1932

Abstract

Dendritic cells (DCs) possess the ability to integrate information about their environment and communicate it to other leukocytes, shaping adaptive and innate immunity. Over the years, a variety of cell types have been called DCs on the basis of phenotypic and functional attributes. Here, we refocus attention on conventional DCs (cDCs), a discrete cell lineage by ontogenetic and gene expression criteria that best corresponds to the cells originally described in the 1970s. We summarize current knowledge of mouse and human cDC subsets and describe their hematopoietic development and their phenotypic and functional attributes. We hope that our effort to review the basic features of cDC biology and distinguish cDCs from related cell types brings to the fore the remarkable properties of this cell type while shedding some light on the seemingly inordinate complexity of the DC field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-061020-053707
2021-04-26
2024-09-12
Loading full text...

Full text loading...

/deliver/fulltext/immunol/39/1/annurev-immunol-061020-053707.html?itemId=/content/journals/10.1146/annurev-immunol-061020-053707&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Steinman RM, Cohn ZA. 1973. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J. Exp. Med. 137:51142–62
    [Google Scholar]
  2. 2. 
    Paul WE. 2011. Bridging innate and adaptive immunity. Cell 147:61212–15
    [Google Scholar]
  3. 3. 
    Mishell RI, Dutton RW. 1966. Immunization of normal mouse spleen cell suspensions in vitro. Science 153:37391004–6
    [Google Scholar]
  4. 4. 
    Mosier DE. 1967. A requirement for two cell types for antibody formation in vitro. Science 158:38081573–75
    [Google Scholar]
  5. 5. 
    Unanue ER, Cerottini JC. 1970. The immunogenicity of antigen bound to the plasma membrane of macrophages. J. Exp. Med. 131:4711–25
    [Google Scholar]
  6. 6. 
    Nussenzweig MC. 2011. Ralph Steinman and the discovery of dendritic cells. Nobel Lect., Nobel Found Stockholm: https://www.nobelprize.org/uploads/2018/06/steinman_lecture.pdf
    [Google Scholar]
  7. 7. 
    Van Voorhis WC, Hair LS, Steinman RM, Kaplan G. 1982. Human dendritic cells: enrichment and characterization from peripheral blood. J. Exp. Med. 155:41172–87
    [Google Scholar]
  8. 8. 
    Silberberg-Sinakin I, Thorbecke GJ, Baer RL, Rosenthal SA, Berezowsky V. 1976. Antigen-bearing Langerhans cells in skin, dermal lymphatics and in lymph nodes. Cell Immunol 25:2137–51
    [Google Scholar]
  9. 9. 
    Kelly RH, Balfour BM, Armstrong JA, Griffith S. 1978. Functional anatomy of lymph nodes. II. Peripheral lymph-borne mononuclear cells. Anat. Rec. 190:15–21
    [Google Scholar]
  10. 10. 
    Schuler G, Steinman RM. 1985. Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J. Exp. Med. 161:3526–46
    [Google Scholar]
  11. 11. 
    Vremec D, Zorbas M, Scollay R, Saunders DJ, Ardavin CF et al. 1992. The surface phenotype of dendritic cells purified from mouse thymus and spleen: investigation of the CD8 expression by a subpopulation of dendritic cells. J. Exp. Med. 176:147–58
    [Google Scholar]
  12. 12. 
    Vremec D, Pooley J, Hochrein H, Wu L, Shortman K. 2000. CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen. J. Immunol. 164:62978–86
    [Google Scholar]
  13. 13. 
    Anjuère F, Martin P, Ferrero I, Fraga ML, del Hoyo GM et al. 1999. Definition of dendritic cell subpopulations present in the spleen, Peyer's patches, lymph nodes, and skin of the mouse. Blood 93:2590–98
    [Google Scholar]
  14. 14. 
    Edwards AD, Chaussabel D, Tomlinson S, Schulz O, Sher A, Reis e Sousa C. 2003. Relationships among murine CD11chigh dendritic cell subsets as revealed by baseline gene expression patterns. J. Immunol. 171:147–60
    [Google Scholar]
  15. 15. 
    Miller JC, Brown BD, Shay T, Jojic V, Cohain A et al. 2012. Deciphering the transcriptional network of the dendritic cell lineage. Nat. Immunol. 13:888–99
    [Google Scholar]
  16. 16. 
    Siegal FP. 1999. The nature of the principal type 1 interferon-producing cells in human blood. Science 284:54211835–37
    [Google Scholar]
  17. 17. 
    Cella M, Jarrossay D, Facchetti F, Alebardi O, Nakajima H et al. 1999. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat. Med. 5:8919–23
    [Google Scholar]
  18. 18. 
    Sallusto F, Lanzavecchia A. 1994. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J. Exp. Med. 179:41109–18
    [Google Scholar]
  19. 19. 
    Randolph GJ. 1998. Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking. Science 282:5388480–83
    [Google Scholar]
  20. 20. 
    Naik SH, Proietto AI, Wilson NS, Dakic A, Schnorrer P et al. 2005. Cutting edge: generation of splenic CD8+ and CD8 dendritic cell equivalents in fms-like tyrosine kinase 3 ligand bone marrow cultures. J. Immunol. 174:116592–97
    [Google Scholar]
  21. 21. 
    Naik SH, Sathe P, Park H-Y, Metcalf D, Proietto AI et al. 2007. Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat. Immunol. 8:111217–26
    [Google Scholar]
  22. 22. 
    Onai N, Obata-Onai A, Schmid MA, Ohteki T, Jarrossay D, Manz MG. 2007. Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nat. Immunol. 8:111207–16
    [Google Scholar]
  23. 23. 
    Herman JS, Sagar Grün D 2018. FateID infers cell fate bias in multipotent progenitors from single-cell RNA-seq data. Nat. Methods 15:5379–86
    [Google Scholar]
  24. 24. 
    Rodrigues PF, Alberti-Servera L, Eremin A, Grajales-Reyes GE, Ivanek R, Tussiwand R. 2018. Distinct progenitor lineages contribute to the heterogeneity of plasmacytoid dendritic cells. Nat. Immunol. 19:7711–22
    [Google Scholar]
  25. 25. 
    Dress RJ, Dutertre C-A, Giladi A, Schlitzer A, Low I et al. 2019. Plasmacytoid dendritic cells develop from Ly6D+ lymphoid progenitors distinct from the myeloid lineage. Nat. Immunol. 20:7852–64
    [Google Scholar]
  26. 26. 
    Brown CC, Gudjonson H, Pritykin Y, Deep D, Lavallée V-P et al. 2019. Transcriptional basis of mouse and human dendritic cell heterogeneity. Cell 179:4846–63.e24
    [Google Scholar]
  27. 27. 
    Villani A-C, Satija R, Reynolds G, Sarkizova S, Shekhar K et al. 2017. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356:6335eaah4573
    [Google Scholar]
  28. 28. 
    Nutt SL, Chopin M. 2020. Transcriptional networks driving dendritic cell differentiation and function. Immunity 52:6942–56
    [Google Scholar]
  29. 29. 
    Ginhoux F, Guilliams M. 2016. Tissue-resident macrophage ontogeny and homeostasis. Immunity 44:3439–49
    [Google Scholar]
  30. 30. 
    Wang Y, Szretter KJ, Vermi W, Gilfillan S, Rossini C et al. 2012. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat. Immunol. 13:8753–60
    [Google Scholar]
  31. 31. 
    Ginhoux F, Liu K, Helft J, Bogunovic M, Greter M et al. 2009. The origin and development of nonlymphoid tissue CD103+ DCs. J. Exp. Med. 206:133115–30
    [Google Scholar]
  32. 32. 
    Shay T, Greter M, Ivanov S, Helft J, Chow A et al. 2012. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol. 13:111118–28
    [Google Scholar]
  33. 33. 
    Schraml BU, van Blijswijk J, Zelenay S, Whitney PG, Filby A et al. 2013. Genetic tracing via DNGR-1 expression history defines dendritic cells as a hematopoietic lineage. Cell 154:4843–58
    [Google Scholar]
  34. 34. 
    Doebel T, Voisin B, Nagao K. 2017. Langerhans cells—the macrophage in dendritic cell clothing. Trends Immunol 38:11817–28
    [Google Scholar]
  35. 35. 
    Merad M, Sathe P, Helft J, Miller J, Mortha A. 2013. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol. 31:563–604
    [Google Scholar]
  36. 36. 
