1932

Abstract

Development of improved approaches for HIV-1 prevention will likely be required for a durable end to the global AIDS pandemic. Recent advances in preclinical studies and early phase clinical trials offer renewed promise for immunologic strategies for blocking acquisition of HIV-1 infection. Clinical trials are currently underway to evaluate the efficacy of two vaccine candidates and a broadly neutralizing antibody (bNAb) to prevent HIV-1 infection in humans. However, the vast diversity of HIV-1 is a major challenge for both active and passive immunization. Here we review current immunologic strategies for HIV-1 prevention, with a focus on current and next-generation vaccines and bNAbs.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-080219-023629
2020-04-26
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/immunol/38/1/annurev-immunol-080219-023629.html?itemId=/content/journals/10.1146/annurev-immunol-080219-023629&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Joint U. N. Progr. HIV/AIDS 2018. UNAIDS Data 2018 Geneva: Joint U. N. Progr. HIV/AIDS https://www.unaids.org/sites/default/files/media_asset/unaids-data-2018_en.pdf
    [Google Scholar]
  2. 2. 
    Joint U. N. Progr. HIV/AIDS 2015. UNAIDS 2016–2021 Strategy: On the Fast-Track to End AIDS Geneva: Joint U. N. Progr. HIV/AIDS https://www.unaids.org/sites/default/files/media_asset/20151027_UNAIDS_PCB37_15_18_EN_rev1.pdf
    [Google Scholar]
  3. 3. 
    Glob. Burd. Dis. Health Financ. Collab. Netw 2018. Spending on health and HIV/AIDS: domestic health spending and development assistance in 188 countries, 1995–2015. Lancet 391:1799–829
    [Google Scholar]
  4. 4. 
    Weller S, Davis K. 2002. Condom effectiveness in reducing heterosexual HIV transmission. Cochrane Database Syst. Rev. 2002:CD003255
    [Google Scholar]
  5. 5. 
    Holmes KK, Levine R, Weaver M 2004. Effectiveness of condoms in preventing sexually transmitted infections. Bull. World Health Organ. 82:454–61
    [Google Scholar]
  6. 6. 
    Auvert B, Taljaard D, Lagarde E, Sobngwi-Tambekou J, Sitta R, Puren A 2005. Randomized, controlled intervention trial of male circumcision for reduction of HIV infection risk: the ANRS 1265 trial. PLOS Med 2: e298. Correction. 2006 PLOS Med 3:e226
    [Google Scholar]
  7. 7. 
    Bailey RC, Moses S, Parker CB, Agot K, Maclean I et al. 2007. Male circumcision for HIV prevention in young men in Kisumu, Kenya: a randomised controlled trial. Lancet 369:643–56
    [Google Scholar]
  8. 8. 
    Gray RH, Kigozi G, Serwadda D, Makumbi F, Watya S et al. 2007. Male circumcision for HIV prevention in men in Rakai, Uganda: a randomised trial. Lancet 369:657–66
    [Google Scholar]
  9. 9. 
    Scott-Sheldon LAJ, Huedo-Medina TB, Warren MR, Johnson BT, Carey MP 2011. Efficacy of behavioral interventions to increase condom use and reduce sexually transmitted infections: a meta-analysis, 1991 to 2010. J. Acquir. Immune Defic. Syndr. 58:489–98
    [Google Scholar]
  10. 10. 
    Eaton LA, Huedo-Medina TB, Kalichman SC, Pellowski JA, Sagherian MJ et al. 2012. Meta-analysis of single-session behavioral interventions to prevent sexually transmitted infections: implications for bundling prevention packages. Am. J. Public Health 102:e34–44
    [Google Scholar]
  11. 11. 
    World Health Organ 2015. Guideline on When to Start Antiretroviral Therapy and on Pre-Exposure Prophylaxis for HIV Geneva: World Health Organ.
    [Google Scholar]
  12. 12. 
    Cent. Dis. Control Prev 2016. Announcement: Updated guidelines for antiretroviral postexposure prophylaxis after sexual, injection-drug use, or other nonoccupational exposure to HIV—United States, 2016. Morb. Mortal. Wkly. Rep 65:458
    [Google Scholar]
  13. 13. 
    LeMessurier J, Traversy G, Varsaneux O, Weekes M, Avey MT et al. 2018. Risk of sexual transmission of human immunodeficiency virus with antiretroviral therapy, suppressed viral load and condom use: a systematic review. Can. Med. Assoc. J. 190:E1350–60
    [Google Scholar]
  14. 14. 
    Bavinton BR, Pinto AN, Phanuphak N, Grinsztejn B, Prestage GP et al. 2018. Viral suppression and HIV transmission in serodiscordant male couples: an international, prospective, observational, cohort study. Lancet HIV 5:e438–47
    [Google Scholar]
  15. 15. 
    Rodger AJ, Cambiano V, Bruun T, Vernazza P, Collins S et al. 2019. Risk of HIV transmission through condomless sex in serodifferent gay couples with the HIV-positive partner taking suppressive antiretroviral therapy (PARTNER): final results of a multicentre, prospective, observational study. Lancet 393:2428–38
    [Google Scholar]
  16. 16. 
    Cohen MS, Chen YQ, McCauley M, Gamble T, Hosseinipour MC et al. 2016. Antiretroviral therapy for the prevention of HIV-1 transmission. N. Engl. J. Med. 375:830–39
    [Google Scholar]
  17. 17. 
    Cohen MS, Chen YQ, McCauley M, Gamble T, Hosseinipour MC et al. 2011. Prevention of HIV-1 infection with early antiretroviral therapy. N. Engl. J. Med. 365:493–505
    [Google Scholar]
  18. 18. 
    Tanser F, Bärnighausen T, Grapsa E, Zaidi J, Newell M-L 2013. High coverage of ART associated with decline in risk of HIV acquisition in rural KwaZulu-Natal, South Africa. Science 339:966–71
    [Google Scholar]
  19. 19. 
    Rodger AJ, Cambiano V, Bruun T, Vernazza P, Collins S et al. 2016. Sexual activity without condoms and risk of HIV transmission in serodifferent couples when the HIV-positive partner is using suppressive antiretroviral therapy. JAMA 316:171–81
    [Google Scholar]
  20. 20. 
    McCormack S, Dunn DT, Desai M, Dolling DI, Gafos M et al. 2016. Pre-exposure prophylaxis to prevent the acquisition of HIV-1 infection (PROUD): effectiveness results from the pilot phase of a pragmatic open-label randomised trial. Lancet 387:53–60
    [Google Scholar]
  21. 21. 
    Baeten JM, Donnell D, Ndase P, Mugo NR, Campbell JD et al. 2012. Antiretroviral prophylaxis for HIV prevention in heterosexual men and women. N. Engl. J. Med. 367:399–410
    [Google Scholar]
  22. 22. 
    Thigpen MC, Kebaabetswe PM, Paxton LA, Smith DK, Rose CE et al. 2012. Antiretroviral preexposure prophylaxis for heterosexual HIV transmission in Botswana. N. Engl. J. Med. 367:423–34
    [Google Scholar]
  23. 23. 
