1932

Abstract

The choice of developing thymocytes to become CD8+ cytotoxic or CD4+ helper T cells has been intensely studied, but many of the underlying mechanisms remain to be elucidated. Recent multiomics approaches have provided much higher resolution analysis of gene expression in developing thymocytes than was previously achievable, thereby offering a fresh perspective on this question. Focusing on our recent studies using CITE-seq (cellular indexing of transcriptomes and epitopes) analyses of mouse thymocytes, we present a detailed timeline of RNA and protein expression changes during CD8 versus CD4 T cell differentiation. We also revisit our current understanding of the links between T cell receptor signaling and expression of the lineage-defining transcription factors ThPOK and RUNX3. Finally, we propose a sequential selection model to explain the tight linkage between MHC-I versus MHC-II recognition and T cell lineage choice. This model incorporates key aspects of previously proposed kinetic signaling, instructive, and stochastic/selection models.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-083122-040929
2024-06-28
2024-12-04
Loading full text...

Full text loading...

/deliver/fulltext/immunol/42/1/annurev-immunol-083122-040929.html?itemId=/content/journals/10.1146/annurev-immunol-083122-040929&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Dutta A, Zhao B, Love PE. 2021.. New insights into TCR β-selection. . Trends Immunol. 42:(8):73550
    [Crossref] [Google Scholar]
  2. 2.
    Stritesky GL, Jameson SC, Hogquist KA. 2012.. Selection of self-reactive T cells in the thymus. . Annu. Rev. Immunol. 30::95114
    [Crossref] [Google Scholar]
  3. 3.
    Taniuchi I. 2018.. CD4 helper and CD8 cytotoxic T cell differentiation. . Annu. Rev. Immunol. 36::579601
    [Crossref] [Google Scholar]
  4. 4.
    Seddon B, Yates AJ. 2018.. The natural history of naive T cells from birth to maturity. . Immunol. Rev. 285:(1):21832
    [Crossref] [Google Scholar]
  5. 5.
    Hogquist KA, Jameson SC. 2014.. The self-obsession of T cells: how TCR signaling thresholds affect fate “decisions” and effector function. . Nat. Immunol. 15:(9):81523
    [Crossref] [Google Scholar]
  6. 6.
    Shinzawa M, Moseman EA, Gossa S, Mano Y, Bhattacharya A, et al. 2022.. Reversal of the T cell immune system reveals the molecular basis for T cell lineage fate determination in the thymus. . Nat. Immunol. 23:(5):73142
    [Crossref] [Google Scholar]
  7. 7.
    Zijlstra M, Bix M, Simister NE, Loring JM, Raulet DH, Jaenisch R. 1990.. β2-Microglobulin deficient mice lack CD48+ cytolytic T cells. . Nature 344:(6268):74246
    [Crossref] [Google Scholar]
  8. 8.
    Cosgrove D, Gray D, Dierich A, Kaufman J, Lemeur M, et al. 1991.. Mice lacking MHC class II molecules. . Cell 66:(5):105166
    [Crossref] [Google Scholar]
  9. 9.
    Grusby MJ, Johnson RS, Papaioannou VE, Glimcher LH. 1991.. Depletion of CD4+ T cells in major histocompatibility complex class II–deficient mice. . Science 253:(5026):141720
    [Crossref] [Google Scholar]
  10. 10.
    Kisielow P, Teh HS, Blüthmann H, von Boehmer H. 1988.. Positive selection of antigen-specific T cells in thymus by restricting MHC molecules. . Nature 335:(6192):73033
    [Crossref] [Google Scholar]
  11. 11.
    Kaye J, Hsu ML, Sauron ME, Jameson SC, Gascoigne NR, Hedrick SM. 1989.. Selective development of CD4+ T cells in transgenic mice expressing a class II MHC–restricted antigen receptor. . Nature 341:(6244):74649
    [Crossref] [Google Scholar]
  12. 12.
    Germain RN. 2002.. T-cell development and the CD4-CD8 lineage decision. . Nat. Rev. Immunol. 2:(5):30922
    [Crossref] [Google Scholar]
  13. 13.
    Singer A, Adoro S, Park J-H. 2008.. Lineage fate and intense debate: myths, models and mechanisms of CD4- versus CD8-lineage choice. . Nat. Rev. Immunol. 8:(10):788801
    [Crossref] [Google Scholar]
  14. 14.
    Robey E, Fowlkes BJ. 1994.. Selective events in T cell development. . Annu. Rev. Immunol. 12::675705
    [Crossref] [Google Scholar]
  15. 15.
    Park J-E, Botting RA, Domínguez Conde C, Popescu D-M, Lavaert M, et al. 2020.. A cell atlas of human thymic development defines T cell repertoire formation. . Science 367:(6480):eaay3224
    [Crossref] [Google Scholar]
  16. 16.