    Guilliams M, Ginhoux F, Jakubzick C, Naik SH, Onai N et al. 2014. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat. Rev. Immunol. 14:8571–78
    [Google Scholar]
  37. 37. 
    Bosteels C, Neyt K, Vanheerswynghels M, van Helden MJ, Sichien D et al. 2020. Inflammatory type 2 cDCs acquire features of cDC1s and macrophages to orchestrate immunity to respiratory virus infection. Immunity 52:61039–56.e9
    [Google Scholar]
  38. 38. 
    Inaba K, Inaba M, Romani N, Aya H, Deguchi M et al. 1992. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 176:61693–702
    [Google Scholar]
  39. 39. 
    Inaba K, Steinman RM, Pack MW, Aya H, Inaba M et al. 1992. Identification of proliferating dendritic cell precursors in mouse blood. J. Exp. Med. 175:51157–67
    [Google Scholar]
  40. 40. 
    Guilliams M, Malissen B. 2015. A death notice for in-vitro-generated GM-CSF dendritic cells?. Immunity 42:6988–90
    [Google Scholar]
  41. 41. 
    Helft J, Böttcher J, Chakravarty P, Zelenay S, Huotari J et al. 2015. GM-CSF mouse bone marrow cultures comprise a heterogeneous population of CD11c+MHCII+ macrophages and dendritic cells. Immunity 42:61197–211
    [Google Scholar]
  42. 42. 
    Mayer CT, Ghorbani P, Nandan A, Dudek M, Arnold-Schrauf C et al. 2014. Selective and efficient generation of functional Batf3-dependent CD103+ dendritic cells from mouse bone marrow. Blood 124:203081–91
    [Google Scholar]
  43. 43. 
    Vremec D, Lieschke GJ, Dunn AR, Robb L, Metcalf D, Shortman K. 1997. The influence of granulocyte/macrophage colony-stimulating factor on dendritic cell levels in mouse lymphoid organs. Eur. J. Immunol. 27:140–44
    [Google Scholar]
  44. 44. 
    Greter M, Helft J, Chow A, Hashimoto D, Mortha A et al. 2012. GM-CSF controls nonlymphoid tissue dendritic cell homeostasis but is dispensable for the differentiation of inflammatory dendritic cells. Immunity 36:61031–46
    [Google Scholar]
  45. 45. 
    McKenna HJ, Stocking KL, Miller RE, Brasel K, De Smedt T et al. 2000. Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 95:113489–97
    [Google Scholar]
  46. 46. 
    Waskow C, Liu K, Darrasse-Jèze G, Guermonprez P, Ginhoux F et al. 2008. The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat. Immunol. 9:6676–83
    [Google Scholar]
  47. 47. 
    Maraskovsky E, Brasel K, Teepe M, Roux ER, Lyman SD et al. 1996. Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J. Exp. Med. 184:51953–62
    [Google Scholar]
  48. 48. 
    Naik SH, Metcalf D, van Nieuwenhuijze A, Wicks I, Wu L et al. 2006. Intrasplenic steady-state dendritic cell precursors that are distinct from monocytes. Nat. Immunol. 7:6663–71
    [Google Scholar]
  49. 49. 
    Diao J, Winter E, Cantin C, Chen W, Xu L et al. 2006. In situ replication of immediate dendritic cell (DC) precursors contributes to conventional DC homeostasis in lymphoid tissue. J. Immunol. 176:127196–206
    [Google Scholar]
  50. 50. 
    Liu Z, Gu Y, Chakarov S, Bleriot C, Kwok I et al. 2019. Fate mapping via Ms4a3-expression history traces monocyte-derived cells. Cell 178:61509–19
    [Google Scholar]
  51. 51. 
    Satpathy AT, Wu X, Albring JC, Murphy KM. 2012. Re(de)fining the dendritic cell lineage. Nat. Immunol. 13:121145–54
    [Google Scholar]
  52. 52. 
    Meredith MM, Liu K, Darrasse-Jèze G, Kamphorst AO, Schreiber HA et al. 2012. Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. J. Exp. Med. 209:61153–65
    [Google Scholar]
  53. 53. 
    Caton ML, Smith-Raska MR, Reizis B. 2007. Notch-RBP-J signaling controls the homeostasis of CD8 dendritic cells in the spleen. J. Exp. Med. 204:71653–64
    [Google Scholar]
  54. 54. 
    Jung S, Unutmaz D, Wong P, Sano G-I, De los Santos K et al. 2002. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17:2211–20
    [Google Scholar]
  55. 55. 
    Naik SH, Perié L, Swart E, Gerlach C, van Rooij N et al. 2013. Diverse and heritable lineage imprinting of early haematopoietic progenitors. Nature 496:7444229–32
    [Google Scholar]
  56. 56. 
    Manz MG, Traver D, Miyamoto T, Weissman IL, Akashi K. 2001. Dendritic cell potentials of early lymphoid and myeloid progenitors. Blood 97:113333–41
    [Google Scholar]
  57. 57. 
    Wu L, D'Amico A, Hochrein H, O'Keeffe M, Shortman K, Lucas K 2001. Development of thymic and splenic dendritic cell populations from different hemopoietic precursors. Blood 98:123376–82
    [Google Scholar]
  58. 58. 
    Welner RS, Pelayo R, Nagai Y, Garrett KP, Wuest TR et al. 2008. Lymphoid precursors are directed to produce dendritic cells as a result of TLR9 ligation during herpes infection. Blood 112:93753–61
    [Google Scholar]
  59. 59. 
    Salvermoser J, van Blijswijk J, Papaioannou NE, Rambichler S, Pasztoi M et al. 2018. Clec9a-mediated ablation of conventional dendritic cells suggests a lymphoid path to generating dendritic cells in vivo. Front. Immunol. 9:563
    [Google Scholar]
  60. 60. 
    Schlenner SM, Madan V, Busch K, Tietz A, Läufle C et al. 2010. Fate mapping reveals separate origins of T cells and myeloid lineages in the thymus. Immunity 32:3426–36
    [Google Scholar]
  61. 61. 
    Akashi K, Traver D, Miyamoto T, Weissman IL. 2000. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404:6774193–97
    [Google Scholar]
  62. 62. 
    Fogg DK. 2006. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 311:575783–87
    [Google Scholar]
  63. 63. 
    Sathe P, Metcalf D, Vremec D, Naik SH, Langdon WY et al. 2014. Lymphoid tissue and plasmacytoid dendritic cells and macrophages do not share a common macrophage-dendritic cell-restricted progenitor. Immunity 41:1104–15
    [Google Scholar]
  64. 64. 
    Liu K, Victora GD, Schwickert TA, Guermonprez P, Meredith MM et al. 2009. In vivo analysis of dendritic cell development and homeostasis. Science 324:5925392–97
    [Google Scholar]
  65. 65. 
    Kingston D, Schmid MA, Onai N, Obata-Onai A, Baumjohann D, Manz MG 2009. The concerted action of GM-CSF and Flt3-ligand on in vivo dendritic cell homeostasis. Blood 114:4835–43
    [Google Scholar]
  66. 66. 
    Durai V, Bagadia P, Briseño CG, Theisen DJ, Iwata A et al. 2018. Altered compensatory cytokine signaling underlies the discrepancy between Flt3−/− and Flt3l−/− mice. J. Exp. Med. 215:51417–35
    [Google Scholar]
  67. 67. 
    Nakano H, Lyons-Cohen MR, Whitehead GS, Nakano K, Cook DN. 2017. Distinct functions of CXCR4, CCR2, and CX3CR1 direct dendritic cell precursors from the bone marrow to the lung. J. Leukoc. Biol. 101:51143–53
    [Google Scholar]
  68. 68. 
    Cosway EJ, Ohigashi I, Schauble K, Parnell SM, Jenkinson WE et al. 2018. Formation of the intrathymic dendritic cell pool requires CCL21-mediated recruitment of CCR7+ progenitors to the thymus. J. Immunol. 201:2516–23
    [Google Scholar]
  69. 69. 
    Gallizioli M, Miró-Mur F, Otxoa-de-Amezaga A, Cugota R, Salas-Perdomo A et al. 2020. Dendritic cells and microglia have non-redundant functions in the inflamed brain with protective effects of type 1 cDCs. Cell Rep 33:108291
    [Google Scholar]
  70. 70. 
