1932

Abstract

The immune system and the kidneys are closely related. Immune components mediate acute kidney disease and are crucial to the progression of chronic kidney disease. Beyond its pathogenic functions, the immune system supports immunological homeostasis in healthy kidneys. The kidneys help maintain immune equilibrium by removing metabolic waste products and toxins, thereby limiting local and systemic inflammation. In this review, we describe the close relationship between the immune system and the kidneys. We discuss how the imbalance in the immune response can be deleterious to the kidneys and how immunomodulation can be important in preventing end-stage renal disease. In addition, recent tools such as in silico platforms and kidney organoids can help unveil the relationship between immune cells and kidney homeostasis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-090122-045843
2024-06-28
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/immunol/42/1/annurev-immunol-090122-045843.html?itemId=/content/journals/10.1146/annurev-immunol-090122-045843&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Cochrane CG, Unanue ER, Dixon FJ. 1965.. A role of polymorphonuclear leukocytes and complement in nephrotoxic nephritis. . J. Exp. Med. 122::99116
    [Crossref] [Google Scholar]
  2. 2.
    Atkins RC, Glasgow EF, Holdsworth SR, Matthews FE. 1976.. The macrophage in human rapidly progressive glomerulonephritis. . Lancet 307::83032
    [Crossref] [Google Scholar]
  3. 3.
    Holdsworth SR, Thomson NM, Glasgow EF, Dowling JP, Atkins RC. 1978.. Tissue culture of isolated glomeruli in experimental crescentic glomerulonephritis. . J. Exp. Med. 147::98109
    [Crossref] [Google Scholar]
  4. 4.
    Nolasco FEB, Cameron JS, Hartley B, Coelho A, Hildreth G, Reuben R. 1987.. Intraglomerular T cells and monocytes in nephritis: study with monoclonal antibodies. . Kidney Int. 31::116066
    [Crossref] [Google Scholar]
  5. 5.
    Hahn BH, Knotts LL. 1979.. Alteration of lymphocyte function in NZB/NZW mice. IV. Response to levamisole. . Arthritis Rheum. 22::23642
    [Crossref] [Google Scholar]
  6. 6.
    Doll NJ, Wilson MR, Salvaggio JE. 1980.. Inhibition of polymorphonuclear leukocyte chemiluminescence for detection of immune complexes in human sera. . J. Clin. Investig. 66::45764
    [Crossref] [Google Scholar]
  7. 7.
    Scholz H, Boivin FJ, Schmidt-Ott KM, Bachmann S, Eckardt KU, et al. 2021.. Kidney physiology and susceptibility to acute kidney injury: implications for renoprotection. . Nat. Rev. Nephrol. 17::33549
    [Crossref] [Google Scholar]
  8. 8.
    Zeisberg M, Kalluri R. 2015.. Physiology of the renal interstitium. . Clin. J. Am. Soc. Nephrol. 10::183140
    [Crossref] [Google Scholar]
  9. 9.
    Stewart BJ, Ferdinand JR, Young MD, Mitchell TJ, Loudon KW, et al. 2019.. Spatiotemporal immune zonation of the human kidney. . Science 365::146166
    [Crossref] [Google Scholar]
  10. 10.
    Tecklenborg J, Clayton D, Siebert S, Coley SM. 2018.. The role of the immune system in kidney disease. . Clin. Exp. Immunol. 192::14250
    [Crossref] [Google Scholar]
  11. 11.
    Kurts C, Panzer U, Anders HJ, Rees AJ. 2013.. The immune system and kidney disease: basic concepts and clinical implications. . Nat. Rev. Immunol. 13::73853
    [Crossref] [Google Scholar]
  12. 12.
    Tecklenborg J, Clayton D, Siebert S, Coley SM. 2018.. The role of the immune system in kidney disease. . Clin. Exp. Immunol. 192::14250
    [Crossref] [Google Scholar]
  13. 13.
    Rogers NM, Ferenbach DA, Isenberg JS, Thomson AW, Hughes J. 2014.. Dendritic cells and macrophages in the kidney: a spectrum of good and evil. . Nat. Rev. Nephrol. 10::62543
    [Crossref] [Google Scholar]
  14. 14.