    Molina J-M, Charreau I, Spire B, Cotte L, Chas J et al. 2017. Efficacy, safety, and effect on sexual behaviour of on-demand pre-exposure prophylaxis for HIV in men who have sex with men: an observational cohort study. Lancet HIV 4:e402–10
    [Google Scholar]
  24. 24. 
    Grant RM, Lama JR, Anderson PL, McMahan V, Liu AY et al. 2010. Preexposure chemoprophylaxis for HIV prevention in men who have sex with men. N. Engl. J. Med. 363:2587–99
    [Google Scholar]
  25. 25. 
    Molina J-M, Capitant C, Spire B, Pialoux G, Cotte L et al. 2015. On-demand preexposure prophylaxis in men at high risk for HIV-1 infection. N. Engl. J. Med. 373:2237–46
    [Google Scholar]
  26. 26. 
    Deutsch MB, Glidden DV, Sevelius J, Keatley J, McMahan V et al. 2015. HIV pre-exposure prophylaxis in transgender women: a subgroup analysis of the iPrEx trial. Lancet HIV 2:e512–19
    [Google Scholar]
  27. 27. 
    Choopanya K, Martin M, Suntharasamai P, Sangkum U, Mock PA et al. 2013. Antiretroviral prophylaxis for HIV infection in injecting drug users in Bangkok, Thailand (the Bangkok Tenofovir Study): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 381:2083–90
    [Google Scholar]
  28. 28. 
    Karim SSA. 2013. HIV pre-exposure prophylaxis in injecting drug users. Lancet 381:2060–62
    [Google Scholar]
  29. 29. 
    Mulligan K, Glidden DV, Anderson PL, Liu A, McMahan V et al. 2015. Effects of emtricitabine/tenofovir on bone mineral density in HIV-negative persons in a randomized, double-blind, placebo-controlled trial. Clin. Infect. Dis. 61:572–80
    [Google Scholar]
  30. 30. 
    Yacoub R, Nadkarni GN, Weikum D, Konstantinidis I, Boueilh A et al. 2016. Elevations in serum creatinine with tenofovir-based HIV pre-exposure prophylaxis: a meta-analysis of randomized placebo-controlled trials. J. Acquir. Immune Defic. Syndr. 71:e115–18
    [Google Scholar]
  31. 31. 
    Cent. Dis. Control Prev 2018. Preexposure Prophylaxis for the Prevention of HIV Infection in the United States—2017 Update: a Clinical Practice Guideline Atlanta, GA: Cent. Dis. Control Prev.
    [Google Scholar]
  32. 32. 
    Zash R, Makhema J, Shapiro RL 2018. Neural-tube defects with dolutegravir treatment from the time of conception. N. Engl. J. Med. 379:979–81
    [Google Scholar]
  33. 33. 
    Robertson DL, Anderson JP, Bradac JA, Carr JK, Foley B et al. 2000. HIV-1 nomenclature proposal. Science 288:55–56
    [Google Scholar]
  34. 34. 
    Rademeyer C, Korber B, Seaman MS, Giorgi EE, Thebus R et al. 2016. Features of recently transmitted HIV-1 clade C viruses that impact antibody recognition: implications for active and passive immunization. PLOS Pathog 12:e1005742 Correction. 2017. PLOS Pathog. 13:e1006641
    [Google Scholar]
  35. 35. 
    Hraber P, Korber BT, Lapedes AS, Bailer RT, Seaman MS et al. 2014. Impact of clade, geography, and age of the epidemic on HIV-1 neutralization by antibodies. J. Virol. 88:12623–43
    [Google Scholar]
  36. 36. 
    Zhang M, Foley B, Schultz AK, Macke JP, Bulla I et al. 2010. The role of recombination in the emergence of a complex and dynamic HIV epidemic. Retrovirology 7:25
    [Google Scholar]
  37. 37. 
    Lee GQ, Bangsberg DR, Mo T, Lachowski C, Brumme CJ et al. 2017. Prevalence and clinical impacts of HIV-1 intersubtype recombinants in Uganda revealed by near-full-genome population and deep sequencing approaches. AIDS 31:2345–54
    [Google Scholar]
  38. 38. 
    Bricault CA, Yusim K, Seaman MS, Yoon H, Theiler J et al. 2019. HIV-1 neutralizing antibody signatures and application to epitope-targeted vaccine design. Cell Host Microbe 25:59–72.e8
    [Google Scholar]
  39. 39. 
    Bar KJ, Tsao CY, Iyer SS, Decker JM, Yang Y et al. 2012. Early low-titer neutralizing antibodies impede HIV-1 replication and select for virus escape. PLOS Pathog 8:e1002721
    [Google Scholar]
  40. 40. 
    Bonsignori M, Kreider EF, Fera D, Meyerhoff RR, Bradley T et al. 2017. Staged induction of HIV-1 glycan-dependent broadly neutralizing antibodies. Sci. Transl. Med. 9:eaai7514
    [Google Scholar]
  41. 41. 
    Bonsignori M, Zhou T, Sheng Z, Chen L, Gao F et al. 2016. Maturation pathway from germline to broad HIV-1 neutralizer of a CD4-mimic antibody. Cell 165:449–63
    [Google Scholar]
  42. 42. 
    Goonetilleke N, Liu MK, Salazar-Gonzalez JF, Ferrari G, Giorgi E et al. 2009. The first T cell response to transmitted/founder virus contributes to the control of acute viremia in HIV-1 infection. J. Exp. Med. 206:1253–72
    [Google Scholar]
  43. 43. 
    Liao HX, Lynch R, Zhou T, Gao F, Alam SM et al. 2013. Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature 496:469–76
    [Google Scholar]
  44. 44. 
    Liu MK, Hawkins N, Ritchie AJ, Ganusov VV, Whale V et al. 2013. Vertical T cell immunodominance and epitope entropy determine HIV-1 escape. J. Clin. Investig. 123:380–93
    [Google Scholar]
  45. 45. 
    Bonsignori M, Liao HX, Gao F, Williams WB, Alam SM, Montefiori DC, Haynes BF 2017. Antibody-virus co-evolution in HIV infection: paths for HIV vaccine development. Immunol. Rev. 275:145–60
    [Google Scholar]
  46. 46. 
    Liao HX, Bonsignori M, Alam SM, McLellan JS, Tomaras GD et al. 2013. Vaccine induction of antibodies against a structurally heterogeneous site of immune pressure within HIV-1 envelope protein variable regions 1 and 2. Immunity 38:176–86
    [Google Scholar]
  47. 47. 
    Korber B, Hraber P, Wagh K, Hahn BH 2017. Polyvalent vaccine approaches to combat HIV-1 diversity. Immunol. Rev. 275:230–44
    [Google Scholar]
  48. 48. 
    Song H, Giorgi EE, Ganusov VV, Cai F, Athreya G et al. 2018. Tracking HIV-1 recombination to resolve its contribution to HIV-1 evolution in natural infection. Nat. Commun. 9:1928
    [Google Scholar]
  49. 49. 