    Kabashima K, Banks TA, Ansel KM, Lu TT, Ware CF, Cyster JG. 2005. Intrinsic lymphotoxin-β receptor requirement for homeostasis of lymphoid tissue dendritic cells. Immunity 22:4439–50
    [Google Scholar]
  71. 71. 
    Liu K, Waskow C, Liu X, Yao K, Hoh J, Nussenzweig M. 2007. Origin of dendritic cells in peripheral lymphoid organs of mice. Nat. Immunol. 8:6578–83
    [Google Scholar]
  72. 72. 
    Cabeza-Cabrerizo M, van Blijswijk J, Wienert S, Heim D, Jenkins RP et al. 2019. Tissue clonality of dendritic cell subsets and emergency DCpoiesis revealed by multicolor fate mapping of DC progenitors. Sci. Immunol. 4:33eaaw1941
    [Google Scholar]
  73. 73. 
    Rissoan MC, Soumelis V, Kadowaki N, Grouard G, Briere F et al. 1999. Reciprocal control of T helper cell and dendritic cell differentiation. Science 283:54051183–86
    [Google Scholar]
  74. 74. 
    Grajales-Reyes GE, Iwata A, Albring J, Wu X, Tussiwand R et al. 2015. Batf3 maintains autoactivation of Irf8 for commitment of a CD8α+ conventional DC clonogenic progenitor. Nat. Immunol. 16:7708–17
    [Google Scholar]
  75. 75. 
    Schlitzer A, Sivakamasundari V, Chen J, Sumatoh HRB, Schreuder J et al. 2015. Identification of cDC1- and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow. Nat. Immunol. 16:7718–28
    [Google Scholar]
  76. 76. 
    See P, Dutertre C-A, Chen J, Günther P, McGovern N et al. 2017. Mapping the human DC lineage through the integration of high-dimensional techniques. Science 356:6342eaag3009
    [Google Scholar]
  77. 77. 
    Shortman K. 2020. Dendritic cell development: a personal historical perspective. Mol. Immunol. 119:64–68
    [Google Scholar]
  78. 78. 
    Murphy TL, Grajales-Reyes GE, Wu X, Tussiwand R, Briseño CG et al. 2016. Transcriptional control of dendritic cell development. Annu. Rev. Immunol. 34:93–119
    [Google Scholar]
  79. 79. 
    Hildner K, Edelson BT, Purtha WE, Diamond M, Matsushita H et al. 2008. Batf3 deficiency reveals a critical role for CD8α+ dendritic cells in cytotoxic T cell immunity. Science 322:59041097–100
    [Google Scholar]
  80. 80. 
    Hacker C, Kirsch RD, Ju X-S, Hieronymus T, Gust TC et al. 2003. Transcriptional profiling identifies Id2 function in dendritic cell development. Nat. Immunol. 4:4380–86
    [Google Scholar]
  81. 81. 
    Kashiwada M, Pham N-LL, Pewe LL, Harty JT, Rothman PB. 2011. NFIL3/E4BP4 is a key transcription factor for CD8α+ dendritic cell development. Blood 117:236193–97
    [Google Scholar]
  82. 82. 
    Seillet C, Jackson JT, Markey KA, Brady HJM, Hill GR et al. 2013. CD8α+ DCs can be induced in the absence of transcription factors Id2, Nfil3, and Batf3. Blood 121:91574–83
    [Google Scholar]
  83. 83. 
    Tussiwand R, Lee W-L, Murphy TL, Mashayekhi M, KC W et al. 2012. Compensatory dendritic cell development mediated by BATF-IRF interactions. Nature 490:7421502–7
    [Google Scholar]
  84. 84. 
    Durai V, Bagadia P, Granja JM, Satpathy AT, Kulkarni DH et al. 2019. Cryptic activation of an Irf8 enhancer governs cDC1 fate specification. Nat. Immunol. 20:91161–73
    [Google Scholar]
  85. 85. 
    Bagadia P, Huang X, Liu T-T, Durai V, Grajales-Reyes GE et al. 2019. An Nfil3-Zeb2-Id2 pathway imposes Irf8 enhancer switching during cDC1 development. Nat. Immunol. 20:91174–85
    [Google Scholar]
  86. 86. 
    Varol C, Zigmond E, Jung S 2010. Securing the immune tightrope: mononuclear phagocytes in the intestinal lamina propria. Nat. Rev. Immunol. 10:6415–26
    [Google Scholar]
  87. 87. 
    Scott CL, Bain CC, Wright PB, Sichien D, Kotarsky K et al. 2015. CCR2+ CD103 intestinal dendritic cells develop from DC-committed precursors and induce interleukin-17 production by T cells. Mucosal Immunol 8:2327–39
    [Google Scholar]
  88. 88. 
    Satpathy AT, Briseño CG, Lee JS, Ng D, Manieri NA et al. 2013. Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens. Nat. Immunol. 14:9937–48
    [Google Scholar]
  89. 89. 
    Lewis KL, Caton ML, Bogunovic M, Greter M, Grajkowska LT et al. 2011. Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine. Immunity 35:5780–91
    [Google Scholar]
  90. 90. 
    Tussiwand R, Everts B, Grajales-Reyes GE, Kretzer NM, Iwata A et al. 2015. Klf4 expression in conventional dendritic cells is required for T helper 2 cell responses. Immunity 42:5916–28
    [Google Scholar]
  91. 91. 
    Park CS, Lee P-H, Yamada T, Burns A, Shen Y et al. 2012. Kruppel-like factor 4 (KLF4) promotes the survival of natural killer cells and maintains the number of conventional dendritic cells in the spleen. J. Leukoc. Biol. 91:5739–50
    [Google Scholar]
  92. 92. 
    Bar-On L, Birnberg T, Lewis KL, Edelson BT, Bruder D et al. 2010. CX3CR1+ CD8α+ dendritic cells are a steady-state population related to plasmacytoid dendritic cells. PNAS 107:3314745–50
    [Google Scholar]
  93. 93. 
    Leylek R, Alcántara-Hernández M, Lanzar Z, Lüdtke A, Perez OA et al. 2019. Integrated cross-species analysis identifies a conserved transitional dendritic cell population. Cell Rep 29:113736–38
    [Google Scholar]
  94. 94. 
    Abbas A, Vu Manh T-P, Valente M, Collinet N, Attaf N et al. 2020. The activation trajectory of plasmacytoid dendritic cells in vivo during a viral infection. Nat. Immunol. 21:9983–97
    [Google Scholar]
  95. 95. 
    Guilliams M, Dutertre C-A, Scott CL, McGovern N, Sichien D et al. 2016. Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species. Immunity 45:3669–84
    [Google Scholar]
  96. 96. 
    Böttcher JP, Bonavita E, Chakravarty P, Blees H, Cabeza-Cabrerizo M et al. 2018. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 172:51022–37.e14
    [Google Scholar]
  97. 97. 
    Tamoutounour S, Henri S, Lelouard H, de Bovis B, de Haar C et al. 2012. CD64 distinguishes macrophages from dendritic cells in the gut and reveals the Th1-inducing role of mesenteric lymph node macrophages during colitis. Eur. J. Immunol. 42:123150–66
    [Google Scholar]
  98. 98. 
    Langlet C, Tamoutounour S, Henri S, Luche H, Ardouin L et al. 2012. CD64 expression distinguishes monocyte-derived and conventional dendritic cells and reveals their distinct role during intramuscular immunization. J. Immunol. 188:41751–60
    [Google Scholar]
  99. 99. 
    Schaupp L, Muth S, Rogell L, Kofoed-Branzk M, Melchior F et al. 2020. Microbiota-induced type I interferons instruct a poised basal state of dendritic cells. Cell 181:51080–96.e19
    [Google Scholar]
  100. 100. 
    Salei N, Rambichler S, Salvermoser J, Papaioannou NE, Schuchert R et al. 2020. The kidney contains ontogenetically distinct dendritic cell and macrophage subtypes throughout development that differ in their inflammatory properties. J. Am. Soc. Nephrol. 31:2257–78
    [Google Scholar]
  101. 101. 
    O'Keeffe M, Hochrein H, Vremec D, Scott B, Hertzog P et al. 2003. Dendritic cell precursor populations of mouse blood: identification of the murine homologues of human blood plasmacytoid pre-DC2 and CD11c+ DC1 precursors. Blood 101:41453–59
    [Google Scholar]
  102. 102. 