    Leemans JC, Kors L, Anders HJ, Florquin S. 2014.. Pattern recognition receptors and the inflammasome in kidney disease. . Nat. Rev. Nephrol. 10::398414
    [Crossref] [Google Scholar]
  15. 15.
    Gupta S, Kaplan MJ. 2016.. The role of neutrophils and NETosis in autoimmune and renal diseases. . Nat. Rev. Nephrol. 12::40213
    [Crossref] [Google Scholar]
  16. 16.
    Law BMP, Wilkinson R, Wang X, Kildey K, Lindner M, et al. 2017.. Interferon-γ production by tubulointerstitial human CD56bright natural killer cells contributes to renal fibrosis and chronic kidney disease progression. . Kidney Int. 92::7988
    [Crossref] [Google Scholar]
  17. 17.
    Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, et al. 1997.. CD1d-restricted and TCR-mediated activation of vα14 NKT cells by glycosylceramides. . Science 278::162629
    [Crossref] [Google Scholar]
  18. 18.
    Uchida T, Ito S, Kumagai H, Oda T, Nakashima H, Seki S. 2019.. Roles of natural killer T cells and natural killer cells in kidney injury. . Int. J. Mol. Sci. 20::2487
    [Crossref] [Google Scholar]
  19. 19.
    Suárez-Fueyo A, Bradley SJ, Klatzmann D, Tsokos GC. 2017.. T cells and autoimmune kidney disease. . Nat. Rev. Nephrol. 13::32943
    [Crossref] [Google Scholar]
  20. 20.
    Mehrotra P, Sturek M, Neyra JA, Basile DP. 2019.. Calcium channel Orai1 promotes lymphocyte IL-17 expression and progressive kidney injury. . J. Clin. Investig. 129::495161
    [Crossref] [Google Scholar]
  21. 21.
    Braga TT, Correa-Costa M, Guise YFS, Castoldi A, de Oliveira CD, et al. 2012.. MyD88 signaling pathway is involved in renal fibrosis by favoring a TH2 immune response and activating alternative M2 macrophages. . Mol. Med. 18::123139
    [Crossref] [Google Scholar]
  22. 22.
    Hu M, Wang YM, Wang Y, Zhang GY, Zheng G, et al. 2016.. Regulatory T cells in kidney disease and transplantation. . Kidney Int. 90::50214
    [Crossref] [Google Scholar]
  23. 23.
    Chang J, Eggenhuizen P, O'Sullivan KM, Alikhan MA, Holdsworth SR, et al. 2017.. CD8+ T cells effect glomerular injury in experimental anti-myeloperoxidase GN. . J. Am. Soc. Nephrol. 28::4755
    [Crossref] [Google Scholar]
  24. 24.
    Zhou M, Guo C, Li X, Huang Y, Li M, et al. 2020.. JAK/STAT signaling controls the fate of CD8+CD103+ tissue-resident memory T cell in lupus nephritis. . J. Autoimmun. 109::102424
    [Crossref] [Google Scholar]
  25. 25.
    Inaba A, Tuong ZK, Riding AM, Mathews RJ, Martin JL, et al. 2020.. B lymphocyte–derived CCL7 augments neutrophil and monocyte recruitment, exacerbating acute kidney injury. . J. Immunol. 205::137684
    [Crossref] [Google Scholar]
  26. 26.
    Han H, Zhu J, Wang Y, Zhu Z, Chen Y, et al. 2017.. Renal recruitment of B lymphocytes exacerbates tubulointerstitial fibrosis by promoting monocyte mobilization and infiltration after unilateral ureteral obstruction. . J. Pathol. 241::8090
    [Crossref] [Google Scholar]
  27. 27.
    Oleinika K, Mauri C, Salama AD. 2018.. Effector and regulatory B cells in immune-mediated kidney disease. . Nat. Rev. Nephrol. 15::1126
    [Crossref] [Google Scholar]
  28. 28.
    Summers SA, Chan J, Gan PY, Dewage L, Nozaki Y, et al. 2011.. Mast cells mediate acute kidney injury through the production of TNF. . J. Am. Soc. Nephrol. 22::222636
    [Crossref] [Google Scholar]
  29. 29.
