1932

Abstract

A plethora of experimental and epidemiological evidence supports a critical role for inflammation and adaptive immunity in the onset of cancer and in shaping its response to therapy. These data are particularly robust for gastrointestinal (GI) cancers, such as those affecting the GI tract, liver, and pancreas, on which this review is focused. We propose a unifying hypothesis according to which intestinal barrier disruption is the origin of tumor-promoting inflammation that acts in conjunction with tissue-specific cancer-initiating mutations. The gut microbiota and its products impact tissue-resident and recruited myeloid cells that promote tumorigenesis through secretion of growth- and survival-promoting cytokines that act on epithelial cells, as well as fibrogenic and immunosuppressive cytokines that interfere with the proper function of adaptive antitumor immunity. Understanding these relationships should improve our ability to prevent cancer development and stimulate the immune system to eliminate existing malignancies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-082019-081656
2020-04-26
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/immunol/38/1/annurev-immunol-082019-081656.html?itemId=/content/journals/10.1146/annurev-immunol-082019-081656&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 144:5646–74
    [Google Scholar]
  2. 2. 
    Grivennikov SI, Greten FR, Karin M 2010. Immunity, inflammation, and cancer. Cell 140:6883–99
    [Google Scholar]
  3. 3. 
    Shalapour S, Karin M. 2015. Immunity, inflammation, and cancer: an eternal fight between good and evil. J. Clin. Investig. 125:93347–55
    [Google Scholar]
  4. 4. 
    Ruffell B, Coussens LM. 2015. Macrophages and therapeutic resistance in cancer. Cancer Cell 27:4462–72
    [Google Scholar]
  5. 5. 
    Warren JR, Marshall B 1983. Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet 321:83361273–75
    [Google Scholar]
  6. 6. 
    Suerbaum S, Michetti P. 2002. Helicobacter pylori infection. N. Engl. J. Med. 347:1175–86
    [Google Scholar]
  7. 7. 
    Greten FR, Eckmann L, Greten TF, Park JM, Li Z-W et al. 2004. IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118:3285–96
    [Google Scholar]
  8. 8. 
    Willett WC, Stampfer MJ, Colditz GA, Rosner BA, Speizer FE 1990. Relation of meat, fat, and fiber intake to the risk of colon cancer in a prospective study among women. N. Engl. J. Med. 323:241664–72
    [Google Scholar]
  9. 9. 
    Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S et al. 2004. NF-κB functions as a tumour promoter in inflammation-associated cancer. Nature 431:7007461–66
    [Google Scholar]
  10. 10. 
    Zhang Y, Yan W, Collins MA, Bednar F, Rakshit S et al. 2013. Interleukin-6 is required for pancreatic cancer progression by promoting MAPK signaling activation and oxidative stress resistance. Cancer Res 73:206359–74
    [Google Scholar]
  11. 11. 
    Font-Burgada J, Shalapour S, Ramaswamy S, Hsueh B, Rossell D et al. 2015. Hybrid periportal hepatocytes regenerate the injured liver without giving rise to cancer. Cell 162:4766–79
    [Google Scholar]
  12. 12. 
    McLoughlin MR, Orlicky DJ, Prigge JR, Krishna P, Talago EA et al. 2019. TrxR1, Gsr, and oxidative stress determine hepatocellular carcinoma malignancy. PNAS 116:2311408–17
    [Google Scholar]
  13. 13. 
    Zambirinis CP, Pushalkar S, Saxena D, Miller G 2014. Pancreatic cancer, inflammation and microbiome. Cancer J 20:3195–202
    [Google Scholar]
  14. 14. 
    Lee PJ, Papachristou GI. 2019. New insights into acute pancreatitis. Nat. Rev. Gastroenterol. Hepatol. 16:8479–96
    [Google Scholar]
  15. 15. 
    de Sousa e Melo F, de Sauvage FJ 2019. Cellular plasticity in intestinal homeostasis and disease. Cell Stem Cell 24:154–64
    [Google Scholar]
  16. 16. 
    Hillman ET, Lu H, Yao T, Nakatsu CH 2017. Microbial ecology along the gastrointestinal tract. Microbes Environ 32:4300–13
    [Google Scholar]
  17. 17. 
    Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B et al. 2012. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491:7423254–58
    [Google Scholar]
  18. 18. 
    Siegel RL, Miller KD, Jemal A 2018. Cancer statistics, 2018. CA Cancer J. Clin. 68:17–30
    [Google Scholar]
  19. 19. 