    Lu CL, Pai JA, Nogueira L, Mendoza P, Gruell H et al. 2018. Relationship between intact HIV-1 proviruses in circulating CD4+ T cells and rebound viruses emerging during treatment interruption. PNAS 115:E11341–48
    [Google Scholar]
  50. 50. 
    Cohen YZ, Lorenzi JCC, Krassnig L, Barton JP, Burke L et al. 2018. Relationship between latent and rebound viruses in a clinical trial of anti-HIV-1 antibody 3BNC117. J. Exp. Med. 215:2311–24
    [Google Scholar]
  51. 51. 
    Wadman M, You J. 2017. The vaccine wars. Science 356:364–65
    [Google Scholar]
  52. 52. 
    Kim JH, Excler JL, Michael NL 2015. Lessons from the RV144 Thai phase III HIV-1 vaccine trial and the search for correlates of protection. Annu. Rev. Med. 66:423–37
    [Google Scholar]
  53. 53. 
    Lynch RM, Yamamoto T, McDermott AB 2013. HIV vaccine research and discovery in the nonhuman primates model: a unified theory in acquisition prevention and control of SIV infection. Curr. Opin. HIV AIDS 8:288–94
    [Google Scholar]
  54. 54. 
    Butler AL, Fischinger S, Alter G 2019. The antibodiome—mapping the humoral immune response to HIV. Curr. HIV/AIDS Rep. 16:169–79
    [Google Scholar]
  55. 55. 
    Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, Kaewkungwal J, Chiu J et al. 2009. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N. Engl. J. Med. 361:2209–20
    [Google Scholar]
  56. 56. 
    Gottardo R, Bailer RT, Korber BT, Gnanakaran S, Phillips J et al. 2013. Plasma IgG to linear epitopes in the V2 and V3 regions of HIV-1 gp120 correlate with a reduced risk of infection in the RV144 vaccine efficacy trial. PLOS ONE 8:e75665
    [Google Scholar]
  57. 57. 
    Haynes BF, Gilbert PB, McElrath MJ, Zolla-Pazner S, Tomaras GD et al. 2012. Immune-correlates analysis of an HIV-1 vaccine efficacy trial. N. Engl. J. Med. 366:1275–86
    [Google Scholar]
  58. 58. 
    Karasavvas N, Billings E, Rao M, Williams C, Zolla-Pazner S et al. 2012. The Thai phase III HIV type 1 vaccine trial (RV144) regimen induces antibodies that target conserved regions within the V2 loop of gp120. AIDS Res. Hum. Retrovir. 28:1444–57
    [Google Scholar]
  59. 59. 
    Montefiori DC, Karnasuta C, Huang Y, Ahmed H, Gilbert P et al. 2012. Magnitude and breadth of the neutralizing antibody response in the RV144 and Vax003 HIV-1 vaccine efficacy trials. J. Infect. Dis. 206:431–41
    [Google Scholar]
  60. 60. 
    Rolland M, Edlefsen PT, Larsen BB, Tovanabutra S, Sanders-Buell E et al. 2012. Increased HIV-1 vaccine efficacy against viruses with genetic signatures in Env V2. Nature 490:417–20
    [Google Scholar]
  61. 61. 
    Barouch DH, Alter G, Broge T, Linde C, Ackerman ME et al. 2015. Protective efficacy of adenovirus/protein vaccines against SIV challenges in rhesus monkeys. Science 349:320–24
    [Google Scholar]
  62. 62. 
    Barouch DH, Liu J, Li H, Maxfield LF, Abbink P et al. 2012. Vaccine protection against acquisition of neutralization-resistant SIV challenges in rhesus monkeys. Nature 482:89–93
    [Google Scholar]
  63. 63. 
    Barouch DH, Stephenson KE, Borducchi EN, Smith K, Stanley K et al. 2013. Protective efficacy of a global HIV-1 mosaic vaccine against heterologous SHIV challenges in rhesus monkeys. Cell 155:531–39
    [Google Scholar]
  64. 64. 
    Roederer M, Keele BF, Schmidt SD, Mason RD, Welles HC et al. 2014. Immunological and virological mechanisms of vaccine-mediated protection against SIV and HIV. Nature 505:502–8
    [Google Scholar]
  65. 65. 
    Chung AW, Kumar MP, Arnold KB, Yu WH, Schoen MK et al. 2015. Dissecting polyclonal vaccine-induced humoral immunity against HIV using systems serology. Cell 163:988–98
    [Google Scholar]
  66. 66. 
    Barouch DH, Tomaka FL, Wegmann F, Stieh DJ, Alter G et al. 2018. Evaluation of a mosaic HIV-1 vaccine in a multicentre, randomised, double-blind, placebo-controlled, phase 1/2a clinical trial (APPROACH) and in rhesus monkeys (NHP 13–19). Lancet 392:232–43
    [Google Scholar]
  67. 67. 
    Bekker LG, Moodie Z, Grunenberg N, Laher F, Tomaras GD et al. 2018. Subtype C ALVAC-HIV and bivalent subtype C gp120/MF59 HIV-1 vaccine in low-risk, HIV-uninfected, South African adults: a phase 1/2 trial. Lancet HIV 5:e366–78
    [Google Scholar]
  68. 67a. 
    Natl. Inst. Health 2020. Experimental HIV vaccine regimen ineffective in preventing HIV. . News Release, Feb. 3. https://www.nih.gov/news-events/news-releases/experimental-hiv-vaccine-regimen-ineffective-preventing-hiv
    [Google Scholar]
  69. 68. 
    Baden LR, Karita E, Mutua G, Bekker LG, Gray G et al. 2016. Assessment of the safety and immunogenicity of 2 novel vaccine platforms for HIV-1 prevention: a randomized trial. Ann. Intern. Med. 164:313–22
    [Google Scholar]
  70. 69. 
    Baden LR, Liu J, Li H, Johnson JA, Walsh SR et al. 2015. Induction of HIV-1-specific mucosal immune responses following intramuscular recombinant adenovirus serotype 26 HIV-1 vaccination of humans. J. Infect. Dis. 211:518–28
    [Google Scholar]
  71. 70. 
    Baden LR, Walsh SR, Seaman MS, Tucker RP, Krause KH et al. 2013. First-in-human evaluation of the safety and immunogenicity of a recombinant adenovirus serotype 26 HIV-1 Env vaccine (IPCAVD 001). J. Infect. Dis. 207:240–47
    [Google Scholar]
  72. 71. 
    Fischer W, Perkins S, Theiler J, Bhattacharya T, Yusim K et al. 2007. Polyvalent vaccines for optimal coverage of potential T-cell epitopes in global HIV-1 variants. Nat. Med. 13:100–6
    [Google Scholar]
  73. 72. 
    Barouch DH, O'Brien KL, Simmons NL, King SL, Abbink P et al. 2010. Mosaic HIV-1 vaccines expand the breadth and depth of cellular immune responses in rhesus monkeys. Nat. Med. 16:319–23
    [Google Scholar]
  74. 73. 