    Dzionek A, Fuchs A, Schmidt P, Cremer S, Zysk M et al. 2000. BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J. Immunol. 165:116037–46
    [Google Scholar]
  103. 103. 
    Santiago-Schwarz F, Belilos E, Diamond B, Carsons SE. 1992. TNF in combination with GM-CSF enhances the differentiation of neonatal cord blood stem cells into dendritic cells and macrophages. J. Leukoc. Biol. 52:3274–81
    [Google Scholar]
  104. 104. 
    Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D. 2019. Dendritic cells in cancer immunology and immunotherapy. Nat. Rev. Immunol. 20:17–24
    [Google Scholar]
  105. 105. 
    Balan S, Ollion V, Colletti N, Chelbi R, Montanana Sanchis F et al. 2014. Human XCR1+ dendritic cells derived in vitro from CD34+ progenitors closely resemble blood dendritic cells, including their adjuvant responsiveness, contrary to monocyte-derived dendritic cells. J. Immunol. 193:41622–35
    [Google Scholar]
  106. 106. 
    Segura E, Amigorena S. 2013. Inflammatory dendritic cells in mice and humans. Trends Immunol 34:9440–45
    [Google Scholar]
  107. 107. 
    Balan S, Dalod M. 2016. In vitro generation of human XCR1+ dendritic cells from CD34+ hematopoietic progenitors. Methods Mol. Biol. 1423:19–37
    [Google Scholar]
  108. 108. 
    Plantinga M, de Haar CG, Dünnebach E, van den Beemt DAMH, Bloemenkamp KWM et al. 2019. Cord-blood-stem-cell-derived conventional dendritic cells specifically originate from CD115-expressing precursors. Cancers 11:2181
    [Google Scholar]
  109. 109. 
    Iwabuchi R, Ikeno S, Kobayashi-Ishihara M, Takeyama H, Ato M et al. 2018. Introduction of human Flt3-L and GM-CSF into humanized mice enhances the reconstitution and maturation of myeloid dendritic cells and the development of Foxp3+ CD4+ T cells. Front. Immunol. 9:1042
    [Google Scholar]
  110. 110. 
    Poulin LF, Salio M, Griessinger E, Anjos-Afonso F, Craciun L et al. 2010. Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8α+ dendritic cells. J. Exp. Med. 207:61261–71
    [Google Scholar]
  111. 111. 
    Breton G, Lee J, Zhou YJ, Schreiber JJ, Keler T et al. 2015. Circulating precursors of human CD1c+ and CD141+ dendritic cells. J. Exp. Med. 212:3401–13
    [Google Scholar]
  112. 112. 
    Balan S, Arnold-Schrauf C, Abbas A, Couespel N, Savoret J et al. 2018. Large-scale human dendritic cell differentiation revealing Notch-dependent lineage bifurcation and heterogeneity. Cell Rep 24:71902–15.e6
    [Google Scholar]
  113. 113. 
    Weissman IL, Shizuru JA. 2008. The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases. Blood 112:93543–53
    [Google Scholar]
  114. 114. 
    Lee J, Breton G, Oliveira TYK, Zhou YJ, Aljoufi A et al. 2015. Restricted dendritic cell and monocyte progenitors in human cord blood and bone marrow. J. Exp. Med. 212:3385–99
    [Google Scholar]
  115. 115. 
    Doulatov S, Notta F, Eppert K, Nguyen LT, Ohashi PS, Dick JE. 2010. Revised map of the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid development. Nat. Immunol. 11:7585–93
    [Google Scholar]
  116. 116. 
    Helft J, Anjos-Afonso F, van der Veen AG, Chakravarty P, Bonnet D, Reis e Sousa C. 2017. Dendritic cell lineage potential in human early hematopoietic progenitors. Cell Rep 20:3529–37
    [Google Scholar]
  117. 117. 
    Breton G, Zheng S, Valieris R, Tojal da Silva I, Satija R, Nussenzweig MC 2016. Human dendritic cells (DCs) are derived from distinct circulating precursors that are precommitted to become CD1c+ or CD141+ DCs. J. Exp. Med. 213:132861–70
    [Google Scholar]
  118. 118. 
    Lindstedt M, Lundberg K, Borrebaeck CAK. 2005. Gene family clustering identifies functionally associated subsets of human in vivo blood and tonsillar dendritic cells. J. Immunol. 175:84839–46
    [Google Scholar]
  119. 119. 
    Robbins SH, Walzer T, Dembele D, Thibault C, Defays A et al. 2008. Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling. Genome Biol 9:1R17
    [Google Scholar]
  120. 120. 
    Bachem A, Güttler S, Hartung E, Ebstein F, Schaefer M et al. 2010. Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells. J. Exp. Med. 207:61273–81
    [Google Scholar]
  121. 121. 
    Jongbloed SL, Kassianos AJ, McDonald KJ, Clark GJ, Ju X et al. 2010. Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J. Exp. Med. 207:61247–60
    [Google Scholar]
  122. 122. 
    Crozat K, Guiton R, Contreras V, Feuillet V, Dutertre C-A et al. 2010. The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8α+ dendritic cells. J. Exp. Med. 207:61283–92
    [Google Scholar]
  123. 123. 
    Collin M, Bigley V. 2018. Human dendritic cell subsets: an update. Immunology 154:13–20
    [Google Scholar]
  124. 124. 
    Collin M, Ginhoux F 2019. Human dendritic cells. Semin. Cell Dev. Biol. 86:1–2
    [Google Scholar]
  125. 125. 
    Yin X, Yu H, Jin X, Li J, Guo H et al. 2017. Human blood CD1c+ dendritic cells encompass CD5high and CD5low subsets that differ significantly in phenotype, gene expression, and functions. J. Immunol. 198:41553–64
    [Google Scholar]
  126. 126. 
    Dutertre C-A, Becht E, Irac SE, Khalilnezhad A, Narang V et al. 2019. Single-cell analysis of human mononuclear phagocytes reveals subset-defining markers and identifies circulating inflammatory dendritic cells. Immunity 51:3573–78
    [Google Scholar]
  127. 127. 
    Bigley V, Cytlak U, Collin M 2019. Human dendritic cell immunodeficiencies. Semin. Cell Dev. Biol. 86:50–61
    [Google Scholar]
  128. 128. 
    Poulin LF, Reyal Y, Uronen-Hansson H, Schraml BU, Sancho D et al. 2012. DNGR-1 is a specific and universal marker of mouse and human Batf3-dependent dendritic cells in lymphoid and nonlymphoid tissues. Blood 119:256052–62
    [Google Scholar]
  129. 129. 
    Dickinson RE, Griffin H, Bigley V, Reynard LN, Hussain R et al. 2011. Exome sequencing identifies GATA-2 mutation as the cause of dendritic cell, monocyte, B and NK lymphoid deficiency. Blood 118:102656–58
    [Google Scholar]
  130. 130. 
    Collin M, Bigley V, Haniffa M, Hambleton S. 2011. Human dendritic cell deficiency: the missing ID?. Nat. Rev. Immunol. 11:575–83
    [Google Scholar]
  131. 131. 
    Hambleton S, Salem S, Bustamante J, Bigley V, Boisson-Dupuis S et al. 2011. IRF8 mutations and human dendritic-cell immunodeficiency. N. Engl. J. Med. 365:2127–38
    [Google Scholar]
  132. 132. 
    Cytlak U, Resteu A, Pagan S, Green K, Milne P et al. 2020. Differential IRF8 transcription factor requirement defines two pathways of dendritic cell development in humans. Immunity 53:2353–70.e8
    [Google Scholar]
  133. 133. 
    Bourdely P, Anselmi G, Vaivode K, Ramos RN, Missolo-Koussou Y et al. 2020. Transcriptional and functional analysis of CD1c+ human dendritic cells identifies a CD163+ subset priming CD8+CD103+ T cells. Immunity 53:335–52.e8
    [Google Scholar]
  134. 134. 
    Günther P, Cirovic B, Baßler K, Händler K, Becker M et al. 2019. A rule-based data-informed cellular consensus map of the human mononuclear phagocyte cell space. bioRxiv 658179
  135. 135. 
    Salmon H, Idoyaga J, Rahman A, Leboeuf M, Remark R et al. 2016. Expansion and activation of CD103+ dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity 44:4924–38
    [Google Scholar]
  136. 136. 
    Abolins S, King EC, Lazarou L, Weldon L, Hughes L et al. 2017. The comparative immunology of wild and laboratory mice, Mus musculus domesticus. Nat. Commun. 8:14811
    [Google Scholar]
  137. 137. 