    Wei M-Y, Shi S, Liang C, Meng Q-C, Hua J et al. 2019. The microbiota and microbiome in pancreatic cancer: more influential than expected. Mol. Cancer 18:97
    [Google Scholar]
  20. 20. 
    Conlon MA, Bird AR. 2014. The impact of diet and lifestyle on gut microbiota and human health. Nutrients 7:117–44
    [Google Scholar]
  21. 21. 
    Bowcutt R, Forman R, Glymenaki M, Carding SR, Else KJ, Cruickshank SM 2014. Heterogeneity across the murine small and large intestine. World J. Gastroenterol. 20:4115216–32
    [Google Scholar]
  22. 22. 
    Zihni C, Mills C, Matter K, Balda MS 2016. Tight junctions: from simple barriers to multifunctional molecular gates. Nat. Rev. Mol. Cell Biol. 17:9564–80
    [Google Scholar]
  23. 23. 
    Dzutsev A, Badger JH, Perez-Chanona E, Roy S, Salcedo R et al. 2017. Microbes and cancer. Annu. Rev. Immunol. 35:1199–228
    [Google Scholar]
  24. 24. 
    Lavelle E, Murphy C, O'Neill L, Creagh E 2010. The role of TLRs, NLRs, and RLRs in mucosal innate immunity and homeostasis. Mucosal Immunol 3:117–28
    [Google Scholar]
  25. 25. 
    Harrison OJ, Powrie FM. 2013. Regulatory T cells and immune tolerance in the intestine. Cold Spring Harb. Perspect. Biol. 5:7a018341
    [Google Scholar]
  26. 26. 
    Friedrich M, Pohin M, Powrie F 2019. Cytokine networks in the pathophysiology of inflammatory bowel disease. Immunity 50:4992–1006
    [Google Scholar]
  27. 27. 
    Nakajima A, Vogelzang A, Maruya M, Miyajima M, Murata M et al. 2018. IgA regulates the composition and metabolic function of gut microbiota by promoting symbiosis between bacteria. J. Exp. Med. 215:82019–34
    [Google Scholar]
  28. 28. 
    Macpherson AJ, Yilmaz B, Limenitakis JP, Ganal-Vonarburg SC 2018. IgA function in relation to the intestinal microbiota. Annu. Rev. Immunol. 36:1359–81
    [Google Scholar]
  29. 29. 
    Kamada N, Sakamoto K, Seo S-U, Zeng MY, Kim Y-G et al. 2015. Humoral immunity in the gut selectively targets phenotypically virulent attaching-and-effacing bacteria for intraluminal elimination. Cell Host Microbe 17:5617–27
    [Google Scholar]
  30. 30. 
    Fatkhullina AR, Peshkova IO, Dzutsev A, Aghayev T, McCulloch JA et al. 2018. An interleukin-23-interleukin-22 axis regulates intestinal microbial homeostasis to protect from diet-induced atherosclerosis. Immunity 49:5943–957.e9
    [Google Scholar]
  31. 31. 
    Castro-Dopico T, Dennison TW, Ferdinand JR, Mathews RJ, Fleming A et al. 2019. Anti-commensal IgG drives intestinal inflammation and type 17 immunity in ulcerative colitis. Immunity 50:41099–114.e10
    [Google Scholar]
  32. 32. 
    Mannon PJ 2019. Immunological diseases of the gastrointestinal. tract. Clinical Immunology: Principles and Practice RR Rich, TA Fleisher, WT Shearer, HW Schroeder Jr., AJ Frew et al.1005–19.e1 London: Elsevier. , 5th ed..
    [Google Scholar]
  33. 33. 
    Tiegs G, Lohse AW. 2010. Immune tolerance: what is unique about the liver. J. Autoimmun. 34:11–6
    [Google Scholar]
  34. 34. 
    Shalapour S, Lin X-J, Bastian IN, Brain J, Burt AD et al. 2017. Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity. Nature 551:7680340–45 Erratum. 2017. Nature 552(7685):430. Correction. 2018. Nature 561(7721):E1
    [Google Scholar]
  35. 35. 
    Shen H, Lipka S, Kumar A, Mustacchia P 2014. Association between nonalcoholic fatty liver disease and colorectal adenoma: a systemic review and meta-analysis. J. Gastrointest. Oncol. 5:6440–46
    [Google Scholar]
  36. 36. 
    Mantovani A, Dauriz M, Byrne CD, Lonardo A, Zoppini G et al. 2018. Association between nonalcoholic fatty liver disease and colorectal tumours in asymptomatic adults undergoing screening colonoscopy: a systematic review and meta-analysis. Metabolism 87:1–12
    [Google Scholar]
  37. 37. 