    Buchbinder SP, Mehrotra DV, Duerr A, Fitzgerald DW, Mogg R et al. 2008. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 372:1881–93
    [Google Scholar]
  75. 74. 
    McElrath MJ, De Rosa SC, Moodie Z, Dubey S, Kierstead L et al. 2008. HIV-1 vaccine-induced immunity in the test-of-concept Step Study: a case-cohort analysis. Lancet 372:1894–905
    [Google Scholar]
  76. 75. 
    Duerr A, Huang Y, Buchbinder S, Coombs RW, Sanchez J et al. 2012. Extended follow-up confirms early vaccine-enhanced risk of HIV acquisition and demonstrates waning effect over time among participants in a randomized trial of recombinant adenovirus HIV vaccine (Step Study). J. Infect. Dis. 206:258–66
    [Google Scholar]
  77. 76. 
    Rolland M, Tovanabutra S, deCamp AC, Frahm N, Gilbert PB et al. 2011. Genetic impact of vaccination on breakthrough HIV-1 sequences from the STEP trial. Nat. Med. 17:366–71
    [Google Scholar]
  78. 77. 
    Hertz T, Logan MG, Rolland M, Magaret CA, Rademeyer C et al. 2016. A study of vaccine-induced immune pressure on breakthrough infections in the Phambili phase 2b HIV-1 vaccine efficacy trial. Vaccine 34:5792–801
    [Google Scholar]
  79. 78. 
    Janes H, Friedrich DP, Krambrink A, Smith RJ, Kallas EG et al. 2013. Vaccine-induced gag-specific T cells are associated with reduced viremia after HIV-1 infection. J. Infect. Dis. 208:1231–39
    [Google Scholar]
  80. 79. 
    Liu J, O'Brien KL, Lynch DM, Simmons NL, La Porte A et al. 2009. Immune control of an SIV challenge by a T-cell-based vaccine in rhesus monkeys. Nature 457:87–91
    [Google Scholar]
  81. 80. 
    Nehete PN, Nehete BP, Hill L, Manuri PR, Baladandayuthapani V et al. 2008. Selective induction of cell-mediated immunity and protection of rhesus macaques from chronic SHIV(KU2) infection by prophylactic vaccination with a conserved HIV-1 envelope peptide-cocktail. Virology 370:130–41
    [Google Scholar]
  82. 81. 
    Tuyishime S, Haut LH, Kurupati RK, Billingsley JM, Carnathan D et al. 2018. Correlates of protection against SIVmac251 infection in rhesus macaques immunized with chimpanzee-derived adenovirus vectors. EBioMedicine 31:25–35
    [Google Scholar]
  83. 82. 
    Genesca M, McChesney MB, Miller CJ 2009. Antiviral CD8+ T cells in the genital tract control viral replication and delay progression to AIDS after vaginal SIV challenge in rhesus macaques immunized with virulence attenuated SHIV 89.6. J. Intern. Med. 265:67–77
    [Google Scholar]
  84. 83. 
    Wilson NA, Keele BF, Reed JS, Piaskowski SM, MacNair CE et al. 2009. Vaccine-induced cellular responses control simian immunodeficiency virus replication after heterologous challenge. J. Virol. 83:6508–21
    [Google Scholar]
  85. 84. 
    Yamamoto T, Johnson MJ, Price DA, Wolinsky DI, Almeida JR et al. 2012. Virus inhibition activity of effector memory CD8+ T cells determines simian immunodeficiency virus load in vaccinated monkeys after vaccine breakthrough infection. J. Virol. 86:5877–84
    [Google Scholar]
  86. 85. 
    Stephenson KE, Li H, Walker BD, Michael NL, Barouch DH 2012. Gag-specific cellular immunity determines in vitro viral inhibition and in vivo virologic control following simian immunodeficiency virus challenges of vaccinated rhesus monkeys. J. Virol. 86:9583–89
    [Google Scholar]
  87. 86. 
    Graham BS, Koup RA, Roederer M, Bailer RT, Enama ME et al. 2006. Phase 1 safety and immunogenicity evaluation of a multiclade HIV-1 DNA candidate vaccine. J. Infect. Dis. 194:1650–60
    [Google Scholar]
  88. 87. 
    Hammer SM, Sobieszczyk ME, Janes H, Karuna ST, Mulligan MJ et al. 2013. Efficacy trial of a DNA/rAd5 HIV-1 preventive vaccine. N. Engl. J. Med. 369:2083–92
    [Google Scholar]
  89. 88. 
    Janes HE, Cohen KW, Frahm N, De Rosa SC, Sanchez B et al. 2017. Higher T-cell responses induced by DNA/rAd5 HIV-1 preventive vaccine are associated with lower HIV-1 infection risk in an efficacy trial. J. Infect. Dis. 215:1376–85
    [Google Scholar]
  90. 89. 
    Fong Y, Shen X, Ashley VC, Deal A, Seaton KE et al. 2018. Modification of the association between T-cell immune responses and human immunodeficiency virus type 1 infection risk by vaccine-induced antibody responses in the HVTN 505 trial. J. Infect. Dis. 217:1280–88
    [Google Scholar]
  91. 90. 
    Santra S, Liao HX, Zhang R, Muldoon M, Watson S et al. 2010. Mosaic vaccines elicit CD8+ T lymphocyte responses that confer enhanced immune coverage of diverse HIV strains in monkeys. Nat. Med. 16:324–28
    [Google Scholar]
  92. 91. 
    Stephenson KE, SanMiguel A, Simmons NL, Smith K, Lewis MG et al. 2012. Full-length HIV-1 immunogens induce greater magnitude and comparable breadth of T lymphocyte responses to conserved HIV-1 regions compared with conserved-region-only HIV-1 immunogens in rhesus monkeys. J. Virol. 86:11434–40
    [Google Scholar]
  93. 92. 
    Kulkarni V, Valentin A, Rosati M, Rolland M, Mullins JI, Pavlakis GN, Felber BK 2014. HIV-1 conserved elements p24CE DNA vaccine induces humoral immune responses with broad epitope recognition in macaques. PLOS ONE 9:e111085
    [Google Scholar]
  94. 93. 
    Letourneau S, Im EJ, Mashishi T, Brereton C, Bridgeman A et al. 2007. Design and pre-clinical evaluation of a universal HIV-1 vaccine. PLOS ONE 2:e984
    [Google Scholar]
  95. 94. 
    Mothe B, Hu X, Llano A, Rosati M, Olvera A et al. 2015. A human immune data-informed vaccine concept elicits strong and broad T-cell specificities associated with HIV-1 control in mice and macaques. J. Transl. Med. 13:60
    [Google Scholar]
  96. 95. 
    Ondondo B, Murakoshi H, Clutton G, Abdul-Jawad S, Wee EG et al. 2016. Novel conserved-region T-cell mosaic vaccine with high global HIV-1 coverage is recognized by protective responses in untreated infection. Mol. Ther. 24:832–42
    [Google Scholar]
  97. 96. 