    Chopp LB, Gopalan V, Ciucci T, Ruchinskas A, Rae Z, et al. 2020.. An integrated epigenomic and transcriptomic map of mouse and human αβ T cell development. . Immunity 53:(6):1182201.e8
    [Crossref] [Google Scholar]
  17. 17.
    Vandereyken K, Sifrim A, Thienpont B, Voet T. 2023.. Methods and applications for single-cell and spatial multi-omics. . Nat. Rev. Genet. 24::494515
    [Crossref] [Google Scholar]
  18. 18.
    Argelaguet R, Arnol D, Bredikhin D, Deloro Y, Velten B, et al. 2020.. MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data. . Genome Biol. 21::111
    [Crossref] [Google Scholar]
  19. 19.
    Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, et al. 2021.. Integrated analysis of multimodal single-cell data. . Cell 184:(13):357387.e29
    [Crossref] [Google Scholar]
  20. 20.
    Gayoso A, Steier Z, Lopez R, Regier J, Nazor KL, et al. 2021.. Joint probabilistic modeling of single-cell multi-omic data with totalVI. . Nat. Methods 18:(3):27282
    [Crossref] [Google Scholar]
  21. 21.
    Saelens W, Cannoodt R, Todorov H, Saeys Y. 2019.. A comparison of single-cell trajectory inference methods. . Nat. Biotechnol. 37:(5):54754
    [Crossref] [Google Scholar]
  22. 22.
    Street K, Risso D, Fletcher RB, Das D, Ngai J, et al. 2018.. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. . BMC Genom. 19::477
    [Crossref] [Google Scholar]
  23. 23.
    Setty M, Tadmor MD, Reich-Zeliger S, Angel O, Salame TM, et al. 2016.. Wishbone identifies bifurcating developmental trajectories from single-cell data. . Nat. Biotechnol. 34:(6):63745
    [Crossref] [Google Scholar]
  24. 24.
    Suo C, Polanski K, Dann E, Lindeboom RGH, Vilarrasa-Blasi R, et al. 2024.. Dandelion uses the single-cell adaptive immune receptor repertoire to explore lymphocyte developmental origins. . Nat. Biotechnol. 42::4051
    [Crossref] [Google Scholar]
  25. 25.
    Steier Z, Aylard DA, McIntyre LL, Baldwin I, Yoon Kim EJ, et al. 2023.. Single-cell multiomic analysis of thymocyte development reveals drivers of CD4+ and CD8+ T cell lineage commitment. . Nat. Immunol. 24:(1):157990
    [Crossref] [Google Scholar]
  26. 26.
    Bergen V, Lange M, Peidli S, Wolf FA, Theis FJ. 2020.. Generalizing RNA velocity to transient cell states through dynamical modeling. . Nat. Biotechnol. 38:(12):140814
    [Crossref] [Google Scholar]
  27. 27.
    La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H, et al. 2018.. RNA velocity of single cells. . Nature 560:(7719):49498
    [Crossref] [Google Scholar]
  28. 28.
    Wagner DE, Klein AM. 2020.. Lineage tracing meets single-cell omics: opportunities and challenges. . Nat. Rev. Genet. 21:(7):41027
    [Crossref] [Google Scholar]
  29. 29.
    Chen W, Guillaume-Gentil O, Rainer PY, Gäbelein CG, Saelens W, et al. 2022.. Live-seq enables temporal transcriptomic recording of single cells. . Nature 608:(7924):73340
    [Crossref] [Google Scholar]
  30. 30.
    Erhard F, Saliba A-E, Lusser A, Toussaint C, Hennig T, et al. 2022.. Time-resolved single-cell RNA-seq using metabolic RNA labelling. . Nat. Rev. Methods Primer 2:(1):77
    [Crossref] [Google Scholar]
  31. 31.
    Qiu X, Zhang Y, Martin-Rufino JD, Weng C, Hosseinzadeh S, et al. 2022.. Mapping transcriptomic vector fields of single cells. . Cell 185:(4):690711.e45
    [Crossref] [Google Scholar]
  32. 32.
    Karimi MM, Guo Y, Cui X, Pallikonda HA, Horková V, et al. 2021.. The order and logic of CD4 versus CD8 lineage choice and differentiation in mouse thymus. . Nat. Commun. 12::99
    [Crossref] [Google Scholar]
  33. 33.
    Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay PK, et al. 2017.. Simultaneous epitope and transcriptome measurement in single cells. . Nat. Methods 14:(9):86568
    [Crossref] [Google Scholar]
  34. 34.
    Lundberg K, Heath W, Köntgen F, Carbone FR, Shortman K. 1995.. Intermediate steps in positive selection: differentiation of CD4+8int TCRint thymocytes into CD48+TCRhi thymocytes. . J. Exp. Med. 181:(5):164351
    [Crossref] [Google Scholar]
  35. 35.