    Baker A-M, Cross W, Curtius K, Bakir IA, Choi C-HR et al. 2019. Evolutionary history of human colitis-associated colorectal cancer. Gut 68:6985–95
    [Google Scholar]
  38. 38. 
    Al Bakir I, Curtius K, Graham TA 2018. From colitis to cancer: an evolutionary trajectory that merges maths and biology. Front. Immunol. 9:2368
    [Google Scholar]
  39. 39. 
    Rubin DC, Shaker A, Levin MS 2012. Chronic intestinal inflammation: inflammatory bowel disease and colitis-associated colon cancer. Front. Immunol. 3:107
    [Google Scholar]
  40. 40. 
    Zhen Y, Luo C, Zhang H 2018. Early detection of ulcerative colitis-associated colorectal cancer. Gastroenterol. Rep. 6:283–92
    [Google Scholar]
  41. 41. 
    Khor B, Gardet A, Xavier RJ 2011. Genetics and pathogenesis of inflammatory bowel disease. Nature 474:7351307–17
    [Google Scholar]
  42. 42. 
    Triantafillidis JK, Nasioulas G, Kosmidis PA 2009. Colorectal cancer and inflammatory bowel disease: epidemiology, risk factors, mechanisms of carcinogenesis and prevention strategies. Anticancer Res 29:72727–37
    [Google Scholar]
  43. 43. 
    Waldner MJ, Neurath MF. 2015. Mechanisms of immune signaling in colitis-associated cancer. Cell Mol. Gastroenterol. Hepatol. 1:16–16
    [Google Scholar]
  44. 44. 
    Terzić J, Grivennikov S, Karin E, Karin M 2010. Inflammation and colon cancer. Gastroenterology 138:62101–14.e5
    [Google Scholar]
  45. 45. 
    Oh M, McBride A, Yun S, Bhattacharjee S, Slack M et al. 2018. BRCA1 and BRCA2 gene mutations and colorectal cancer risk: systematic review and meta-analysis. J. Natl. Cancer Inst. 110:111178–89
    [Google Scholar]
  46. 46. 
    Stoffel EM, Kastrinos F. 2014. Familial colorectal cancer, beyond Lynch syndrome. Clin. Gastroenterol. Hepatol. 12:71059–68
    [Google Scholar]
  47. 47. 
    Lowery JT, Ahnen DJ, Schroy PC, Hampel H, Baxter N et al. 2016. Understanding the contribution of family history to colorectal cancer risk and its clinical implications: a state-of-the-science review. Cancer 122:172633–45
    [Google Scholar]
  48. 48. 
    Cunningham D, Atkin W, Lenz H-J, Lynch HT, Minsky B et al. 2010. Colorectal cancer. Lancet 375:97191030–47
    [Google Scholar]
  49. 49. 
    Fujita M, Matsubara N, Matsuda I, Maejima K, Oosawa A et al. 2017. Genomic landscape of colitis-associated cancer indicates the impact of chronic inflammation and its stratification by mutations in the Wnt signaling. Oncotarget 9:1969–81
    [Google Scholar]
  50. 50. 
    Kameyama H, Nagahashi M, Shimada Y, Tajima Y, Ichikawa H et al. 2018. Genomic characterization of colitis-associated colorectal cancer. World J. Surg. Oncol. 16:1121
    [Google Scholar]
  51. 51. 
    Robles AI, Traverso G, Zhang M, Roberts NJ, Khan MA et al. 2016. Whole-exome sequencing analyses of inflammatory bowel disease–associated colorectal cancers. Gastroenterology 150:4931–43
    [Google Scholar]
  52. 52. 
    Canli Ö, Nicolas AM, Gupta J, Finkelmeier F, Goncharova O et al. 2017. Myeloid cell-derived reactive oxygen species induce epithelial mutagenesis. Cancer Cell 32:6869–83.e5
    [Google Scholar]
  53. 53. 
    Rakoff-Nahoum S, Medzhitov R. 2007. Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science 317:5834124–27
    [Google Scholar]
  54. 54. 
    Johnson CM, Wei C, Ensor JE, Smolenski DJ, Amos CI et al. 2013. Meta-analyses of colorectal cancer risk factors. Cancer Causes Control 24:61207–22
    [Google Scholar]
  55. 55. 
    Shaked H, Hofseth LJ, Chumanevich A, Chumanevich AA, Wang J et al. 2012. Chronic epithelial NF-κB activation accelerates APC loss and intestinal tumor initiation through iNOS up-regulation. PNAS 109:3514007–12
    [Google Scholar]
  56. 56. 