    Yin X, Chen S, Eisenbarth SC. 2021. Dendritic cell regulation of T helper cells. Annu. Rev. Immunol. 39:759–90
    [Google Scholar]
  138. 138. 
    Guilliams M, Lambrecht BN, Hammad H. 2013. Division of labor between lung dendritic cells and macrophages in the defense against pulmonary infections. Mucosal Immunol 6:3464–73
    [Google Scholar]
  139. 139. 
    Chieppa M, Rescigno M, Huang AYC, Germain RN. 2006. Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J. Exp. Med. 203:132841–52
    [Google Scholar]
  140. 140. 
    Farache J, Koren I, Milo I, Gurevich I, Kim K-W et al. 2013. Luminal bacteria recruit CD103+ dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation. Immunity 38:3581–95
    [Google Scholar]
  141. 141. 
    Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G et al. 2001. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2:4361–67
    [Google Scholar]
  142. 142. 
    Voedisch S, Koenecke C, David S, Herbrand H, Förster R et al. 2009. Mesenteric lymph nodes confine dendritic cell-mediated dissemination of Salmonella enterica serovar Typhimurium and limit systemic disease in mice. Infect. Immun. 77:83170–80
    [Google Scholar]
  143. 143. 
    Janeway CA. 1989. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol 54:Part 11–13
    [Google Scholar]
  144. 144. 
    Matzinger P. 1994. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12:991–1045
    [Google Scholar]
  145. 145. 
    Land W, Schneeberger H, Schleibner S, Illner WD, Abendroth D et al. 1994. The beneficial effect of human recombinant superoxide dismutase on acute and chronic rejection events in recipients of cadaveric renal transplants. Transplantation 57:2211–17
    [Google Scholar]
  146. 146. 
    Land W. 2003. Allograft injury mediated by reactive oxygen species: from conserved proteins of Drosophila to acute and chronic rejection of human transplants. Part II: Role of reactive oxygen species in the induction of the heat shock response as a regulator of innate immunity. Transplant. Rev. 17:131–44
    [Google Scholar]
  147. 147. 
    Luber CA, Cox J, Lauterbach H, Fancke B, Selbach M et al. 2010. Quantitative proteomics reveals subset-specific viral recognition in dendritic cells. Immunity 32:2279–89
    [Google Scholar]
  148. 148. 
    Segura E, Kapp E, Gupta N, Wong J, Lim J et al. 2010. Differential expression of pathogen-recognition molecules between dendritic cell subsets revealed by plasma membrane proteomic analysis. Mol. Immunol. 47:91765–73
    [Google Scholar]
  149. 149. 
    Edwards AD, Diebold SS, Slack EMC, Tomizawa H, Hemmi H et al. 2003. Toll-like receptor expression in murine DC subsets: Lack of TLR7 expression by CD8α+ DC correlates with unresponsiveness to imidazoquinolines. Eur. J. Immunol. 33:4827–33
    [Google Scholar]
  150. 150. 
    Schulz O, Diebold SS, Chen M, Näslund TI, Nolte MA et al. 2005. Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature 433:7028887–92
    [Google Scholar]
  151. 151. 
    Hémont C, Neel A, Heslan M, Braudeau C, Josien R. 2013. Human blood mDC subsets exhibit distinct TLR repertoire and responsiveness. J. Leukoc. Biol. 93:4599–609
    [Google Scholar]
  152. 152. 
    Davey GM, Wojtasiak M, Proietto AI, Carbone FR, Heath WR, Bedoui S. 2010. Cutting edge: Priming of CD8 T cell immunity to herpes simplex virus type 1 requires cognate TLR3 expression in vivo. J. Immunol. 184:52243–46
    [Google Scholar]
  153. 153. 
    Reis e Sousa C, Hieny S, Scharton-Kersten T, Jankovic D, Charest H et al. 1997. In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas. J. Exp. Med. 186:111819–29
    [Google Scholar]
  154. 154. 
    Yarovinsky F, Zhang D, Andersen JF, Bannenberg GL, Serhan CN et al. 2005. TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 308:57281626–29
    [Google Scholar]
  155. 155. 
    Mashayekhi M, Sandau MM, Dunay IR, Frickel EM, Khan A et al. 2011. CD8α+ dendritic cells are the critical source of interleukin-12 that controls acute infection by Toxoplasma gondii tachyzoites. Immunity 35:2249–59
    [Google Scholar]
  156. 156. 
    Caminschi I, Proietto AI, Ahmet F, Kitsoulis S, Shin Teh J et al. 2008. The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement. Blood 112:83264–73
    [Google Scholar]
  157. 157. 
    Huysamen C, Willment JA, Dennehy KM, Brown GD. 2008. CLEC9A is a novel activation C-type lectin-like receptor expressed on BDCA3+ dendritic cells and a subset of monocytes. J. Biol. Chem. 283:2416693–701
    [Google Scholar]
  158. 158. 
    Sancho D, Joffre OP, Keller AM, Rogers NC, Martínez D et al. 2009. Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature 458:7240899–903
    [Google Scholar]
  159. 159. 
    Ahrens S, Zelenay S, Sancho D, Hanč P, Kjær S et al. 2012. F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells. Immunity 36:4635–45
    [Google Scholar]
  160. 160. 
    Zhang J-G, Czabotar PE, Policheni AN, Caminschi I, Wan SS et al. 2012. The dendritic cell receptor Clec9A binds damaged cells via exposed actin filaments. Immunity 36:4646–57
    [Google Scholar]
  161. 161. 
    Iborra S, Izquierdo HM, Martínez-López M, Blanco-Menéndez N, Reis e Sousa C, Sancho D 2012. The DC receptor DNGR-1 mediates cross-priming of CTLs during vaccinia virus infection in mice. J. Clin. Investig. 122:51628–43
    [Google Scholar]
  162. 162. 
    Iborra S, Martínez-López M, Khouili SC, Enamorado M, Cueto FJ et al. 2016. Optimal generation of tissue-resident but not circulating memory T cells during viral infection requires crosspriming by DNGR-1+ dendritic cells. Immunity 45:41–23
    [Google Scholar]
  163. 163. 
    Zelenay S, Keller AM, Whitney PG, Schraml BU, Deddouche S et al. 2012. The dendritic cell receptor DNGR-1 controls endocytic handling of necrotic cell antigens to favor cross-priming of CTLs in virus-infected mice. J. Clin. Investig. 122:51615–27
    [Google Scholar]
  164. 164. 
    Balam S, Kesselring R, Eggenhofer E, Blaimer S, Evert K et al. 2020. Cross-presentation of dead-cell-associated antigens by DNGR-1+ dendritic cells contributes to chronic allograft rejection in mice. Eur. J. Immunol. 50:122041–54
    [Google Scholar]
  165. 165. 
    Canton JC, Blees H, Henry CM, Buck MD, Schulz O et al. 2020. The receptor DNGR-1 signals for phagosomal rupture to promote cross-presentation of dead cell-associated antigens. Nat. Immunol. 22:140–53
    [Google Scholar]
  166. 166. 
    Uematsu S, Jang MH, Chevrier N, Guo Z, Kumagai Y et al. 2006. Detection of pathogenic intestinal bacteria by Toll-like receptor 5 on intestinal CD11c+ lamina propria cells. Nat. Immunol. 7:8868–74
    [Google Scholar]
  167. 167. 
    Kinnebrew MA, Buffie CG, Diehl GE, Zenewicz LA, Leiner I et al. 2012. Interleukin 23 production by intestinal CD103+ CD11b+ dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense. Immunity 36:2276–87
    [Google Scholar]
  168. 168. 
    Liu H, Chen F, Wu W, Cao AT, Xue X et al. 2016. TLR5 mediates CD172α+ intestinal lamina propria dendritic cell induction of Th17 cells. Sci. Rep. 6:22040
    [Google Scholar]
  169. 169. 
    Steinman RM. 1991. The dendritic cell system and its role in immunogenicity. Annu. Rev. Immunol. 9:271–96
    [Google Scholar]
  170. 170. 
    Reis e Sousa C. 2006. Dendritic cells in a mature age. Nat. Rev. Immunol. 6:6476–83
    [Google Scholar]
  171. 171. 