    Lucas B, Germain RN. 1996.. Unexpectedly complex regulation of CD4/CD8 coreceptor expression supports a revised model for CD4+CD8+ thymocyte differentiation. . Immunity 5:(5):46177
    [Crossref] [Google Scholar]
  36. 36.
    Suzuki H, Punt JA, Granger LG, Singer A. 1995.. Asymmetric signaling requirements for thymocyte commitment to the CD4+ versus CD8+ T cell lineages: a new perspective on thymic commitment and selection. . Immunity 2:(4):41325
    [Crossref] [Google Scholar]
  37. 37.
    He X, Park K, Wang H, He X, Zhang Y, et al. 2008.. CD4-CD8 lineage commitment is regulated by a silencer element at the ThPOK transcription-factor locus. . Immunity 28:(3):34658
    [Crossref] [Google Scholar]
  38. 38.
    Egawa T, Littman DR. 2008.. ThPOK acts late in specification of the helper T cell lineage and suppresses Runx-mediated commitment to the cytotoxic T cell lineage. . Nat. Immunol. 9:(10):113139
    [Crossref] [Google Scholar]
  39. 39.
    Muroi S, Naoe Y, Miyamoto C, Akiyama K, Ikawa T, et al. 2008.. Cascading suppression of transcriptional silencers by ThPOK seals helper T cell fate. . Nat. Immunol. 9:(10):111321
    [Crossref] [Google Scholar]
  40. 40.
    Kouskoff V, Vonesch J-L, Benoist C, Mathis D. 1995.. The influence of positive selection on RAG expression in thymocytes. . Eur. J. Immunol. 25:(1):5458
    [Crossref] [Google Scholar]
  41. 41.
    Saini M, Sinclair C, Marshall D, Tolaini M, Sakaguchi S, Seddon B. 2010.. Regulation of Zap70 expression during thymocyte development enables temporal separation of CD4 and CD8 repertoire selection at different signaling thresholds. . Sci. Signal. 3::114ra23
    [Crossref] [Google Scholar]
  42. 42.
    Wang L, Wildt KF, Zhu J, Zhang X, Feigenbaum L, et al. 2008.. Distinct functions for the transcription factors GATA-3 and ThPOK during intrathymic differentiation of CD4+ T cells. . Nat. Immunol. 9:(10):112230
    [Crossref] [Google Scholar]
  43. 43.
    He X, He X, Dave VP, Zhang Y, Hua X, et al. 2005.. The zinc finger transcription factor Th-POK regulates CD4 versus CD8 T-cell lineage commitment. . Nature 433:(7028):82633
    [Crossref] [Google Scholar]
  44. 44.
    Sakaguchi S, Hombauer M, Bilic I, Naoe Y, Schebesta A, et al. 2010.. The zinc-finger protein MAZR is part of the transcription factor network that controls the CD4 versus CD8 lineage fate of double-positive thymocytes. . Nat. Immunol. 11:(5):44248
    [Crossref] [Google Scholar]
  45. 45.
    Hogquist KA, Xing Y, Hsu F-C, Shapiro VS. 2015.. T cell adolescence: maturation events beyond positive selection. . J. Immunol. 195:(4):135157
    [Crossref] [Google Scholar]
  46. 46.
    Lucas B, Vasseur F, Penit C. 1993.. Normal sequence of phenotypic transitions in one cohort of 5-bromo-2′-deoxyuridine-pulse-labeled thymocytes. Correlation with T cell receptor expression. . J. Immunol. 151:(9):457482
    [Crossref] [Google Scholar]
  47. 47.
    Lutes LK, Steier Z, McIntyre LL, Pandey S, Kaminski J, et al. 2021.. T cell self-reactivity during thymic development dictates the timing of positive selection. . eLife 10::e65435
    [Crossref] [Google Scholar]
  48. 48.
    Sinclair C, Bains I, Yates AJ, Seddon B. 2013.. Asymmetric thymocyte death underlies the CD4:CD8 T-cell ratio in the adaptive immune system. . PNAS 110:(31):E290514
    [Crossref] [Google Scholar]
  49. 49.
    Itano A, Kioussis D, Robey E. 1994.. Stochastic component to development of class I major histocompatibility complex–specific T cells. . PNAS 91:(1):22024
    [Crossref] [Google Scholar]
  50. 50.
    Davis CB, Killeen N, Crooks ME, Raulet D, Littman DR. 1993.. Evidence for a stochastic mechanism in the differentiation of mature subsets of T lymphocytes. . Cell 73:(2):23747
    [Crossref] [Google Scholar]
  51. 51.