    Neurath MF. 2019. Targeting immune cell circuits and trafficking in inflammatory bowel disease. Nat. Immunol. 20:8970–79
    [Google Scholar]
  57. 57. 
    West NR, Hegazy AN, Owens BMJ, Bullers SJ, Linggi B et al. 2017. Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factor-neutralizing therapy in patients with inflammatory bowel disease. Nat. Med. 23:5579–89
    [Google Scholar]
  58. 58. 
    Danne C, Powrie F. 2018. Helicobacter hepaticus polysaccharide induces an anti-inflammatory response in intestinal macrophages. Microb. Cell 5:4208–11
    [Google Scholar]
  59. 59. 
    Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R 2004. Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell 118:2229–41
    [Google Scholar]
  60. 60. 
    Baker K, Rath T, Flak MB, Arthur JC, Chen Z et al. 2013. Neonatal Fc receptor expression in dendritic cells mediates protective immunity against colorectal cancer. Immunity 39:61095–107
    [Google Scholar]
  61. 61. 
    Grivennikov S, Karin E, Terzic J, Mucida D, Yu G-Y et al. 2009. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15:2103–13
    [Google Scholar]
  62. 62. 
    Putoczki TL, Thiem S, Loving A, Busuttil RA, Wilson NJ et al. 2013. Interleukin-11 is the dominant IL-6 family cytokine during gastrointestinal tumorigenesis and can be targeted therapeutically. Cancer Cell 24:2257–71
    [Google Scholar]
  63. 63. 
    Cai X, Carlson J, Stoicov C, Li H, Wang TC, Houghton J 2005. Helicobacter felis eradication restores normal architecture and inhibits gastric cancer progression in C57BL/6 mice. Gastroenterology 128:71937–52
    [Google Scholar]
  64. 64. 
    Kirchberger S, Royston DJ, Boulard O, Thornton E, Franchini F et al. 2013. Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. J. Exp. Med. 210:5917–31
    [Google Scholar]
  65. 65. 
    Lindemans CA, Calafiore M, Mertelsmann AM, O'Connor MH, Dudakov JA et al. 2015. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature 528:7583560–64
    [Google Scholar]
  66. 66. 
    Taniguchi K, Wu L-W, Grivennikov SI, de Jong PR, Lian I et al. 2015. A gp130-Src-YAP module links inflammation to epithelial regeneration. Nature 519:754157–62
    [Google Scholar]
  67. 67. 
    Taniguchi K, Moroishi T, de Jong PR, Krawczyk M, Grebbin BM et al. 2017. YAP-IL-6ST autoregulatory loop activated on APC loss controls colonic tumorigenesis. PNAS 114:71643–48
    [Google Scholar]
  68. 68. 
    Ruder EH, Laiyemo AO, Graubard BI, Hollenbeck AR, Schatzkin A, Cross AJ 2011. Non-steroidal anti-inflammatory drugs and colorectal cancer risk in a large, prospective cohort. Am. J. Gastroenterol. 106:71340–50
    [Google Scholar]
  69. 69. 
    Hinoi T, Akyol A, Theisen BK, Ferguson DO, Greenson JK et al. 2007. Mouse model of colonic adenoma-carcinoma progression based on somatic Apc inactivation. Cancer Res 67:209721–30
    [Google Scholar]
  70. 70. 
    Hu W-H, Chen H-H, Yen S-L, Huang H-Y, Hsiao C-C, Chuang J-H 2017. Increased expression of interleukin-23 associated with progression of colorectal cancer. J. Surg. Oncol. 115:2208–12
    [Google Scholar]
  71. 71. 
    Wang K, Kim MK, Di Caro G, Wong J, Shalapour S et al. 2014. Interleukin-17 receptor A signaling in transformed enterocytes promotes early colorectal tumorigenesis. Immunity 41:61052–63
    [Google Scholar]
  72. 72. 
    Housseau F, Wu S, Wick EC, Fan H, Wu X et al. 2016. Redundant innate and adaptive sources of IL-17 production drive colon tumorigenesis. Cancer Res 76:82115–24
    [Google Scholar]
  73. 73. 
    Hurtado CG, Wan F, Housseau F, Sears CL 2018. Roles for interleukin 17 and adaptive immunity in pathogenesis of colorectal cancer. Gastroenterology 155:61706–15
    [Google Scholar]
  74. 74. 