    Hammer GE, Ma A. 2013. Molecular control of steady-state dendritic cell maturation and immune homeostasis. Annu. Rev. Immunol. 31:743–91
    [Google Scholar]
  172. 172. 
    Heath WR, Kato Y, Steiner TM, Caminschi I. 2019. Antigen presentation by dendritic cells for B cell activation. Curr. Opin. Immunol. 58:44–52
    [Google Scholar]
  173. 173. 
    Andrews DM, Scalzo AA, Yokoyama WM, Smyth MJ, Degli Esposti MA 2002. Functional interactions between dendritic cells and NK cells during viral infection. Nat. Immunol. 4:2175–81
    [Google Scholar]
  174. 174. 
    Ferlazzo G, Pack M, Thomas D, Paludan C, Schmid D et al. 2004. Distinct roles of IL-12 and IL-15 in human natural killer cell activation by dendritic cells from secondary lymphoid organs. PNAS 101:4716606–11
    [Google Scholar]
  175. 175. 
    del Fresno C, Saz-Leal P, Enamorado M, Wculek SK, Martinez-Cano S et al. 2018. DNGR-1 in dendritic cells limits tissue damage by dampening neutrophil recruitment. Science 362:6412351–56
    [Google Scholar]
  176. 176. 
    Janela B, Patel AA, Lau MC, Goh CC, Msallam R et al. 2019. A subset of type I conventional dendritic cells controls cutaneous bacterial infections through VEGFα-mediated recruitment of neutrophils. Immunity 50:41069–83.e8
    [Google Scholar]
  177. 177. 
    Xu J, Zanvit P, Hu L, Tseng P-Y, Liu N et al. 2020. The cytokine TGF-β induces interleukin-31 expression from dermal dendritic cells to activate sensory neurons and stimulate wound itching. Immunity 53:2371–83.e5
    [Google Scholar]
  178. 178. 
    Ardouin L, Luche H, Chelbi R, Carpentier S, Shawket A et al. 2016. Broad and largely concordant molecular changes characterize tolerogenic and immunogenic dendritic cell maturation in thymus and periphery. Immunity 45:2305–18
    [Google Scholar]
  179. 179. 
    Jonuleit H, Kühn U, Müller G, Steinbrink K, Paragnik L et al. 1997. Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Euro J. Immunol. 27:123135–42
    [Google Scholar]
  180. 180. 
    Schulz O, Edwards AD, Schito M, Aliberti J, Manickasingham S et al. 2000. CD40 triggering of heterodimeric IL-12 p70 production by dendritic cells in vivo requires a microbial priming signal. Immunity 13:4453–62
    [Google Scholar]
  181. 181. 
    Spörri R, Reis e Sousa C. 2005. Inflammatory mediators are insufficient for full dendritic cell activation and promote expansion of CD4+ T cell populations lacking helper function. Nat. Immunol. 6:2163–70
    [Google Scholar]
  182. 182. 
    Tam MA, Sundquist M, Wick MJ. 2008. MyD88 and IFN-αβ differentially control maturation of bystander but not Salmonella-associated dendritic cells or CD11cintCD11b+ cells during infection. Cell Microbiol 10:71517–29
    [Google Scholar]
  183. 183. 
    Kratky W, Reis e Sousa C, Oxenius A, Spörri R 2011. Direct activation of antigen-presenting cells is required for CD8+ T-cell priming and tumor vaccination. PNAS 108:4217414–19
    [Google Scholar]
  184. 184. 
    Vega-Ramos J, Roquilly A, Zhan Y, Young LJ, Mintern JD, Villadangos JA. 2014. Inflammation conditions mature dendritic cells to retain the capacity to present new antigens but with altered cytokine secretion function. J. Immunol. 193:83851–59
    [Google Scholar]
  185. 185. 
    Hammad H, Chieppa M, Perros F, Willart MA, Germain RN, Lambrecht BN. 2009. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat. Med. 15:4410–16
    [Google Scholar]
  186. 186. 
    Pang IK, Pillai PS, Iwasaki A 2013. Efficient influenza A virus replication in the respiratory tract requires signals from TLR7 and RIG-I. PNAS 110:3413910–15
    [Google Scholar]
  187. 187. 
    Longhi MP, Trumpfheller C, Idoyaga J, Caskey M, Matos I et al. 2009. Dendritic cells require a systemic type I interferon response to mature and induce CD4+ Th1 immunity with poly IC as adjuvant. J. Exp. Med. 206:71589–602
    [Google Scholar]
  188. 188. 
    Le Bon A, Schiavoni G, D'Agostino G, Gresser I, Belardelli F, Tough DF 2001. Type I interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity 14:461–70
    [Google Scholar]
  189. 189. 
    Edwards AD, Manickasingham SP, Spörri R, Diebold SS, Schulz O et al. 2002. Microbial recognition via Toll-like receptor-dependent and -independent pathways determines the cytokine response of murine dendritic cell subsets to CD40 triggering. J. Immunol. 169:73652–60
    [Google Scholar]
  190. 190. 
    Beg AA. 2002. Endogenous ligands of Toll-like receptors: implications for regulating inflammatory and immune responses. Trends Immunol 23:11509–12
    [Google Scholar]
  191. 191. 
    Zelenay S, Reis e Sousa C. 2013. Adaptive immunity after cell death. Trends Immunol 34:7329–35
    [Google Scholar]
  192. 192. 
    Perry JSA, Lio C-WJ, Kau AL, Nutsch K, Yang Z et al. 2014. Distinct contributions of Aire and antigen-presenting-cell subsets to the generation of self-tolerance in the thymus. Immunity 41:3414–26
    [Google Scholar]
  193. 193. 
    Perry JSA, Russler-Germain EV, Zhou YW, Purtha W, Cooper ML et al. 2018. Transfer of cell-surface antigens by scavenger receptor CD36 promotes thymic regulatory T cell receptor repertoire development and allo-tolerance. Immunity 48:5923–24
    [Google Scholar]
  194. 194. 
    Kurts C, Cannarile M, Klebba I, Brocker T. 2001. Cutting edge: Dendritic cells are sufficient to cross-present self-antigens to CD8 T cells in vivo. J. Immunol. 166:31439–42
    [Google Scholar]
  195. 195. 
    Probst HC, Lagnel J, Kollias G, van den Broek M. 2003. Inducible transgenic mice reveal resting dendritic cells as potent inducers of CD8+ T cell tolerance. Immunity 18:5713–20
    [Google Scholar]
  196. 196. 
    Schildknecht A, Brauer S, Brenner C, Lahl K, Schild H et al. 2010. FoxP3+ regulatory T cells essentially contribute to peripheral CD8+ T-cell tolerance induced by steady-state dendritic cells. PNAS 107:1199–203
    [Google Scholar]
  197. 197. 
    Muth S, Schütze K, Schild H, Probst HC 2012. Release of dendritic cells from cognate CD4+ T-cell recognition results in impaired peripheral tolerance and fatal cytotoxic T-cell mediated autoimmunity. PNAS 109:239059–64
    [Google Scholar]
  198. 198. 
    Wohn C, Le Guen V, Voluzan O, Fiore F, Henri S, Malissen B 2020. Absence of MHC class II on cDC1 dendritic cells triggers fatal autoimmunity to a cross-presented self-antigen. Sci. Immunol. 5:45eaba1896
    [Google Scholar]
  199. 199. 
    Scott CL, Aumeunier AM, Mowat AM. 2011. Intestinal CD103+ dendritic cells: master regulators of tolerance?. Trends Immunol 32:9412–19
    [Google Scholar]
  200. 200. 
    Mahnke K, Johnson TS, Ring S, Enk AH. 2007. Tolerogenic dendritic cells and regulatory T cells: a two-way relationship. J. Dermatol. Sci. 46:3159–67
    [Google Scholar]
  201. 201. 
    Lutz MB, Schuler G. 2002. Immature, semi-mature and fully mature dendritic cells: Which signals induce tolerance or immunity?. Trends Immunol 23:9445–49
    [Google Scholar]
  202. 202. 
    Kel JM, Girard-Madoux MJH, Reizis B, Clausen BE. 2010. TGF-β is required to maintain the pool of immature Langerhans cells in the epidermis. J. Immunol. 185:63248–55
    [Google Scholar]
  203. 203. 
    Kushwah R, Wu J, Oliver JR, Jiang G, Zhang J et al. 2010. Uptake of apoptotic DC converts immature DC into tolerogenic DC that induce differentiation of Foxp3+ regulatory T cells. Eur. J. Immunol. 40:41022–35
    [Google Scholar]
  204. 204. 
