination in both B cells and T cells. Nat. Immunol. 12:536–43
    [Google Scholar]
  136. 136. 
    Liu X, Chen X, Zhong B, Wang A, Wang X et al. 2014. Transcription factor achaete-scute homologue 2 initiates follicular T-helper-cell development. Nature 507:513–18
    [Google Scholar]
  137. 137. 
    Miyazaki M, Rivera RR, Miyazaki K, Lin YC, Agata Y, Murre C 2011. The opposing roles of the transcription factor E2A and its antagonist Id3 that orchestrate and enforce the naive fate of T cells. Nat. Immunol. 12:992–1001
    [Google Scholar]
  138. 138. 
    Shaw LA, Bélanger S, Omilusik KD, Cho S, Scott-Browne JP et al. 2016. Id2 reinforces TH1 differentiation and inhibits E2A to repress TFH differentiation. Nat. Immunol. 17:834–43
    [Google Scholar]
  139. 139. 
    Wu T, Shin HM, Moseman EA, Ji Y, Huang B et al. 2015. TCF1 is required for the T follicular helper cell response to viral infection. Cell Rep 12:2099–110
    [Google Scholar]
  140. 140. 
    Choi YS, Gullicksrud JA, Xing S, Zeng Z, Shan Q et al. 2015. LEF-1 and TCF-1 orchestrate TFH differentiation by regulating differentiation circuits upstream of the transcriptional repressor Bcl6. Nat. Immunol. 16:980–90
    [Google Scholar]
  141. 141. 
    Xu L, Cao Y, Xie Z, Huang Q, Bai Q et al. 2015. The transcription factor TCF-1 initiates the differentiation of TFH cells during acute viral infection. Nat. Immunol. 16:991–99
    [Google Scholar]
  142. 142. 
    Shao P, Li F, Wang J, Chen X, Liu C, Xue HH. 2019. Cutting edge: Tcf1 instructs T follicular helper cell differentiation by repressing Blimp1 in response to acute viral infection. J. Immunol. 203:801–6
    [Google Scholar]
  143. 143. 
    Martins G, Calame K. 2008. Regulation and functions of Blimp-1 in T and B lymphocytes. Annu. Rev. Immunol. 26:133–69
    [Google Scholar]
  144. 144. 
    Ballesteros-Tato A, Leon B, Graf BA, Moquin A, Adams PS et al. 2012. Interleukin-2 inhibits germinal center formation by limiting T follicular helper cell differentiation. Immunity 36:847–56
    [Google Scholar]
  145. 145. 
    Xiao N, Eto D, Elly C, Peng G, Crotty S, Liu Y-C. 2014. The E3 ubiquitin ligase Itch is required for the differentiation of follicular helper T cells. Nat. Immunol. 15:657–66
    [Google Scholar]
  146. 146. 
    Miyauchi K, Sugimoto-Ishige A, Harada Y, Adachi Y, Usami Y et al. 2016. Protective neutralizing influenza antibody response in the absence of T follicular helper cells. Nat. Immunol. 17:1447–58
    [Google Scholar]
  147. 147. 
    Bonsignori M, Zhou T, Sheng Z, Chen L, Gao F et al. 2016. Maturation pathway from germline to broad HIV-1 neutralizer of a CD4-mimic antibody. Cell 165:449–63
    [Google Scholar]
  148. 148. 
    Deng J, Wei Y, Fonseca VR, Graca L, Yu D 2019. T follicular helper cells and T follicular regulatory cells in rheumatic diseases. Nat. Rev. Rheumatol. 15:475–90
    [Google Scholar]
  149. 149. 
    Vinuesa CG, Cook MC, Angelucci C, Athanasopoulos V, Rui L et al. 2005. A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 435:452–58
    [Google Scholar]
  150. 150. 
    Linterman MA, Rigby RJ, Wong R, Silva D, Withers D et al. 2009. Roquin differentiates the specialized functions of duplicated T cell costimulatory receptor genes Cd28 and Icos. Immunity 30:228–41
    [Google Scholar]
  151. 151. 
    Fu W, Liu X, Lin X, Feng H, Sun L et al. 2018. Deficiency in T follicular regulatory cells promotes autoimmunity. J. Exp. Med. 215:815–25
    [Google Scholar]
  152. 152. 
    He J, Tsai LM, Leong YA, Hu X, Ma CS et al. 2013. Circulating precursor CCR7loPD-1hi CXCR5⁺ CD4⁺ T cells indicate Tfh cell activity and promote antibody responses upon antigen reexposure. Immunity 39:770–81
    [Google Scholar]
  153. 153. 