    Wu S, Rhee K-J, Albesiano E, Rabizadeh S, Wu X et al. 2009. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat. Med. 15:91016–22
    [Google Scholar]
  75. 75. 
    Tosolini M, Kirilovsky A, Mlecnik B, Fredriksen T, Mauger S et al. 2011. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, Th2, Treg, Th17) in patients with colorectal cancer. Cancer Res 71:41263–71
    [Google Scholar]
  76. 76. 
    Omrane I, Marrakchi R, Baroudi O, Mezlini A, Ayari H et al. 2014. Significant association between interleukin-17A polymorphism and colorectal cancer. Tumor Biol 35:76627–32
    [Google Scholar]
  77. 77. 
    Dmitrieva-Posocco O, Dzutsev A, Posocco DF, Hou V, Yuan W et al. 2019. Cell-type-specific responses to interleukin-1 control microbial invasion and tumor-elicited inflammation in colorectal cancer. Immunity 50:1166–80.e7
    [Google Scholar]
  78. 78. 
    Amicarella F, Muraro MG, Hirt C, Cremonesi E, Padovan E et al. 2017. Dual role of tumour-infiltrating T helper 17 cells in human colorectal cancer. Gut 66:4692–704
    [Google Scholar]
  79. 79. 
    Routy B, Chatelier EL, Derosa L, Duong CPM, Alou MT et al. 2018. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359:637191–97
    [Google Scholar]
  80. 80. 
    Ganesh K, Stadler ZK, Cercek A, Mendelsohn RB, Shia J et al. 2019. Immunotherapy in colorectal cancer: rationale, challenges and potential. Nat. Rev. Gastroenterol. Hepatol. 16:6361–75
    [Google Scholar]
  81. 81. 
    Song X, Gao H, Lin Y, Yao Y, Zhu S et al. 2014. Alterations in the microbiota drive interleukin-17C production from intestinal epithelial cells to promote tumorigenesis. Immunity 40:1140–52
    [Google Scholar]
  82. 82. 
    Nakanishi Y, Duran A, L'Hermitte A, Shelton PM, Nakanishi N et al. 2018. Simultaneous loss of both atypical protein kinase C genes in the intestinal epithelium drives serrated intestinal cancer by impairing immunosurveillance. Immunity 49:61132–47.e7
    [Google Scholar]
  83. 83. 
    Sellmann C, Priebs J, Landmann M, Degen C, Engstler AJ et al. 2015. Diets rich in fructose, fat or fructose and fat alter intestinal barrier function and lead to the development of nonalcoholic fatty liver disease over time. J. Nutr. Biochem. 26:111183–92
    [Google Scholar]
  84. 84. 
    Hamilton MK, Boudry G, Lemay DG, Raybould HE 2015. Changes in intestinal barrier function and gut microbiota in high-fat diet-fed rats are dynamic and region dependent. Am. J. Physiol. Gastrointest. Liver Physiol. 308:10G840–51
    [Google Scholar]
  85. 85. 
    Bach Knudsen KE, Lærke HN, Hedemann MS, Nielsen TS, Ingerslev AK et al. 2018. Impact of diet-modulated butyrate production on intestinal barrier function and inflammation. Nutrients 10:101499
    [Google Scholar]
  86. 86. 
    Fabbiano S, Suárez-Zamorano N, Chevalier C, Lazarević V, Kieser S et al. 2018. Functional gut microbiota remodeling contributes to the caloric restriction-induced metabolic improvements. Cell Metab 28:6907–21.e7
    [Google Scholar]
  87. 87. 
    Parks BW, Nam E, Org E, Kostem E, Norheim F et al. 2013. Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice. Cell Metab 17:1141–52
    [Google Scholar]
  88. 88. 
    Schulz MD, Atay C, Heringer J, Romrig FK, Schwitalla S et al. 2014. High-fat-diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesity. Nature 514:7523508–12
    [Google Scholar]
  89. 89. 
    Arias-Jayo N, Abecia L, Alonso-Sáez L, Ramirez-Garcia A, Rodriguez A, Pardo MA 2018. High-fat diet consumption induces microbiota dysbiosis and intestinal inflammation in zebrafish. Microb. Ecol. 76:41089–101
    [Google Scholar]
  90. 90. 
    Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, Keilbaugh SA, Hamady M et al. 2009. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 137:51716–24.e2
    [Google Scholar]
  91. 91. 
    Brown K, DeCoffe D, Molcan E, Gibson DL 2012. Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients 4:81095–119
    [Google Scholar]
  92. 92. 