    Matechak EO, Killeen N, Hedrick SM, Fowlkes BJ. 1996.. MHC class II–specific T cells can develop in the CD8 lineage when CD4 is absent. . Immunity 4:(4):33747
    [Crossref] [Google Scholar]
  52. 52.
    Azzam HS, Grinberg A, Lui K, Shen H, Shores EW, Love PE. 1998.. CD5 expression is developmentally regulated by T cell receptor (TCR) signals and TCR avidity. . J. Exp. Med. 188:(12):230111
    [Crossref] [Google Scholar]
  53. 53.
    Azzam HS, DeJarnette JB, Huang K, Emmons R, Park CS, et al. 2001.. Fine tuning of TCR signaling by CD5. . J. Immunol. 166:(9):546472
    [Crossref] [Google Scholar]
  54. 54.
    Kovanen PE, Bernard J, Al-Shami A, Liu C, Bollenbacher-Reilley J, et al. 2008.. T-cell development and function are modulated by dual specificity phosphatase DUSP5. . J. Biol. Chem. 283:(25):1736269
    [Crossref] [Google Scholar]
  55. 55.
    Li Q-J, Chau J, Ebert PJR, Sylvester G, Min H, et al. 2007.. miR-181a is an intrinsic modulator of T cell sensitivity and selection. . Cell 129:(1):14761
    [Crossref] [Google Scholar]
  56. 56.
    Ebert PJR, Jiang S, Xie J, Li Q-J, Davis MM. 2009.. An endogenous positively selecting peptide enhances mature T cell responses and becomes an autoantigen in the absence of microRNA miR-181a. . Nat. Immunol. 10:(11):116269
    [Crossref] [Google Scholar]
  57. 57.
    Lo W-L, Donermeyer DL, Allen PM. 2012.. A voltage-gated sodium channel is essential for the positive selection of CD4+ T cells. . Nat. Immunol. 13:(9):88087
    [Crossref] [Google Scholar]
  58. 58.
    Qiu X, Müller U. 2018.. Mechanically gated ion channels in mammalian hair cells. . Front. Cell. Neurosci. 12::100
    [Crossref] [Google Scholar]
  59. 59.
    Ross JO, Melichar HJ, Au-Yeung BB, Herzmark P, Weiss A, Robey EA. 2014.. Distinct phases in the positive selection of CD8+ T cells distinguished by intrathymic migration and T-cell receptor signaling patterns. . PNAS 111:(25):E255058
    [Crossref] [Google Scholar]
  60. 60.
    Bhakta NR, Oh DY, Lewis RS. 2005.. Calcium oscillations regulate thymocyte motility during positive selection in the three-dimensional thymic environment. . Nat. Immunol. 6:(2):14351
    [Crossref] [Google Scholar]
  61. 61.
    Melichar HJ, Ross JO, Herzmark P, Hogquist KA, Robey EA. 2013.. Distinct temporal patterns of T cell receptor signaling during positive versus negative selection in situ. . Sci. Signal. 6::297ra92
    [Crossref] [Google Scholar]
  62. 62.
    Witt CM, Raychaudhuri S, Schaefer B, Chakraborty AK, Robey EA. 2005.. Directed migration of positively selected thymocytes visualized in real time. . PLOS Biol. 3:(6):e160
    [Crossref] [Google Scholar]
  63. 63.
    Yin X, Ladi E, Chan SW, Li O, Killeen N, et al. 2007.. CCR7 expression in developing thymocytes is linked to the CD4 versus CD8 lineage decision. . J. Immunol. 179:(11):735864
    [Crossref] [Google Scholar]
  64. 64.
    Venables T, Griffith AV, DeAraujo A, Petrie HT. 2019.. Dynamic changes in epithelial cell morphology control thymic organ size during atrophy and regeneration. . Nat. Commun. 10::4402
    [Crossref] [Google Scholar]
  65. 65.
    Lancaster JN, Li Y, Ehrlich LIR. 2018.. Chemokine-mediated choreography of thymocyte development and selection. . Trends Immunol. 39:(2):8698
    [Crossref] [Google Scholar]
  66. 66.
    Le Borgne M, Ladi E, Dzhagalov I, Herzmark P, Liao YF, et al. 2009.. The impact of negative selection on thymocyte migration in the medulla. . Nat. Immunol. 10:(8):82330
    [Crossref] [Google Scholar]
  67. 67.
    Sharp LL, Schwarz DA, Bott CM, Marshall CJ, Hedrick SM. 1997.. The influence of the MAPK pathway on T cell lineage commitment. . Immunity 7:(5):60918
    [Crossref] [Google Scholar]
  68. 68.
    Wilkinson B, Kaye J. 2001.. Requirement for sustained MAPK signaling in both CD4 and CD8 lineage commitment: a threshold model. . Cell. Immunol. 211:(2):8695
    [Crossref] [Google Scholar]
  69. 69.