    Morita R, Schmitt N, Bentebibel SE, Ranganathan R, Bourdery L et al. 2011. Human blood CXCR5+CD4+ T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity 34:108–21
    [Google Scholar]
  154. 154. 
    Veldhoen M, Uyttenhove C, van Snick J, Helmby H, Westendorf A et al. 2008. Transforming growth factor-β ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat. Immunol. 9:1341–46
    [Google Scholar]
  155. 155. 
    Dardalhon V, Awasthi A, Kwon H, Galileos G, Gao W et al. 2008. IL-4 inhibits TGF-β-induced Foxp3+ T cells and, together with TGF-β, generates IL-9+ IL-10+ Foxp3 effector T cells. Nat. Immunol. 9:1347–55
    [Google Scholar]
  156. 156. 
    Chang HC, Sehra S, Goswami R, Yao W, Yu Q et al. 2010. The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation. Nat. Immunol. 11:527–34
    [Google Scholar]
  157. 157. 
    Staudt V, Bothur E, Klein M, Lingnau K, Reuter S et al. 2010. Interferon-regulatory factor 4 is essential for the developmental program of T helper 9 cells. Immunity 33:192–202
    [Google Scholar]
  158. 158. 
    Roncarolo MG, Yssel H, Touraine JL, Betuel H, De Vries JE, Spits H. 1988. Autoreactive T cell clones specific for class I and class II HLA antigens isolated from a human chimera. J. Exp. Med. 167:1523–34
    [Google Scholar]
  159. 159. 
    Barrat FJ, Cua DJ, Boonstra A, Richards DF, Crain C et al. 2002. In vitro generation of interleukin 10-producing regulatory CD4+ T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (Th1)- and Th2-inducing cytokines. J. Exp. Med. 195:603–16
    [Google Scholar]
  160. 160. 
    Awasthi A, Carrier Y, Peron JP, Bettelli E, Kamanaka M et al. 2007. A dominant function for interleukin 27 in generating interleukin 10-producing anti-inflammatory T cells. Nat. Immunol. 8:1380–89
    [Google Scholar]
  161. 161. 
    Fitzgerald DC, Zhang GX, El-Behi M, Fonseca-Kelly Z, Li H et al. 2007. Suppression of autoimmune inflammation of the central nervous system by interleukin 10 secreted by interleukin 27-stimulated T cells. Nat. Immunol. 8:1372–79
    [Google Scholar]
  162. 162. 
    Heinemann C, Heink S, Petermann F, Vasanthakumar A, Rothhammer V et al. 2014. IL-27 and IL-12 oppose pro-inflammatory IL-23 in CD4+ T cells by inducing Blimp1. Nat. Commun. 5:3770
    [Google Scholar]
  163. 163. 
    Pot C, Jin H, Awasthi A, Liu SM, Lai CY et al. 2009. Cutting edge: IL-27 induces the transcription factor c-Maf, cytokine IL-21, and the costimulatory receptor ICOS that coordinately act together to promote differentiation of IL-10-producing Tr1 cells. J. Immunol. 183:797–801
    [Google Scholar]
  164. 164. 
    Koch MA, Tucker-Heard G, Perdue NR, Killebrew JR, Urdahl KB, Campbell DJ. 2009. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat. Immunol. 10:595–602
    [Google Scholar]
  165. 165. 
    Levine AG, Mendoza A, Hemmers S, Moltedo B, Niec RE et al. 2017. Stability and function of regulatory T cells expressing the transcription factor T-bet. Nature 546:421–25
    [Google Scholar]
  166. 166. 
    Chaudhry A, Rudra D, Treuting P, Samstein RM et al. 2009. CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science 326:986–91
    [Google Scholar]
  167. 167. 
    Ohnmacht C, Park JH, Cording S, Wing JB et al. 2015. The microbiota regulates type 2 immunity through RORγt⁺ T cells. Science 349:989–93
    [Google Scholar]
  168. 168. 
    Sefik E, Geva-Zatorsky N, Oh S, Konnikova L, Zemmour D et al. 2015. Individual intestinal symbionts induce a distinct population of RORγ⁺ regulatory T cells. Science 349:993–97
    [Google Scholar]
  169. 169. 
    Song X, Sun X, Oh SF, Wu M, Zhang Y et al. 2020. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis. Nature 577:410–15
    [Google Scholar]
  170. 170. 
    Kim BS, Lu H, Ichiyama K, Chen X, Zhang YB et al. 2017. Generation of RORγt+ antigen-specific T regulatory 17 cells from Foxp3+ precursors in autoimmunity. Cell Rep 21:195–207
    [Google Scholar]
  171. 171. 