    Saltzman ET, Palacios T, Thomsen M, Vitetta L 2018. Intestinal microbiome shifts, dysbiosis, inflammation, and non-alcoholic fatty liver disease. Front. Microbiol. 9:61
    [Google Scholar]
  93. 93. 
    Brandl K, Schnabl B. 2017. The intestinal microbiota and NASH. Curr. Opin. Gastroenterol. 33:3128–33
    [Google Scholar]
  94. 94. 
    Yu L-X, Schwabe RF. 2017. The gut microbiome and liver cancer: mechanisms and clinical translation. Nat. Rev. Gastroenterol. Hepatol. 14:9527–39
    [Google Scholar]
  95. 95. 
    Fukui H. 2016. Increased intestinal permeability and decreased barrier function: Does it really influence the risk of inflammation. ? Inflamm. Intest. Dis. 1:3135–45
    [Google Scholar]
  96. 96. 
    Tripathi A, Debelius J, Brenner DA, Karin M, Loomba R et al. 2018. The gut-liver axis and the intersection with the microbiome. Nat. Rev. Gastroenterol. Hepatol. 15:7397–411
    [Google Scholar]
  97. 97. 
    Rahman K, Desai C, Iyer SS, Thorn NE, Kumar P et al. 2016. Loss of junctional adhesion molecule A promotes severe steatohepatitis in mice on a diet high in saturated fat, fructose, and cholesterol. Gastroenterology 151:4733–46.e12
    [Google Scholar]
  98. 98. 
    Yuan J, Baker SS, Liu W, Alkhouri R, Baker RD et al. 2014. Endotoxemia unrequired in the pathogenesis of pediatric nonalcoholic steatohepatitis. J. Gastroenterol. Hepatol. 29:61292–98
    [Google Scholar]
  99. 99. 
    Levy M, Thaiss CA, Elinav E 2016. Metabolites: messengers between the microbiota and the immune system. Genes Dev 30:141589–97
    [Google Scholar]
  100. 100. 
    Rooks MG, Garrett WS. 2016. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 16:6341–52
    [Google Scholar]
  101. 101. 
    Shibata N, Kunisawa J, Kiyono H 2017. Dietary and microbial metabolites in the regulation of host immunity. Front. Microbiol. 8:2171
    [Google Scholar]
  102. 102. 
    Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G et al. 2013. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39:2372–85
    [Google Scholar]
  103. 103. 
    Kiss EA, Diefenbach A. 2012. Role of the aryl hydrocarbon receptor in controlling maintenance and functional programs of RORγt+ innate lymphoid cells and intraepithelial lymphocytes. Front. Immunol. 3:124
    [Google Scholar]
  104. 104. 
    Lee JS, Cella M, Colonna M 2012. AHR and the transcriptional regulation of type-17/22 ILC. Front. Immunol. 3:10
    [Google Scholar]
  105. 105. 
    Sonnenberg GF, Fouser LA, Artis D 2011. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat. Immunol. 12:5383–90
    [Google Scholar]
  106. 106. 
    Haas P-J, de Haas CJC, Kleibeuker W, Poppelier MJJG, van Kessel KPM et al. 2004. N-terminal residues of the chemotaxis inhibitory protein of Staphylococcus aureus are essential for blocking formylated peptide receptor but not C5a receptor. J. Immunol. 173:95704–11
    [Google Scholar]
  107. 107. 
    Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL 2005. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122:1107–18
    [Google Scholar]
  108. 108. 
    Ash M. 2018. The gut-liver axis. Clinical Education https://www.clinicaleducation.org/resources/reviews/the-gut-liver-axis/
    [Google Scholar]
  109. 109. 
    Ammirante M, Shalapour S, Kang Y, Jamieson CAM, Karin M 2014. Tissue injury and hypoxia promote malignant progression of prostate cancer by inducing CXCL13 expression in tumor myofibroblasts. PNAS 111:4114776–81
    [Google Scholar]
  110. 110. 
    Shalapour S, Font-Burgada J, Di Caro G, Zhong Z, Sanchez-Lopez E et al. 2015. Immunosuppressive plasma cells impede T-cell-dependent immunogenic chemotherapy. Nature 521:755094–98
    [Google Scholar]
  111. 111. 
    Cerutti A. 2008. The regulation of IgA class switching. Nat. Rev. Immunol. 8:6421–34
    [Google Scholar]
  112. 112. 
    Wynn TA, Ramalingam TR. 2012. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat. Med. 18:71028–40
    [Google Scholar]
  113. 113. 
    Kim KK, Sheppard D, Chapman HA 2018. TGF-β1 signaling and tissue fibrosis. Cold Spring Harb. Perspect. Biol. 10:4a022293
    [Google Scholar]
  114. 114. 