    Daniels MA, Teixeiro E, Gill J, Hausmann B, Roubaty D, et al. 2006.. Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling. . Nature 444:(7120):72429
    [Crossref] [Google Scholar]
  70. 70.
    McNeil LK, Starr TK, Hogquist KA. 2005.. A requirement for sustained ERK signaling during thymocyte positive selection in vivo. . PNAS 102:(38):1357479
    [Crossref] [Google Scholar]
  71. 71.
    Webb LV, Ley SC, Seddon B. 2016.. TNF activation of NF-κB is essential for development of single-positive thymocytes. . J. Exp. Med. 213:(8):1399407
    [Crossref] [Google Scholar]
  72. 72.
    Webb LV, Barbarulo A, Huysentruyt J, Vanden Berghe T, Takahashi N, et al. 2019.. Survival of single positive thymocytes depends upon developmental control of RIPK1 kinase signaling by the IKK complex independent of NF-κB. . Immunity 50:(2):34861.e4
    [Crossref] [Google Scholar]
  73. 73.
    Xing Y, Wang X, Jameson SC, Hogquist KA. 2016.. Late stages of T cell maturation in the thymus involve NF-κB and tonic type I interferon signaling. . Nat. Immunol. 17:(5):56573
    [Crossref] [Google Scholar]
  74. 74.
    Hogan PG, Lewis RS, Rao A. 2010.. Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. . Annu. Rev. Immunol. 28::491533
    [Crossref] [Google Scholar]
  75. 75.
    Oh-Hora M, Komatsu N, Pishyareh M, Feske S, Hori S, et al. 2013.. Agonist-selected T cell development requires strong T cell receptor signaling and store-operated calcium entry. . Immunity 38:(5):88195
    [Crossref] [Google Scholar]
  76. 76.
    Gao EK, Lo D, Cheney R, Kanagawa O, Sprent J. 1988.. Abnormal differentiation of thymocytes in mice treated with cyclosporin A. . Nature 336:(6195):17679
    [Crossref] [Google Scholar]
  77. 77.
    Jenkins MK, Schwartz RH, Pardoll DM. 1988.. Effects of cyclosporine A on T cell development and clonal deletion. . Science 241:(4873):165558
    [Crossref] [Google Scholar]
  78. 78.
    Wang CR, Hashimoto K, Kubo S, Yokochi T, Kubo M, et al. 1995.. T cell receptor–mediated signaling events in CD4+CD8+ thymocytes undergoing thymic selection: requirement of calcineurin activation for thymic positive selection but not negative selection. . J. Exp. Med. 181:(3):92741
    [Crossref] [Google Scholar]
  79. 79.
    Gallo EM, Winslow MM, Canté-Barrett K, Radermacher AN, Ho L, et al. 2007.. Calcineurin sets the bandwidth for discrimination of signals during thymocyte development. . Nature 450:(7170):73135
    [Crossref] [Google Scholar]
  80. 80.
    Sun G, Liu X, Mercado P, Jenkinson SR, Kypriotou M, et al. 2005.. The zinc finger protein cKrox directs CD4 lineage differentiation during intrathymic T cell positive selection. . Nat. Immunol. 6:(4):37381
    [Crossref] [Google Scholar]
  81. 81.
    Wildt KF, Sun G, Grueter B, Fischer M, Zamisch M, et al. 2007.. The transcription factor Zbtb7b promotes CD4 expression by antagonizing Runx-mediated activation of the CD4 silencer. . J. Immunol. 179:(7):440514
    [Crossref] [Google Scholar]
  82. 82.
    Taniuchi I, Osato M, Egawa T, Sunshine MJ, Bae SC, et al. 2002.. Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. . Cell 111:(5):62133
    [Crossref] [Google Scholar]
  83. 83.
    Woolf E, Xiao C, Fainaru O, Lotem J, Rosen D, et al. 2003.. Runx3 and Runx1 are required for CD8 T cell development during thymopoiesis. . PNAS 100:(13):773136
    [Crossref] [Google Scholar]
  84. 84.
    He X, Park K, Kappes DJ. 2010.. The role of ThPOK in control of CD4/CD8 lineage commitment. . Annu. Rev. Immunol. 28::295320
    [Crossref] [Google Scholar]
  85. 85.
    Xiong Y, Bosselut R. 2012.. CD4–CD8 differentiation in the thymus: connecting circuits and building memories. . Curr. Opin. Immunol. 24:(2):13945
    [Crossref] [Google Scholar]
  86. 86.
    Ellmeier W, Haust L, Tschismarov R. 2013.. Transcriptional control of CD4 and CD8 coreceptor expression during T cell development. . Cell. Mol. Life Sci. 70:(23):453753
    [Crossref] [Google Scholar]
  87. 87.