    Raab M, Gentili M, de Belly H, Thiam HR, Vargas P et al. 2016. ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 352:6283359–62
    [Google Scholar]
  205. 205. 
    Maier B, Leader AM, Chen ST, Tung N, Chang C et al. 2020. A conserved dendritic-cell regulatory program limits antitumour immunity. Nature 580:7802257–62
    [Google Scholar]
  206. 206. 
    Peng Q, Qiu X, Zhang Z, Zhang S, Zhang Y et al. 2020. PD-L1 on dendritic cells attenuates T cell activation and regulates response to immune checkpoint blockade. Nat. Commun. 11:4835
    [Google Scholar]
  207. 207. 
    Oh SA, Wu D-C, Cheung J, Navarro A, Xiong H et al. 2020. PD-L1 expression by dendritic cells is a key regulator of T-cell immunity in cancer. Nat. Cancer 1:681–91
    [Google Scholar]
  208. 208. 
    Granucci F, Zanoni I, Pavelka N, Van Dommelen SLH, Andoniou CE et al. 2004. A contribution of mouse dendritic cell-derived IL-2 for NK cell activation. J. Exp. Med. 200:3287–95
    [Google Scholar]
  209. 209. 
    Viaud S, Terme M, Flament C, Taieb J, André F et al. 2009. Dendritic cell-derived exosomes promote natural killer cell activation and proliferation: a role for NKG2D ligands and IL-15Rα. PLOS ONE 4:3e4942
    [Google Scholar]
  210. 210. 
    Theisen DJ, Davidson JT 4th, Briseño CG, Gargaro M, Lauron EJ et al. 2018. WDFY4 is required for cross-presentation in response to viral and tumor antigens. Science 362:6415694–99
    [Google Scholar]
  211. 211. 
    Kumar V, Dasoveanu DC, Chyou S, Tzeng T-C, Rozo C et al. 2015. A dendritic-cell-stromal axis maintains immune responses in lymph nodes. Immunity 42:4719–30
    [Google Scholar]
  212. 212. 
    Moussion C, Girard J-P. 2011. Dendritic cells control lymphocyte entry to lymph nodes through high endothelial venules. Nature 479:7374542–46
    [Google Scholar]
  213. 213. 
    Benahmed F, Chyou S, Dasoveanu D, Chen J, Kumar V et al. 2014. Multiple CD11c+ cells collaboratively express IL-1β to modulate stromal vascular endothelial growth factor and lymph node vascular-stromal growth. J. Immunol. 192:94153–63
    [Google Scholar]
  214. 214. 
    Wendland M, Willenzon S, Kocks J, Davalos-Misslitz AC, Hammerschmidt SI et al. 2011. Lymph node T cell homeostasis relies on steady state homing of dendritic cells. Immunity 35:6945–57
    [Google Scholar]
  215. 215. 
    Acton SE, Farrugia AJ, Astarita JL, Mourão-Sá D, Jenkins RP et al. 2014. Dendritic cells control fibro-blastic reticular network tension and lymph node expansion. Nature 514:7523498–502
    [Google Scholar]
  216. 216. 
    Worbs T, Hammerschmidt SI, Förster R. 2016. Dendritic cell migration in health and disease. Nat. Rev. Immunol. 17:130–48
    [Google Scholar]
  217. 217. 
    Perner C, Flayer CH, Zhu X, Aderhold PA, Dewan ZNA et al. 2020. Substance P release by sensory neurons triggers dendritic cell migration and initiates the type-2 immune response to allergens. Immunity 53:1063–77.e7
    [Google Scholar]
  218. 218. 
    Acton SE, Astarita JL, Malhotra D, Lukacs-Kornek V, Franz B et al. 2012. Podoplanin-rich stromal networks induce dendritic cell motility via activation of the C-type lectin receptor CLEC-2. Immunity 37:2276–89
    [Google Scholar]
  219. 219. 
    Allan RS, Waithman J, Bedoui S, Jones CM, Villadangos JA et al. 2006. Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming. Immunity 25:1153–62
    [Google Scholar]
  220. 220. 
    Helft J, Manicassamy B, Guermonprez P, Hashimoto D, Silvin A et al. 2012. Cross-presenting CD103+ dendritic cells are protected from influenza virus infection. J. Clin. Investig. 122:114037–47
    [Google Scholar]
  221. 221. 
    Vermaelen KY, Carro-Muino I, Lambrecht BN, Pauwels RA. 2001. Specific migratory dendritic cells rapidly transport antigen from the airways to the thoracic lymph nodes. J. Exp. Med. 193:151–60
    [Google Scholar]
  222. 222. 
    Itano AA, Jenkins MK. 2003. Antigen presentation to naive CD4 T cells in the lymph node. Nat. Immunol. 4:8733–39
    [Google Scholar]
  223. 223. 
    Lindquist RL, Shakhar G, Dudziak D, Wardemann H, Eisenreich T et al. 2004. Visualizing dendritic cell networks in vivo. Nat. Immunol. 5:121243–50
    [Google Scholar]
  224. 224. 
    Allenspach EJ, Lemos MP, Porrett PM, Turka LA, Laufer TM. 2008. Migratory and lymphoid-resident dendritic cells cooperate to efficiently prime naive CD4 T cells. Immunity 29:5795–806
    [Google Scholar]
  225. 225. 
    Cerovic V, Houston SA, Westlund J, Utriainen L, Davison ES et al. 2014. Lymph-borne CD8α+ dendritic cells are uniquely able to cross-prime CD8+ T cells with antigen acquired from intestinal epithelial cells. Mucosal Immunol 8:138–48
    [Google Scholar]
  226. 226. 
    Krishnaswamy JK, Gowthaman U, Zhang B, Mattsson J, Szeponik L et al. 2017. Migratory CD11b+ conventional dendritic cells induce T follicular helper cell-dependent antibody responses. Sci. Immunol. 2:18eaam9169
    [Google Scholar]
  227. 227. 
    Lukens MV, Kruijsen D, Coenjaerts FEJ, Kimpen JLL, van Bleek GM. 2009. Respiratory syncytial virus-induced activation and migration of respiratory dendritic cells and subsequent antigen presentation in the lung-draining lymph node. J. Virol. 83:147235–43
    [Google Scholar]
  228. 228. 
    Ruhland MK, Roberts EW, Cai E, Mujal AM, Marchuk K et al. 2020. Visualizing synaptic transfer of tumor antigens among dendritic cells. Cancer Cell 37:6786–99.e5
    [Google Scholar]
  229. 229. 
    Hickman HD, Takeda K, Skon CN, Murray FR, Hensley SE et al. 2008. Direct priming of antiviral CD8+ T cells in the peripheral interfollicular region of lymph nodes. Nat. Immunol. 9:2155–65
    [Google Scholar]
  230. 230. 
    Gonzalez SF, Lukacs-Kornek V, Kuligowski MP, Pitcher LA, Degn SE et al. 2010. Capture of influenza by medullary dendritic cells via SIGN-R1 is essential for humoral immunity in draining lymph nodes. Nat. Immunol. 11:5427–34
    [Google Scholar]
  231. 231. 
    Gerner MY, Torabi-Parizi P, Germain RN. 2015. Strategically localized dendritic cells promote rapid T cell responses to lymph-borne particulate antigens. Immunity 42:1172–85
    [Google Scholar]
  232. 232. 
    Sixt M, Kanazawa N, Selg M, Samson T, Roos G et al. 2005. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 22:119–29
    [Google Scholar]
  233. 233. 
    Radtke AJ, Kastenmuller W, Espinosa DA, Gerner MY, Tse S-W et al. 2015. Lymph-node resident CD8α+ dendritic cells capture antigens from migratory malaria sporozoites and induce CD8+ T cell responses. PLOS Pathog 11:2e1004637
    [Google Scholar]
  234. 234. 
    Itano AA, McSorley SJ, Reinhardt RL, Ehst BD, Ingulli E et al. 2003. Distinct dendritic cell populations sequentially present antigen to CD4 T cells and stimulate different aspects of cell-mediated immunity. Immunity 19:147–57
    [Google Scholar]
  235. 235. 
    Kissenpfennig A, Henri S, Dubois B, Laplace-Builhé C, Perrin P et al. 2005. Dynamics and function of Langerhans cells in vivo. Immunity 22:5643–54
    [Google Scholar]
  236. 236. 