    Batlle E, Massagué J. 2019. Transforming growth factor-β signaling in immunity and cancer. Immunity 50:4924–40
    [Google Scholar]
  115. 115. 
    Rojas OL, Pröbstel A-K, Porfilio EA, Wang AA, Charabati M et al. 2019. Recirculating intestinal IgA-producing cells regulate neuroinflammation via IL-10. Cell 176:3610–24.e18
    [Google Scholar]
  116. 116. 
    Gutzeit C, Magri G, Cerutti A 2014. Intestinal IgA production and its role in host‐microbe interaction. Immunol. Rev. 260:176–85
    [Google Scholar]
  117. 117. 
    Mantis NJ, Rol N, Corthésy B 2011. Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol 4:6603–11
    [Google Scholar]
  118. 118. 
    Malik A, Sharma D, Zhu Q, Karki R, Guy CS et al. 2016. IL-33 regulates the IgA-microbiota axis to restrain IL-1α-dependent colitis and tumorigenesis. J. Clin. Investig. 126:124469–81
    [Google Scholar]
  119. 119. 
    Ma C, Han M, Heinrich B, Fu Q, Zhang Q et al. 2018. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science 360:6391eaan5931
    [Google Scholar]
  120. 120. 
    Dejea CM, Fathi P, Craig JM, Boleij A, Taddese R et al. 2018. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science 359:6375592–97
    [Google Scholar]
  121. 121. 
    Wilson MR, Jiang Y, Villalta PW, Stornetta A, Boudreau PD et al. 2019. The human gut bacterial genotoxin colibactin alkylates DNA. Science 363:6428eaar7785
    [Google Scholar]
  122. 122. 
    Wang TC, Dangler CA, Chen D, Goldenring JR, Koh T et al. 2000. Synergistic interaction between hypergastrinemia and Helicobacter infection in a mouse model of gastric cancer. Gastroenterology 118:136–47
    [Google Scholar]
  123. 123. 
    Hatakeyama M. 2014. Helicobacter pylori CagA and gastric cancer: a paradigm for hit-and-run carcinogenesis. Cell Host Microbe 15:3306–16
    [Google Scholar]
  124. 124. 
    Yordanov D, Boyanova L, Markovska R, Ilieva J, Andreev N et al. 2017. Influence of dietary factors on Helicobacter pylori and CagA seroprevalence in Bulgaria. Gastroenterol. Res. Pract. 2017:9212143
    [Google Scholar]
  125. 125. 
    Pushalkar S, Hundeyin M, Daley D, Zambirinis CP, Kurz E et al. 2018. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov 8:4403–16
    [Google Scholar]
  126. 126. 
    Tarocchi M, Polvani S, Marroncini G, Galli A 2014. Molecular mechanism of hepatitis B virus-induced hepatocarcinogenesis. World J. Gastroenterol. 20:3311630–40
    [Google Scholar]
  127. 127. 
    Chusri P, Kumthip K, Hong J, Zhu C, Duan X et al. 2016. HCV induces transforming growth factor β1 through activation of endoplasmic reticulum stress and the unfolded protein response. Sci. Rep. 6:22487
    [Google Scholar]
  128. 128. 
    Waris G, Tardif KD, Siddiqui A 2002. Endoplasmic reticulum (ER) stress: hepatitis C virus induces an ER-nucleus signal transduction pathway and activates NF-κB and STAT-3. Biochem. Pharmacol. 64:101425–30
    [Google Scholar]
  129. 129. 
    Wang Q, Pan W, Liu Y, Luo J, Zhu D et al. 2018. Hepatitis B virus-specific CD8+ T cells maintain functional exhaustion after antigen reexposure in an acute activation immune environment. Front. Immunol. 9:219
    [Google Scholar]
  130. 130. 
    Baiceanu A, Mesdom P, Lagouge M, Foufelle F 2016. Endoplasmic reticulum proteostasis in hepatic steatosis. Nat. Rev. Endocrinol. 12:12710–22
    [Google Scholar]
  131. 131. 
    Febbraio MA, Reibe S, Shalapour S, Ooi GJ, Watt MJ, Karin M 2019. Preclinical models for studying NASH-driven HCC: How useful are they. ? Cell Metab 29:118–26
    [Google Scholar]
  132. 132. 
    He G, Yu G-Y, Temkin V, Ogata H, Kuntzen C et al. 2010. Hepatocyte IKKβ/NF-κB inhibits tumor promotion and progression by preventing oxidative stress-driven STAT3 activation. Cancer Cell 17:3286–97
    [Google Scholar]
  133. 133. 