    Hernández-Hoyos G, Anderson MK, Wang C, Rothenberg EV, Alberola-Ila J. 2003.. GATA-3 expression is controlled by TCR signals and regulates CD4/CD8 differentiation. . Immunity 19:(1):8394
    [Crossref] [Google Scholar]
  88. 88.
    Aliahmad P, O'Flaherty E, Han P, Goularte OD, Wilkinson B, et al. 2004.. TOX provides a link between calcineurin activation and CD8 lineage commitment. . J. Exp. Med. 199:(8):108999
    [Crossref] [Google Scholar]
  89. 89.
    Huang YH, Li D, Winoto A, Robey EA. 2004.. Distinct transcriptional programs in thymocytes responding to T cell receptor, Notch, and positive selection signals. . PNAS 101:(14):493641
    [Crossref] [Google Scholar]
  90. 90.
    Maurice D, Hooper J, Lang G, Weston K. 2007.. c-Myb regulates lineage choice in developing thymocytes via its target gene Gata3. . EMBO J. 26:(15):362940
    [Crossref] [Google Scholar]
  91. 91.
    Xiong Y, Castro E, Yagi R, Zhu J, Lesourne R, et al. 2013.. Thpok-independent repression of Runx3 by Gata3 during CD4+ T-cell differentiation in the thymus. . Eur. J. Immunol. 43:(4):91828
    [Crossref] [Google Scholar]
  92. 92.
    Hendriks RW, Nawijn MC, Engel JD, van Doorninck H, Grosveld F, Karis A. 1999.. Expression of the transcription factor GATA-3 is required for the development of the earliest T cell progenitors and correlates with stages of cellular proliferation in the thymus. . Eur. J. Immunol. 29:(6):191218
    [Crossref] [Google Scholar]
  93. 93.
    Gimferrer I, Hu T, Simmons A, Wang C, Souabni A, et al. 2011.. Regulation of GATA-3 expression during CD4 lineage differentiation. . J. Immunol. 186:(7):389298
    [Crossref] [Google Scholar]
  94. 94.
    Staal FJT, Clevers HC. 2003.. Wnt signaling in the thymus. . Curr. Opin. Immunol. 15:(2):2048
    [Crossref] [Google Scholar]
  95. 95.
    Steinke FC, Yu S, Zhou X, He B, Yang W, et al. 2014.. TCF-1 and LEF-1 act upstream of Th-POK to promote the CD4+ T cell fate and interact with Runx3 to silence CD4 in CD8+ T cells. . Nat. Immunol. 15:(7):64656
    [Crossref] [Google Scholar]
  96. 96.
    Aliahmad P, Kaye J. 2008.. Development of all CD4 T lineages requires nuclear factor TOX. . J. Exp. Med. 205:(1):24556
    [Crossref] [Google Scholar]
  97. 97.
    Aliahmad P, Kadavallore A, de la Torre B, Kappes D, Kaye J. 2011.. TOX is required for development of the CD4 T cell lineage gene program. . J. Immunol. 187:(11):593140
    [Crossref] [Google Scholar]
  98. 98.
    Basu J, Zha J, Nicolas E, Coulton M, Czyzewicz P, et al. 2022.. An autonomous TCR signal-sensing switch influences CD4/CD8 lineage choice in mice. . Commun. Biol. 5::84
    [Crossref] [Google Scholar]
  99. 99.
    Sato T, Ohno S, Hayashi T, Sato C, Kohu K, et al. 2005.. Dual functions of Runx proteins for reactivating CD8 and silencing CD4 at the commitment process into CD8 thymocytes. . Immunity 22:(3):31728
    [Crossref] [Google Scholar]
  100. 100.
    Sakaguchi S, Hainberger D, Tizian C, Tanaka H, Okuda T, et al. 2015.. MAZR and Runx factors synergistically repress ThPOK during CD8+ T cell lineage development. . J. Immunol. 195:(6):287987
    [Crossref] [Google Scholar]
  101. 101.
    Hwang S, Lee C, Park K, Oh S, Jeon S, et al. 2020.. Twist2 promotes CD8+ T-cell differentiation by repressing ThPOK expression. . Cell Death Differ. 27:(11):305364
    [Crossref] [Google Scholar]
  102. 102.
    Au-Yeung BB, Melichar HJ, Ross JO, Cheng DA, Zikherman J, et al. 2014.. Quantitative and temporal requirements revealed for Zap70 catalytic activity during T cell development. . Nat. Immunol. 15:(7):68794
    [Crossref] [Google Scholar]
  103. 103.
    Kisielow P, Miazek A. 1995.. Positive selection of T cells: rescue from programmed cell death and differentiation require continual engagement of the T cell receptor. . J. Exp. Med. 181:(6):197584
    [Crossref] [Google Scholar]
  104. 104.