    Yang OO, Ali A, Kasahara N, Faure-Kumar E, Bae JY, Picker LJ, Park H 2015. Short conserved sequences of HIV-1 are highly immunogenic and shift immunodominance. J. Virol. 89:1195–204
    [Google Scholar]
  98. 97. 
    Abdul-Jawad S, Ondondo B, van Hateren A, Gardner A, Elliott T et al. 2016. Increased valency of conserved-mosaic vaccines enhances the breadth and depth of epitope recognition. Mol. Ther. 24:375–84
    [Google Scholar]
  99. 98. 
    Zou C, Murakoshi H, Kuse N, Akahoshi T, Chikata T et al. 2019. Effective suppression of HIV-1 replication by cytotoxic T lymphocytes specific for Pol epitopes in conserved mosaic vaccine immunogens. J. Virol. 93:e02142–18
    [Google Scholar]
  100. 99. 
    Kulkarni V, Rosati M, Valentin A, Ganneru B, Singh AK et al. 2013. HIV-1 p24gag derived conserved element DNA vaccine increases the breadth of immune response in mice. PLOS ONE 8:e60245
    [Google Scholar]
  101. 100. 
    Gaiha GD, Rossin EJ, Urbach J, Landeros C, Collins DR et al. 2019. Structural topology defines protective CD8+ T cell epitopes in the HIV proteome. Science 364:480–84
    [Google Scholar]
  102. 101. 
    Borthwick N, Ahmed T, Ondondo B, Hayes P, Rose A et al. 2014. Vaccine-elicited human T cells recognizing conserved protein regions inhibit HIV-1. Mol. Ther. 22:464–75
    [Google Scholar]
  103. 102. 
    Mothe B, Llano A, Ibarrondo J, Daniels M, Miranda C et al. 2011. Definition of the viral targets of protective HIV-1-specific T cell responses. J. Transl. Med. 9:208
    [Google Scholar]
  104. 103. 
    Mothe B, Manzardo C, Sanchez-Bernabeu A, Coll P, Morón-López S et al. 2019. Therapeutic vaccination refocuses T-cell responses towards conserved regions of HIV-1 in early treated individuals (BCN 01 study). eClinicalMedicine 11:65–80
    [Google Scholar]
  105. 104. 
    Hansen SG, Ford JC, Lewis MS, Ventura AB, Hughes CM et al. 2011. Profound early control of highly pathogenic SIV by an effector memory T-cell vaccine. Nature 473:523–27
    [Google Scholar]
  106. 105. 
    Hansen SG, Piatak M Jr, Ventura AB, Hughes CM, Gilbride RM et al. 2013. Immune clearance of highly pathogenic SIV infection. Nature 502:100–4
    [Google Scholar]
  107. 106. 
    Hansen SG, Sacha JB, Hughes CM, Ford JC, Burwitz BJ et al. 2013. Cytomegalovirus vectors violate CD8+ T cell epitope recognition paradigms. Science 340:1237874
    [Google Scholar]
  108. 107. 
    Hansen SG, Wu HL, Burwitz BJ, Hughes CM, Hammond KB et al. 2016. Broadly targeted CD8+ T cell responses restricted by major histocompatibility complex E. Science 351:714–20
    [Google Scholar]
  109. 108. 
    Ward AB, Wilson IA. 2017. The HIV-1 envelope glycoprotein structure: nailing down a moving target. Immunol. Rev. 275:21–32
    [Google Scholar]
  110. 109. 
    Wagh K, Kreider EF, Li Y, Barbian HJ, Learn GH et al. 2018. Completeness of HIV-1 envelope glycan shield at transmission determines neutralization breadth. Cell Rep 25:893–908.e7
    [Google Scholar]
  111. 110. 
    de Taeye SW, Ozorowski G, Torrents de la Peña A, Guttman M, Julien J-P et al. 2015. Immunogenicity of stabilized HIV-1 envelope trimers with reduced exposure of non-neutralizing epitopes. Cell 163:1702–15
    [Google Scholar]
  112. 111. 
    Klasse PJ, LaBranche CC, Ketas TJ, Ozorowski G, Cupo A et al. 2016. Sequential and simultaneous immunization of rabbits with HIV-1 envelope glycoprotein SOSIP.664 trimers from clades A, B and C. PLOS Pathog 12:e1005864
    [Google Scholar]
  113. 112. 
    McCoy LE, van Gils MJ, Ozorowski G, Messmer T, Briney B et al. 2016. Holes in the glycan shield of the native HIV envelope are a target of trimer-elicited neutralizing antibodies. Cell Rep 16:2327–38
    [Google Scholar]
  114. 113. 
    Sanders RW, van Gils MJ, Derking R, Sok D, Ketas TJ et al. 2015. HIV-1 vaccines: HIV-1 neutralizing antibodies induced by native-like envelope trimers. Science 349:aac4223
    [Google Scholar]
  115. 114. 
    Voss JE, Andrabi R, McCoy LE, de Val N, Fuller RP et al. 2017. Elicitation of neutralizing antibodies targeting the V2 apex of the HIV envelope trimer in a wild-type animal model. Cell Rep 21:222–35
    [Google Scholar]
  116. 115. 
    Sok D, Le KM, Vadnais M, Saye-Francisco KL, Jardine JG et al. 2017. Rapid elicitation of broadly neutralizing antibodies to HIV by immunization in cows. Nature 548:108–11
    [Google Scholar]
  117. 116. 
    Lu M, Ma X, Castillo-Menendez LR, Gorman J, Alsahafi N et al. 2019. Associating HIV-1 envelope glycoprotein structures with states on the virus observed by smFRET. Nature 568:415–19
    [Google Scholar]
  118. 117. 
    Doria-Rose NA, Schramm CA, Gorman J, Moore PL, Bhiman JN et al. 2014. Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies. Nature 509:55–62
    [Google Scholar]
  119. 118. 
    Bhiman JN, Anthony C, Doria-Rose NA, Karimanzira O, Schramm CA et al. 2015. Viral variants that initiate and drive maturation of V1V2-directed HIV-1 broadly neutralizing antibodies. Nat. Med. 21:1332–36
    [Google Scholar]
  120. 119. 
    Andrabi R, Bhiman JN, Burton DR 2018. Strategies for a multi-stage neutralizing antibody-based HIV vaccine. Curr. Opin. Immunol. 53:143–51
    [Google Scholar]
  121. 120. 
    Sok D, Briney B, Jardine JG, Kulp DW, Menis S et al. 2016. Priming HIV-1 broadly neutralizing antibody precursors in human Ig loci transgenic mice. Science 353:1557–60
    [Google Scholar]
  122. 121. 
    Jardine JG, Ota T, Sok D, Pauthner M, Kulp DW et al. 2015. HIV-1 vaccines: Priming a broadly neutralizing antibody response to HIV-1 using a germline-targeting immunogen. Science 349:156–61
    [Google Scholar]
  123. 122. 