    He G, Dhar D, Nakagawa H, Font-Burgada J, Ogata H et al. 2013. Identification of liver cancer progenitors whose malignant progression depends on autocrine IL-6 signaling. Cell 155:2384–96
    [Google Scholar]
  134. 134. 
    Nakagawa H, Umemura A, Taniguchi K, Font-Burgada J, Dhar D et al. 2014. ER stress cooperates with hypernutrition to trigger TNF-dependent spontaneous HCC development. Cancer Cell 26:3331–43
    [Google Scholar]
  135. 135. 
    Naugler WE, Sakurai T, Kim S, Maeda S, Kim K et al. 2007. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 317:5834121–24
    [Google Scholar]
  136. 136. 
    Park EJ, Lee JH, Yu G-Y, He G, Ali SR et al. 2010. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 140:2197–208
    [Google Scholar]
  137. 137. 
    Maeda S, Kamata H, Luo J-L, Leffert H, Karin M 2005. IKKβ couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121:7977–90
    [Google Scholar]
  138. 138. 
    Lee JW, Stone ML, Porrett PM, Thomas SK, Komar CA et al. 2019. Hepatocytes direct the formation of a pro-metastatic niche in the liver. Nature 567:7747249–52
    [Google Scholar]
  139. 139. 
    Zarour LR, Anand S, Billingsley KG, Bisson WH, Cercek A et al. 2017. Colorectal cancer liver metastasis: evolving paradigms and future directions. Cell. Mol. Gastroenterol. Hepatol 3:2163–73
    [Google Scholar]
  140. 140. 
    Bullman S, Pedamallu CS, Sicinska E, Clancy TE, Zhang X et al. 2017. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science 358:63691443–48
    [Google Scholar]
  141. 141. 
    Gomes AL, Teijeiro A, Burén S, Tummala KS, Yilmaz M et al. 2016. Metabolic inflammation-associated IL-17A causes non-alcoholic steatohepatitis and hepatocellular carcinoma. Cancer Cell 30:1161–75
    [Google Scholar]
  142. 142. 
    Finkin S, Yuan D, Stein I, Taniguchi K, Weber A et al. 2015. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat. Immunol. 16:121235–44
    [Google Scholar]
  143. 143. 
    Good-Jacobson KL, Szumilas CG, Chen L, Sharpe AH, Tomayko MM, Shlomchik MJ 2010. PD-1 regulates germinal center B cell survival and the formation and affinity of long-lived plasma cells. Nat. Immunol. 11:6535–42
    [Google Scholar]
  144. 144. 
    Meng X, Nikolic-Paterson DJ, Lan HY 2016. TGF-β: the master regulator of fibrosis. Nat. Rev. Nephrol. 12:6325–38
    [Google Scholar]
  145. 145. 
    Györfi AH, Matei A-E, Distler JHW 2018. Targeting TGF-β signaling for the treatment of fibrosis. Matrix Biol 68–69:8–27
    [Google Scholar]
  146. 146. 
    El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M et al. 2017. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 389:100882492–502
    [Google Scholar]
  147. 147. 
    Overman MJ, Ernstoff MS, Morse MA 2018. Where we stand with immunotherapy in colorectal cancer: deficient mismatch repair, proficient mismatch repair, and toxicity management. Am. Soc. Clin. Oncol. Educ. Book. 38:239–47
    [Google Scholar]
  148. 148. 
    Ciardiello D, Vitiello PP, Cardone C, Martini G, Troiani T et al. 2019. Immunotherapy of colorectal cancer: challenges for therapeutic efficacy. Cancer Treat. Rev. 76:22–32
    [Google Scholar]
  149. 149. 
    Le DT, Durham JN, Smith KN, Wang H, Bartlett BR et al. 2017. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357:6349409–13
    [Google Scholar]
  150. 150. 
    Grootjans J, Krupka N, Hosomi S, Matute JD, Hanley T et al. 2019. Epithelial endoplasmic reticulum stress orchestrates a protective IgA response. Science 363:6430993–98
    [Google Scholar]
  151. 151. 
    Galdiero MR, Marone G, Mantovani A 2018. Cancer inflammation and cytokines. Cold Spring Harb. Perspect. Biol. 10:8a028662
    [Google Scholar]
  152. 152. 
    Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P 2017. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 14:7399–416
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-082019-081656
Loading
/content/journals/10.1146/annurev-immunol-082019-081656
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error