    Sinclair C, Seddon B. 2014.. Overlapping and asymmetric functions of TCR signaling during thymic selection of CD4 and CD8 lineages. . J. Immunol. 192:(11):515159
    [Crossref] [Google Scholar]
  105. 105.
    Liu X, Bosselut R. 2004.. Duration of TCR signaling controls CD4–CD8 lineage differentiation in vivo. . Nat. Immunol. 5:(3):28088
    [Crossref] [Google Scholar]
  106. 106.
    Park J-H, Adoro S, Guinter T, Erman B, Alag AS, et al. 2010.. Signaling by intrathymic cytokines, not T cell antigen receptors, specifies CD8 lineage choice and promotes the differentiation of cytotoxic-lineage T cells. . Nat. Immunol. 11:(3):25764
    [Crossref] [Google Scholar]
  107. 107.
    Etzensperger R, Kadakia T, Tai X, Alag A, Guinter TI, et al. 2017.. Identification of lineage-specifying cytokines that signal all CD8+-cytotoxic-lineage-fate “decisions” in the thymus. . Nat. Immunol. 18:(11):121827
    [Crossref] [Google Scholar]
  108. 108.
    McCaughtry TM, Etzensperger R, Alag A, Tai X, Kurtulus S, et al. 2012.. Conditional deletion of cytokine receptor chains reveals that IL-7 and IL-15 specify CD8 cytotoxic lineage fate in the thymus. . J. Exp. Med. 209:(12):226376
    [Crossref] [Google Scholar]
  109. 109.
    Zamisch M, Tian L, Grenningloh R, Xiong Y, Wildt KF, et al. 2009.. The transcription factor Ets1 is important for CD4 repression and Runx3 up-regulation during CD8 T cell differentiation in the thymus. . J. Exp. Med. 206:(12):268599
    [Crossref] [Google Scholar]
  110. 110.
    Kakugawa K, Kojo S, Tanaka H, Seo W, Endo TA, et al. 2017.. Essential roles of SATB1 in specifying T lymphocyte subsets. . Cell Rep. 19:(6):117688
    [Crossref] [Google Scholar]
  111. 111.
    Xing S, Li F, Zeng Z, Zhao Y, Yu S, et al. 2016.. Tcf1 and Lef1 transcription factors establish CD8+ T cell identity through intrinsic HDAC activity. . Nat. Immunol. 17::695703
    [Crossref] [Google Scholar]
  112. 112.
    Belle I, Zhuang Y. 2014.. E proteins in lymphocyte development and lymphoid diseases. . Curr. Top. Dev. Biol. 110::15387
    [Crossref] [Google Scholar]
  113. 113.
    Benezra R, Davis RL, Lockshon D, Turner DL, Weintraub H. 1990.. The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. . Cell 61:(1):4959
    [Crossref] [Google Scholar]
  114. 114.
    Jones-Mason ME, Zhao X, Kappes D, Lasorella A, Iavarone A, Zhuang Y. 2012.. E protein transcription factors are required for the development of CD4+ lineage T cells. . Immunity 36:(3):34861
    [Crossref] [Google Scholar]
  115. 115.
    Jones ME, Zhuang Y. 2007.. Acquisition of a functional T cell receptor during T lymphocyte development is enforced by HEB and E2A transcription factors. . Immunity 27:(6):86070
    [Crossref] [Google Scholar]
  116. 116.
    Robey EA, Fowlkes BJ, Pardoll DM. 1990.. Molecular mechanisms for lineage commitment in T cell development. . Semin. Immunol. 2:(1):2534
    [Google Scholar]
  117. 117.
    Robey EA, Fowlkes BJ, Gordon JW, Kioussis D, von Boehmer H, et al. 1991.. Thymic selection in CD8 transgenic mice supports an instructive model for commitment to a CD4 or CD8 lineage. . Cell 64:(1):99107
    [Crossref] [Google Scholar]
  118. 118.
    Borgulya P, Kishi H, Müller U, Kirberg J, von Boehmer H. 1991.. Development of the CD4 and CD8 lineage of T cells: instruction versus selection. . EMBO J. 10:(4):91318
    [Crossref] [Google Scholar]
  119. 119.
    Ellmeier W, Sunshine MJ, Losos K, Littman DR. 1998.. Multiple developmental stage-specific enhancers regulate CD8 expression in developing thymocytes and in thymus-independent T cells. . Immunity 9:(4):48596
    [Crossref] [Google Scholar]
  120. 120.
    Sarafova SD, Erman B, Yu Q, Van Laethem F, Guinter T, et al. 2005.. Modulation of coreceptor transcription during positive selection dictates lineage fate independently of TCR/coreceptor specificity. . Immunity 23:(1):7587
    [Crossref] [Google Scholar]
  121. 121.