    Briney B, Sok D, Jardine JG, Kulp DW, Skog P, Menis S et al. 2016. Tailored immunogens direct affinity maturation toward HIV neutralizing antibodies. Cell 166:1459–70.e11
    [Google Scholar]
  124. 123. 
    Steichen JM, Kulp DW, Tokatlian T, Escolano A, Dosenovic P et al. 2016. HIV vaccine design to target germline precursors of glycan-dependent broadly neutralizing antibodies. Immunity 45:483–96
    [Google Scholar]
  125. 124. 
    Escolano A, Steichen JM, Dosenovic P, Kulp DW, Golijanin J et al. 2016. Sequential immunization elicits broadly neutralizing anti-HIV-1 antibodies in Ig knockin mice. Cell 166:1445–58.e12
    [Google Scholar]
  126. 125. 
    Kong R, Xu K, Zhou T, Acharya P, Lemmin T et al. 2016. Fusion peptide of HIV-1 as a site of vulnerability to neutralizing antibody. Science 352:828–33
    [Google Scholar]
  127. 126. 
    Cai H, Orwenyo J, Giddens JP, Yang Q, Zhang R et al. 2017. Synthetic three-component HIV-1 V3 glycopeptide immunogens induce glycan-dependent antibody responses. Cell Chem. Biol. 24:1513–22.e4
    [Google Scholar]
  128. 127. 
    Xu K, Acharya P, Kong R, Cheng C, Chuang GY et al. 2018. Epitope-based vaccine design yields fusion peptide-directed antibodies that neutralize diverse strains of HIV-1. Nat. Med. 24:857–67
    [Google Scholar]
  129. 128. 
    Escolano A, Gristick HB, Abernathy ME, Merkenschlager J, Gautam R et al. 2019. Immunization expands B cells specific to HIV-1 V3 glycan in mice and macaques. Nature 570:468–73
    [Google Scholar]
  130. 129. 
    Gilbert PB, Juraska M, deCamp AC, Karuna S, Edupuganti S et al. 2017. Basis and statistical design of the passive HIV-1 antibody mediated prevention (AMP) test-of-concept efficacy trials. Stat. Commun. Infect. Dis. 9:20160001
    [Google Scholar]
  131. 130. 
    Huang Y, Yu J, Lanzi A, Yao X, Andrews CD et al. 2016. Engineered bispecific antibodies with exquisite HIV-1-neutralizing activity. Cell 165:1621–31
    [Google Scholar]
  132. 131. 
    Xu L, Pegu A, Rao E, Doria-Rose N, Beninga J et al. 2017. Trispecific broadly neutralizing HIV antibodies mediate potent SHIV protection in macaques. Science 358:85–90
    [Google Scholar]
  133. 132. 
    Fetzer I, Gardner MR, Davis-Gardner ME, Prasad NR, Alfant B, Weber JA, Farzan M 2018. eCD4-Ig variants that more potently neutralize HIV-1. J. Virol. 92:e02011–17
    [Google Scholar]
  134. 133. 
    Rudicell RS, Kwon YD, Ko SY, Pegu A, Louder MK et al. 2014. Enhanced potency of a broadly neutralizing HIV-1 antibody in vitro improves protection against lentiviral infection in vivo. J. Virol. 88:12669–82
    [Google Scholar]
  135. 134. 
    Gaudinski MR, Coates EE, Houser KV, Chen GL, Yamshchikov G et al. 2018. Safety and pharmacokinetics of the Fc-modified HIV-1 human monoclonal antibody VRC01LS: a Phase 1 open-label clinical trial in healthy adults. PLOS Med 15:e1002493
    [Google Scholar]
  136. 135. 
    Mascola JR, Stiegler G, VanCott TC, Katinger H, Carpenter CB et al. 2000. Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nat. Med. 6:207–10
    [Google Scholar]
  137. 136. 
    Baba TW, Liska V, Hofmann-Lehmann R, Vlasak J, Xu W, Ayehunie S et al. 2000. Human neutralizing monoclonal antibodies of the IgG1 subtype protect against mucosal simian-human immunodeficiency virus infection. Nat. Med. 6:200–6
    [Google Scholar]
  138. 137. 
    Hessell AJ, Poignard P, Hunter M, Hangartner L, Tehrani DM et al. 2009. Effective, low-titer antibody protection against low-dose repeated mucosal SHIV challenge in macaques. Nat. Med. 15:951–54
    [Google Scholar]
  139. 138. 
    Gautam R, Nishimura Y, Pegu A, Nason MC, Klein F et al. 2016. A single injection of anti-HIV-1 antibodies protects against repeated SHIV challenges. Nature 533:105–9
    [Google Scholar]
  140. 139. 
    Moldt B, Rakasz EG, Schultz N, Chan-Hui P-Y, Swiderek K et al. 2012. Highly potent HIV-specific antibody neutralization in vitro translates into effective protection against mucosal SHIV challenge in vivo. PNAS 109:18921–25
    [Google Scholar]
  141. 140. 
    Julg B, Liu PT, Wagh K, Fischer WM, Abbink P et al. 2017. Protection against a mixed SHIV challenge by a broadly neutralizing antibody cocktail. Sci. Transl. Med. 9:eaao4235
    [Google Scholar]
  142. 141. 
    Julg B, Tartaglia LJ, Keele BF, Wagh K, Pegu A et al. 2017. Broadly neutralizing antibodies targeting the HIV-1 envelope V2 apex confer protection against a clade C SHIV challenge. Sci. Transl. Med. 9:eaal1321
    [Google Scholar]
  143. 142. 
    Sok D, Burton DR. 2018. Recent progress in broadly neutralizing antibodies to HIV. Nat. Immunol. 19:1179–88
    [Google Scholar]
  144. 143. 
    Webb NE, Montefiori DC, Lee B 2015. Dose-response curve slope helps predict therapeutic potency and breadth of HIV broadly neutralizing antibodies. Nat. Commun. 6:8443
    [Google Scholar]
  145. 144. 
    McCoy LE, Falkowska E, Doores KJ, Le K, Sok D et al. 2015. Incomplete neutralization and deviation from sigmoidal neutralization curves for HIV broadly neutralizing monoclonal antibodies. PLOS Pathog 11:e1005110
    [Google Scholar]
  146. 145. 
    Pegu A, Borate B, Huang Y, Pauthner MG, Hessell AJ et al. 2019. A meta-analysis of passive immunization studies shows that serum-neutralizing antibody titer associates with protection against SHIV challenge. Cell Host Microbe 26:3336–46.e3
    [Google Scholar]
  147. 146. 
    Pauthner MG, Nkolola JP, Havenar-Daughton C, Murrell B, Reiss SM et al. 2019. Vaccine-induced protection from homologous tier 2 SHIV challenge in nonhuman primates depends on serum-neutralizing antibody titers. Immunity 50:241–52.e6
    [Google Scholar]
  148. 147. 
    Patel P, Borkowf CB, Brooks JT, Lasry A, Lansky A, Mermin J 2014. Estimating per-act HIV transmission risk: a systematic review. AIDS 28:1509–19
    [Google Scholar]
  149. 148. 