    Gerner MY, Kastenmuller W, Ifrim I, Kabat J, Germain RN. 2012. Histo-cytometry: a method for highly multiplex quantitative tissue imaging analysis applied to dendritic cell subset microanatomy in lymph nodes. Immunity 37:2364–76
    [Google Scholar]
  237. 237. 
    Luther SA, Tang HL, Hyman PL, Farr AG, Cyster JG 2000. Coexpression of the chemokines ELC and SLC by T zone stromal cells and deletion of the ELC gene in the plt/plt mouse. PNAS 97:2312694–99
    [Google Scholar]
  238. 238. 
    Dorner BG, Dorner MB, Zhou X, Opitz C, Mora A et al. 2009. Selective expression of the chemokine receptor XCR1 on cross-presenting dendritic cells determines cooperation with CD8+ T cells. Immunity 31:5823–33
    [Google Scholar]
  239. 239. 
    Woodruff MC, Heesters BA, Herndon CN, Groom JR, Thomas PG et al. 2014. Trans-nodal migration of resident dendritic cells into medullary interfollicular regions initiates immunity to influenza vaccine. J. Exp. Med. 211:81611–21
    [Google Scholar]
  240. 240. 
    De Smedt T, Pajak B, Muraille E, Lespagnard L, Heinen E et al. 1996. Regulation of dendritic cell numbers and maturation by lipopolysaccharide in vivo. J. Exp. Med. 184:41413–24
    [Google Scholar]
  241. 241. 
    Idoyaga J, Suda N, Suda K, Park CG, Steinman RM 2009. Antibody to Langerin/CD207 localizes large numbers of CD8 dendritic cells to the marginal zone of mouse spleen. PNAS 106:51524–29
    [Google Scholar]
  242. 242. 
    Gatto D, Wood K, Caminschi I, Murphy-Durland D, Schofield P et al. 2013. The chemotactic receptor EBI2 regulates the homeostasis, localization and immunological function of splenic dendritic cells. Nat. Immunol. 14:5446–53
    [Google Scholar]
  243. 243. 
    Yi T, Cyster JG 2013. EBI2-mediated bridging channel positioning supports splenic dendritic cell homeostasis and particulate antigen capture. eLife 2:e00757
    [Google Scholar]
  244. 244. 
    Gerner MY, Casey KA, Kastenmuller W, Germain RN. 2017. Dendritic cell and antigen dispersal landscapes regulate T cell immunity. J. Exp. Med. 214:103105–22
    [Google Scholar]
  245. 245. 
    Tosh KW, Mittereder L, Bonne-Annee S, Hieny S, Nutman TB et al. 2016. The IL-12 response of primary human dendritic cells and monocytes to Toxoplasma gondii is stimulated by phagocytosis of live parasites rather than host cell invasion. J. Immunol. 196:1345–56
    [Google Scholar]
  246. 246. 
    Raetz M, Kibardin A, Sturge CR, Pifer R, Li H et al. 2013. Cooperation of TLR12 and TLR11 in the IRF8-dependent IL-12 response to Toxoplasma gondii profilin. J. Immunol. 191:94818–27
    [Google Scholar]
  247. 247. 
    Antonialli R, Sulczewski FB, Amorim KNDS, Almeida BDS, Ferreira NS et al. 2017. CpG oligodeoxinucleotides and flagellin modulate the immune response to antigens targeted to CD8α+ and CD8α conventional dendritic cell subsets. Front. Immunol. 8:1727
    [Google Scholar]
  248. 248. 
    Kim TS, Braciale TJ. 2009. Respiratory dendritic cell subsets differ in their capacity to support the induction of virus-specific cytotoxic CD8+ T cell responses. PLOS ONE 4:1e4204
    [Google Scholar]
  249. 249. 
    Soares H, Waechter H, Glaichenhaus N, Mougneau E, Yagita H et al. 2007. A subset of dendritic cells induces CD4+ T cells to produce IFN-γ by an IL-12-independent but CD70-dependent mechanism in vivo. J. Exp. Med. 204:51095–106
    [Google Scholar]
  250. 250. 
    Hawiger D, Inaba K, Dorsett Y, Guo M, Mahnke K et al. 2001. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med. 194:6769–79
    [Google Scholar]
  251. 251. 
    Huang AY, Golumbek P, Ahmadzadeh M, Jaffee E, Pardoll D, Levitsky H. 1994. Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science 264:5161961–65
    [Google Scholar]
  252. 252. 
    Liu C-H, Fan Y-T, Dias A, Esper L, Corn RA et al. 2006. Cutting edge: Dendritic cells are essential for in vivo IL-12 production and development of resistance against Toxoplasma gondii infection in mice. J. Immunol. 177:131–35
    [Google Scholar]
  253. 253. 
    Qiu Z, Khairallah C, Romanov G, Sheridan BS. 2020. Cutting edge: Batf3 expression by CD8 T cells critically regulates the development of memory populations. J. Immunol. 205:4901–6
    [Google Scholar]
  254. 254. 
    Ataide MA, Komander K, Knöpper K, Peters AE, Wu H et al. 2020. BATF3 programs CD8+ T cell memory. Nat. Immunol. 12:749–11
    [Google Scholar]
  255. 255. 
    Eickhoff S, Brewitz A, Gerner MY, Klauschen F, Komander K et al. 2015. Robust anti-viral immunity requires multiple distinct T cell-dendritic cell interactions. Cell 162:61322–37
    [Google Scholar]
  256. 256. 
    Wakim LM, Bevan MJ. 2011. Cross-dressed dendritic cells drive memory CD8+ T-cell activation after viral infection. Nature 471:7340629–32
    [Google Scholar]
  257. 257. 
    Ferris ST, Durai V, Wu R, Theisen DJ, Ward JP et al. 2020. cDC1 prime and are licensed by CD4+ T cells to induce anti-tumour immunity. Nature 584:7822624–29
    [Google Scholar]
  258. 258. 
    Durant LR, Pereira C, Boakye A, Makris S, Kausar F et al. 2014. DNGR-1 is dispensable for CD8+ T-cell priming during respiratory syncytial virus infection. Eur. J. Immunol. 44:82340–48
    [Google Scholar]
  259. 259. 
    Iyoda T, Shimoyama S, Liu K, Omatsu Y, Akiyama Y et al. 2002. The CD8+ dendritic cell subset selectively endocytoses dying cells in culture and in vivo. J. Exp. Med. 195:101289–302
    [Google Scholar]
  260. 260. 
    Schulz O, Reis e Sousa C. 2002. Cross-presentation of cell-associated antigens by CD8α+ dendritic cells is attributable to their ability to internalize dead cells. Immunology 107:2183–89
    [Google Scholar]
  261. 261. 
    Bernhard CA, Ried C, Kochanek S, Brocker T. 2015. CD169+ macrophages are sufficient for priming of CTLs with specificities left out by cross-priming dendritic cells. PNAS 112:175461–66
    [Google Scholar]
  262. 262. 
    den Haan JMM, Lehar SM, Bevan MJ. 2000. CD8+ but not CD8 dendritic cells cross-prime cytotoxic T cells in vivo. J. Exp. Med. 192:121685–96
    [Google Scholar]
  263. 263. 
    Mittag D, Proietto AI, Loudovaris T, Mannering SI, Vremec D et al. 2011. Human dendritic cell subsets from spleen and blood are similar in phenotype and function but modified by donor health status. J. Immunol. 186:116207–17
    [Google Scholar]
  264. 264. 
    Segura E, Durand M, Amigorena S. 2013. Similar antigen cross-presentation capacity and phagocytic functions in all freshly isolated human lymphoid organ-resident dendritic cells. J. Exp. Med. 210:51035–47
    [Google Scholar]
  265. 265. 
    Nizzoli G, Krietsch J, Weick A, Steinfelder S, Facciotti F et al. 2013. Human CD1c+ dendritic cells secrete high levels of IL-12 and potently prime cytotoxic T-cell responses. Blood 122:6932–42
    [Google Scholar]
  266. 266. 
    Sittig SP, Bakdash G, Weiden J, Sköld AE, Tel J et al. 2016. A comparative study of the T cell stimulatory and polarizing capacity of human primary blood dendritic cell subsets. Mediat. Inflamm. 2016.3605643
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-061020-053707
Loading
/content/journals/10.1146/annurev-immunol-061020-053707
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error