    Yasutomo K, Doyle C, Miele L, Fuchs C, Germain RN. 2000.. The duration of antigen receptor signalling determines CD4+ versus CD8+ T-cell lineage fate. . Nature 404:(6777):50610
    [Crossref] [Google Scholar]
  122. 122.
    Robey E, Itano A, Fanslow WC, Fowlkes BJ. 1994.. Constitutive CD8 expression allows inefficient maturation of CD4+ helper T cells in class II major histocompatibility complex mutant mice. . J. Exp. Med. 179:(6):19972004
    [Crossref] [Google Scholar]
  123. 123.
    Kojo S, Ohno-Oishi M, Wada H, Nieke S, Seo W, et al. 2020.. Constitutive CD8 expression drives innate CD8+ T-cell differentiation via induction of iNKT2 cells. . Life Sci. Alliance 3:(2):e202000642
    [Crossref] [Google Scholar]
  124. 124.
    Chan S, Waltzinger C, Tarakhovsky A, Benoist C, Mathis D. 1999.. An influence of CD5 on the selection of CD4-lineage T cells. . Eur. J. Immunol. 29:(9):291622
    [Crossref] [Google Scholar]
  125. 125.
    Fulton RB, Hamilton SE, Xing Y, Best JA, Goldrath AW, et al. 2014.. The TCR's sensitivity to self peptide–MHC dictates the ability of naive CD8+ T cells to respond to foreign antigens. . Nat. Immunol. 16:(1):10717
    [Crossref] [Google Scholar]
  126. 126.
    Mandl JN, Monteiro JP, Vrisekoop N, Germain RN. 2013.. T cell–positive selection uses self-ligand binding strength to optimize repertoire recognition of foreign antigens. . Immunity 38:(2):26374
    [Crossref] [Google Scholar]
  127. 127.
    Persaud SP, Parker CR, Lo W-L, Weber KS, Allen PM. 2014.. Intrinsic CD4+ T cell sensitivity and response to a pathogen are set and sustained by avidity for thymic and peripheral complexes of self peptide and MHC. . Nat. Immunol. 15:(3):26674
    [Crossref] [Google Scholar]
  128. 128.
    Pircher H, Ohashi PS, Boyd RL, Hengartner H, Brduscha K. 1994.. Evidence for a selective and multi-step model of T cell differentiation: CD4+CD8low thymocytes selected by a transgenic T cell receptor on major histocompatibility complex class I molecules. . Eur. J. Immunol. 24:(9):198287
    [Crossref] [Google Scholar]
  129. 129.
    Moran AE, Holzapfel KL, Xing Y, Cunningham NR, Maltzman JS, et al. 2011.. T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. . J. Exp. Med. 208:(6):127989
    [Crossref] [Google Scholar]
  130. 130.
    Seong RH, Chamberlain JW, Parnes JR. 1992.. Signal for T-cell differentiation to a CD4 cell lineage is delivered by CD4 transmembrane region and/or cytoplasmic tail. . Nature 356:(6371):71820
    [Crossref] [Google Scholar]
  131. 131.
    Itano A, Salmon P, Kioussis D, Tolaini M, Corbella P, Robey E. 1996.. The cytoplasmic domain of CD4 promotes the development of CD4 lineage T cells. . J. Exp. Med. 183:(3):73141
    [Crossref] [Google Scholar]
  132. 132.
    Chan S, Correia-Neves M, Dierich A, Benoist C, Mathis D. 1998.. Visualization of CD4/CD8 T cell commitment. . J. Exp. Med. 188:(12):232133
    [Crossref] [Google Scholar]
  133. 133.
    Kimura MY, Thomas J, Tai X, Guinter TI, Shinzawa M, et al. 2016.. Timing and duration of MHC I positive selection signals are adjusted in the thymus to prevent lineage errors. . Nat. Immunol. 17:(12):141523
    [Crossref] [Google Scholar]
  134. 134.
    Bosselut R, Feigenbaum L, Sharrow SO, Singer A. 2001.. Strength of signaling by CD4 and CD8 coreceptor tails determines the number but not the lineage direction of positively selected thymocytes. . Immunity 14:(4):48394
    [Crossref] [Google Scholar]
  135. 135.
    Erman B, Alag AS, Dahle O, van Laethem F, Sarafova SD, et al. 2006.. Coreceptor signal strength regulates positive selection but does not determine CD4/CD8 lineage choice in a physiologic in vivo model. . J. Immunol. 177:(10):661325
    [Crossref] [Google Scholar]
  136. 136.
    Baron A, Hafen K, von Boehmer H. 1994.. A human CD4 transgene rescues CD4CD8+ cells in β2-microglobulin–deficient mice. . Eur. J. Immunol. 24:(8):193336
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-immunol-083122-040929
Loading
/content/journals/10.1146/annurev-immunol-083122-040929
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error