    Wagh K, Seaman MS, Zingg M, Fitzsimons T, Barouch DH et al. 2018. Potential of conventional & bispecific broadly neutralizing antibodies for prevention of HIV-1 subtype A, C & D infections. PLOS Pathog 14:e1006860
    [Google Scholar]
  150. 149. 
    Huang Y, Zhang L, Ledgerwood J, Grunenberg N, Bailer R et al. 2017. Population pharmacokinetics analysis of VRC01, an HIV-1 broadly neutralizing monoclonal antibody, in healthy adults. MAbs 9:792–800
    [Google Scholar]
  151. 150. 
    Bar KJ, Sneller MC, Harrison LJ, Justement JS, Overton ET et al. 2016. Effect of HIV antibody VRC01 on viral rebound after treatment interruption. N. Engl. J. Med. 375:2037–50
    [Google Scholar]
  152. 151. 
    Lynch RM, Boritz E, Coates EE, DeZure A, Madden P et al. 2015. Virologic effects of broadly neutralizing antibody VRC01 administration during chronic HIV-1 infection. Sci. Transl. Med. 7:319ra206
    [Google Scholar]
  153. 152. 
    Caskey M, Klein F, Lorenzi JC, Seaman MS, West AP et al. 2015. Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117. Nature 522:487–91
    [Google Scholar]
  154. 153. 
    Caskey M, Schoofs T, Gruell H, Settler A, Karagounis T et al. 2017. Antibody 10–1074 suppresses viremia in HIV-1-infected individuals. Nat. Med. 23:185–91
    [Google Scholar]
  155. 154. 
    Scheid JF, Horwitz JA, Bar-On Y, Kreider EF, Lu CL et al. 2016. HIV-1 antibody 3BNC117 suppresses viral rebound in humans during treatment interruption. Nature 535:556–60
    [Google Scholar]
  156. 155. 
    Doria-Rose NA, Bhiman JN, Roark RS, Schramm CA, Gorman J et al. 2015. New member of the V1V2-directed CAP256-VRC26 lineage that shows increased breadth and exceptional potency. J. Virol. 90:76–91
    [Google Scholar]
  157. 156. 
    Kong R, Louder MK, Wagh K, Bailer RT, deCamp A et al. 2015. Improving neutralization potency and breadth by combining broadly reactive HIV-1 antibodies targeting major neutralization epitopes. J. Virol. 89:2659–71
    [Google Scholar]
  158. 157. 
    Wagh K, Bhattacharya T, Williamson C, Robles A, Bayne M et al. 2016. Optimal combinations of broadly neutralizing antibodies for prevention and treatment of HIV-1 clade C infection. PLOS Pathog 12:e1005520
    [Google Scholar]
  159. 158. 
    Liu J, Ghneim K, Sok D, Bosche WJ, Li Y et al. 2016. Antibody-mediated protection against SHIV challenge includes systemic clearance of distal virus. Science 353:1045–49
    [Google Scholar]
  160. 159. 
    Kwong PD, Mascola JR. 2012. Human antibodies that neutralize HIV-1: identification, structures, and B cell ontogenies. Immunity 37:412–25
    [Google Scholar]
  161. 160. 
    Gao F, Bonsignori M, Liao HX, Kumar A, Xia SM et al. 2014. Cooperation of B cell lineages in induction of HIV-1-broadly neutralizing antibodies. Cell 158:481–91
    [Google Scholar]
  162. 161. 
    Hraber P, Seaman MS, Bailer RT, Mascola JR, Montefiori DC, Korber BT 2014. Prevalence of broadly neutralizing antibody responses during chronic HIV-1 infection. AIDS 28:163–69
    [Google Scholar]
  163. 162. 
    Rusert P, Kouyos RD, Kadelka C, Ebner H, Schanz M et al. 2016. Determinants of HIV-1 broadly neutralizing antibody induction. Nat. Med. 22:1260–67
    [Google Scholar]
  164. 163. 
    Landais E, Huang X, Havenar-Daughton C, Murrell B, Price MA et al. 2016. Broadly neutralizing antibody responses in a large longitudinal sub-Saharan HIV primary infection cohort. PLOS Pathog 12:e1005369
    [Google Scholar]
  165. 164. 
    Brenner BG, Roger M, Routy JP, Moisi D, Ntemgwa M et al. 2007. High rates of forward transmission events after acute/early HIV-1 infection. J. Infect. Dis. 195:951–59
    [Google Scholar]
  166. 165. 
    Volz EM, Ionides E, Romero-Severson EO, Brandt MG, Mokotoff E, Koopman JS 2013. HIV-1 transmission during early infection in men who have sex with men: a phylodynamic analysis. PLOS Med 10:e1001568
    [Google Scholar]
  167. 166. 
    Powers KA, Ghani AC, Miller WC, Hoffman IF, Pettifor AE et al. 2011. The role of acute and early HIV infection in the spread of HIV and implications for transmission prevention strategies in Lilongwe, Malawi: a modelling study. Lancet 378:256–68
    [Google Scholar]
  168. 167. 
    Pilcher CD, Tien HC, Eron JJ Jr, Vernazza PL, Leu SY et al. 2004. Brief but efficient: acute HIV infection and the sexual transmission of HIV. J. Infect. Dis. 189:1785–92
    [Google Scholar]
  169. 168. 
    Bar-On Y, Gruell H, Schoofs T, Pai JA, Nogueira L et al. 2018. Safety and antiviral activity of combination HIV-1 broadly neutralizing antibodies in viremic individuals. Nat. Med. 24:1701–7
    [Google Scholar]
  170. 169. 
    Mendoza P, Gruell H, Nogueira L, Pai JA, Butler AL et al. 2018. Combination therapy with anti-HIV-1 antibodies maintains viral suppression. Nature 561:479–84
    [Google Scholar]
  171. 170. 
    Hauser A, Kusejko K, Johnson LF, Wandeler G, Riou J et al. 2019. Bridging the gap between HIV epidemiology and antiretroviral resistance evolution: modelling the spread of resistance in South Africa. PLOS Comput. Biol. 15:e1007083
    [Google Scholar]
  172. 171. 
    Stewart-Jones GB, Soto C, Lemmin T, Chuang GY, Druz A et al. 2016. Trimeric HIV-1-env structures define glycan shields from clades A, B, and G. Cell 165:813–26
    [Google Scholar]
  173. 172. 
    Korber BT, Kunstman KJ, Patterson BK, Furtado M, McEvilly MM et al. 1994. Genetic differences between blood- and brain-derived viral sequences from human immunodeficiency virus type 1-infected patients: evidence of conserved elements in the V3 region of the envelope protein of brain-derived sequences. J. Virol. 68:7467–81
    [Google Scholar]
  174. 173. 
    Lee JH, Andrabi R, Su CY, Yasmeen A, Julien JP et al. 2017. A broadly neutralizing antibody targets the dynamic HIV envelope trimer apex via a long, rigidified, and anionic β-hairpin structure. Immunity 46:690–702
    [Google Scholar]
  175. 174. 