    Chung Y, Tanaka S, Chu F, Nurieva RI, Martinez GJ et al. 2011. Follicular regulatory T cells expressing Foxp3 and Bcl-6 suppress germinal center reactions. Nat. Med. 17:983–88
    [Google Scholar]
  172. 172. 
    Wollenberg I, Agua-Doce A, Hernández A, Almeida C, Oliveira VG et al. 2011. Regulation of the germinal center reaction by Foxp3+ follicular regulatory T cells. J. Immunol. 187:4553–60
    [Google Scholar]
  173. 173. 
    Zheng Y, Chaudhry A, Kas A, deRoos P, Kim JM et al. 2009. Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control TH2 responses. Nature 458:351–56
    [Google Scholar]
  174. 174. 
    Wang Y, Su MA, Wan YY. 2011. An essential role of the transcription factor GATA-3 for the function of regulatory T cells. Immunity 35:337–48
    [Google Scholar]
  175. 175. 
    Crosby CM, Kronenberg M. 2018. Tissue-specific functions of invariant natural killer T cells. Nat. Rev. Immunol. 18:559–74
    [Google Scholar]
  176. 176. 
    Contreras AV, Wiest DL. 2020. Recent advances in understanding the development and function of γδ T cells. F1000Research 9:F1000 Faculty Rev.306
    [Google Scholar]
  177. 177. 
    Shibata K, Yamada H, Hara H, Kishihara K, Yoshikai Y. 2007. Resident Vδ1+ γδ T cells control early infiltration of neutrophils after Escherichia coli infection via IL-17 production. J. Immunol. 178:4466–72
    [Google Scholar]
  178. 178. 
    Martin B, Hirota K, Cua DJ, Stockinger B, Veldhoen M. 2009. Interleukin-17-producing γδ T cells selectively expand in response to pathogen products and environmental signals. Immunity 31:321–30
    [Google Scholar]
  179. 179. 
    Malhotra N, Narayan K, Cho OH, Sylvia KE, Yin C et al. 2013. A network of high-mobility group box transcription factors programs innate interleukin-17 production. Immunity 38:681–93
    [Google Scholar]
  180. 180. 
    Ebihara T. 2020. Dichotomous regulation of acquired immunity by innate lymphoid cells. Cells 9:51193
    [Google Scholar]
  181. 181. 
    Pokrovskii M, Hall JA, Ochayon DE, Yi R, Chaimowitz NS et al. 2019. Characterization of transcriptional regulatory networks that promote and restrict identities and functions of intestinal innate lymphoid cells. Immunity 51:185–97.e6
    [Google Scholar]
  182. 182. 
    Schwartz RH. 2003. T cell anergy. Annu. Rev. Immunol. 21:305–34
    [Google Scholar]
  183. 183. 
    Liu YC. 2004. Ubiquitin ligases and the immune response. Annu. Rev. Immunol. 22:81–127
    [Google Scholar]
  184. 184. 
    Borde M, Barrington RA, Heissmeyer V, MC Carroll, Rao A. 2006. Transcriptional basis of lymphocyte tolerance. Immunol. Rev. 210:105–19
    [Google Scholar]
  185. 185. 
    Nurieva R, Thomas S, Nguyen T, Martin-Orozco N, Wang Y et al. 2006. T-cell tolerance or function is determined by combinatorial costimulatory signals. EMBO J 25:2623–33
    [Google Scholar]
  186. 186. 
    Liu X, Wang Y, Lu H, Li J, Yan X et al. 2019. Genome-wide analysis identifies NR4A1 as a key mediator of T cell dysfunction. Nature 567:525–29
    [Google Scholar]
  187. 187. 
    Alfei F, Kanev K, Hofmann M, Wu M, Ghoneim HE et al. 2019. TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. Nature 571:265–69
    [Google Scholar]
  188. 188. 
    Scott AC, Dündar F, Zumbo P, Chandran SS, Klebanoff CA et al. 2019. TOX is a critical regulator of tumour-specific T cell differentiation. Nature 571:270–74
    [Google Scholar]
  189. 189. 
    Li J, He Y, Hao J, Ni L, Dong C. 2018. High levels of Eomes promote exhaustion of anti-tumor CD8+ T cells. Front. Immunol. 9:2981
    [Google Scholar]
  190. 190. 
    McLane LM, Abdel-Hakeem MS, Wherry EJ. 2019. CD8 T cell exhaustion during chronic viral infection and cancer. Annu. Rev. Immunol. 37:457–95
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-061020-053702
Loading
/content/journals/10.1146/annurev-immunol-061020-053702
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error