    Kong L, Torrents de la Pena A, Deller MC, Garces F, Sliepen K et al. 2015. Complete epitopes for vaccine design derived from a crystal structure of the broadly neutralizing antibodies PGT128 and 8ANC195 in complex with an HIV-1 Env trimer. Acta Crystallogr. D 71:2099–108
    [Google Scholar]
  176. 175. 
    Gorman J, Soto C, Yang MM, Davenport TM, Guttman M et al. 2016. Structures of HIV-1 Env V1V2 with broadly neutralizing antibodies reveal commonalities that enable vaccine design. Nat. Struct. Mol. Biol. 23:81–90
    [Google Scholar]
  177. 176. 
    LaBranche CC, Henderson R, Hsu A, Behrens S, Chen X et al. 2019. Neutralization-guided design of HIV-1 envelope trimers with high affinity for the unmutated common ancestor of CH235 lineage CD4bs broadly neutralizing antibodies. PLOS Pathog 15:9e1008026
    [Google Scholar]
  178. 177. 
    Duan H, Chen X, Boyington JC, Cheng C, Zhang Y et al. 2018. Glycan masking focuses immune responses to the HIV-1 CD4-binding site and enhances elicitation of VRC01-class precursor antibodies. Immunity 49:2301–11.e5
    [Google Scholar]
  179. 178. 
    Wiehe K, Bradley T, Meyerhoff RR, Hart C, Williams WB et al. 2018. Functional relevance of improbable antibody mutations for HIV broadly neutralizing antibody development. Cell Host Microbe 23:6759–65.e6
    [Google Scholar]
  180. 179. 
    Andrabi R, Pallesen J, Allen JD, Song G, Zhang J et al. 2019. The chimpanzee SIV envelope trimer: structure and deployment as an HIV vaccine template. Cell Rep 27:82426–41.e6
    [Google Scholar]
  181. 180. 
    Gaschen B, Taylor J, Yusim K, Foley B, Gao F et al. 2002. Diversity considerations in HIV-1 vaccine selection. Science 296:55772354–60
    [Google Scholar]
  182. 181. 
    Santra S, Korber BT, Muldoon M, Barouch DH, Nabel GJ et al. 2008. A centralized gene-based HIV-1 vaccine elicits broad cross-clade cellular immune responses in rhesus monkeys. PNAS 105:3010489–94
    [Google Scholar]
  183. 182. 
    Sliepen K, Han BW, Bontjer I, Mooij P, Garces F et al. 2019. Structure and immunogenicity of a stabilized HIV-1 envelope trimer based on a group-M consensus sequence. Nat. Commun. 10:12355
    [Google Scholar]
  184. 183. 
    Pauthner M, Havenar-Daughton C, Sok D, Nkolola JP, Bastidas R et al. 2017. Elicitation of robust tier 2 neutralizing antibody responses in nonhuman primates by HIV envelope trimer immunization using optimized approaches. Immunity 46:1073–88.e6
    [Google Scholar]
  185. 184. 
    Cohen YZ, Lorenzi JCC, Seaman MS, Nogueira L, Schoofs T et al. 2018. Neutralizing activity of broadly neutralizing anti-HIV-1 antibodies against clade B clinical isolates produced in peripheral blood mononuclear cells. J. Virol. 92:e01883–17
    [Google Scholar]
  186. 185. 
    Huang J, Kang BH, Ishida E, Zhou T, Griesman T et al. 2016. Identification of a CD4-binding-site antibody to HIV that evolved near-pan neutralization breadth. Immunity 45:1108–21
    [Google Scholar]
  187. 186. 
    Zhou T, Zhu J, Wu X, Moquin S, Zhang B et al. 2013. Multidonor analysis reveals structural elements, genetic determinants, and maturation pathway for HIV-1 neutralization by VRC01-class antibodies. Immunity 39:245–58
    [Google Scholar]
  188. 187. 
    Schoofs T, Klein F, Braunschweig M, Kreider EF, Feldmann A et al. 2016. HIV-1 therapy with monoclonal antibody 3BNC117 elicits host immune responses against HIV-1. Science 352:997–1001
    [Google Scholar]
  189. 188. 
    Andrabi R, Voss JE, Liang CH, Briney B, McCoy LE et al. 2015. Identification of common features in prototype broadly neutralizing antibodies to HIV envelope V2 apex to facilitate vaccine design. Immunity 43:959–73
    [Google Scholar]
  190. 189. 
    McLellan JS, Pancera M, Carrico C, Gorman J, Julien JP et al. 2011. Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature 480:336–43
    [Google Scholar]
  191. 190. 
    Sok D, van Gils MJ, Pauthner M, Julien JP, Saye-Francisco KL et al. 2014. Recombinant HIV envelope trimer selects for quaternary-dependent antibodies targeting the trimer apex. PNAS 111:17624–29
    [Google Scholar]
  192. 191. 
    O'Rourke SM, Schweighardt B, Phung P, Mesa KA, Vollrath AL, Tatsuno GP et al. 2012. Sequences in glycoprotein gp41, the CD4 binding site, and the V2 domain regulate sensitivity and resistance of HIV-1 to broadly neutralizing antibodies. J. Virol. 86:12105–14
    [Google Scholar]
  193. 192. 
    Barnes CO, Gristick HB, Freund NT, Escolano A, Lyubimov AY et al. 2018. Structural characterization of a highly-potent V3-glycan broadly neutralizing antibody bound to natively-glycosylated HIV-1 envelope. Nat. Commun. 9:1251
    [Google Scholar]
  194. 193. 
    Alam SM, Aussedat B, Vohra Y, Meyerhoff RR, Cale EM et al. 2017. Mimicry of an HIV broadly neutralizing antibody epitope with a synthetic glycopeptide. Sci. Transl. Med. 9:eaai7521
    [Google Scholar]
  195. 194. 
    Gristick HB, von Boehmer L, West AP Jr, Schamber M, Gazumyan A et al. 2016. Natively glycosylated HIV-1 Env structure reveals new mode for antibody recognition of the CD4-binding site. Nat. Struct. Mol. Biol. 23:906–15
    [Google Scholar]
  196. 195. 
    Ferguson AL, Falkowska E, Walker LM, Seaman MS, Burton DR, Chakraborty AK 2013. Computational prediction of broadly neutralizing HIV-1 antibody epitopes from neutralization activity data. PLOS ONE 8:e80562
    [Google Scholar]
  197. 196. 
    Walker LM, Huber M, Doores KJ, Falkowska E, Pejchal R et al. 2011. Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature 477:466–70
    [Google Scholar]
  198. 197. 
    Fera D, Schmidt AG, Haynes BF, Gao F, Liao HX, Kepler TB, Harrison SC 2014. Affinity maturation in an HIV broadly neutralizing B-cell lineage through reorientation of variable domains. PNAS 111:10275–80
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-080219-023629
Loading
/content/journals/10.1146/annurev-immunol-080219-023629
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error