    Law BM, Wilkinson R, Wang X, Kildey K, Lindner M, et al. 2019.. Effector γδ T cells in human renal fibrosis and chronic kidney disease. . Nephrol. Dial. Transplant. 34::4048
    [Crossref] [Google Scholar]
  30. 30.
    Huang Q, Niu Z, Tan J, Yang J, Liu Y, et al. 2015.. IL-25 elicits innate lymphoid cells and multipotent progenitor type 2 cells that reduce renal ischemic/reperfusion injury. . J. Am. Soc. Nephrol. 26::2199211
    [Crossref] [Google Scholar]
  31. 31.
    Bell RD, Keyl MJ, Shrader FR, Jones EW, Henry LP. 1968.. Renal lymphatics: the internal distribution. . Nephron 5::45463
    [Crossref] [Google Scholar]
  32. 32.
    Pei G, Yao Y, Yang Q, Wang M, Wang Y, et al. 2019.. Lymphangiogenesis in kidney and lymph node mediates renal inflammation and fibrosis. . Sci. Adv. 5::eaaw5075
    [Crossref] [Google Scholar]
  33. 33.
    Hellberg PO, Kallskog TO. 1989.. Neutrophil-mediated post-ischemic tubular leakage in the rat kidney. . Kidney Int. 36::55561
    [Crossref] [Google Scholar]
  34. 34.
    Castoldi A, Braga TT, Correa-Costa M, Aguiar CF, Bassi Ê, et al. 2012.. TLR2, TLR4 and the MYD88 signaling pathway are crucial for neutrophil migration in acute kidney injury induced by sepsis. . PLOS ONE 7::e37584
    [Crossref] [Google Scholar]
  35. 35.
    Jo SK, Sung SA, Cho WY, Go KJ, Kim HK. 2006.. Macrophages contribute to the initiation of ischaemic acute renal failure in rats. . Nephrol. Dial. Transplant. 21::123139
    [Crossref] [Google Scholar]
  36. 36.
    Bonventre JV, Weinberg JM. 2003.. Recent advances in the pathophysiology of ischemic acute renal failure. . J. Am. Soc. Nephrol. 14::2199210
    [Crossref] [Google Scholar]
  37. 37.
    Leemans JC, Stokman G, Claessen N, Rouschop KM, Teske GJ, et al. 2005.. Renal-associated TLR2 mediates ischemia/reperfusion injury in the kidney. . J. Clin. Investig. 115::2894903
    [Crossref] [Google Scholar]
  38. 38.
    Wu H, Chen G, Wyburn KR, Yin J, Bertolino P, et al. 2007.. TLR4 activation mediates kidney ischemia/reperfusion injury. . J. Clin. Investig. 117::284759
    [Crossref] [Google Scholar]
  39. 39.
    Zheng Z, Xu K, Li C, Qi C, Fang Y, et al. 2021.. NLRP3 associated with chronic kidney disease progression after ischemia/reperfusion-induced acute kidney injury. . Cell Death Discov. 7::324
    [Crossref] [Google Scholar]
  40. 40.
    Andrade-Oliveira V, Amano MT, Correa-Costa M, Castoldi A, Felizardo RJ, et al. 2015.. Gut bacteria products prevent AKI induced by ischemia-reperfusion. . J. Am. Soc. Nephrol. 26::187788
    [Crossref] [Google Scholar]
  41. 41.
    Andrade-Oliveira V, Foresto-Neto O, Watanabe IKM, Zatz R, Câmara NOS. 2019.. Inflammation in renal diseases: new and old players. . Front. Pharmacol. 10::1192
    [Crossref] [Google Scholar]
  42. 42.
    O'Neill LA, Bowie AG. 2007.. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. . Nat. Rev. Immunol. 7::35364
    [Crossref] [Google Scholar]
  43. 43.
    Qiu Y, Wu Y, Zhao H, Sun H, Gao S. 2019.. Maresin 1 mitigates renal ischemia/reperfusion injury in mice via inhibition of the TLR4/MAPK/NF-κB pathways and activation of the Nrf2 pathway. . Drug Des. Dev. Ther. 13::73945
    [Crossref] [Google Scholar]
  44. 44.
    Meng X, Wei M, Wang D, Qu X, Zhang K, et al. 2020.. The protective effect of hesperidin against renal ischemia-reperfusion injury involves the TLR-4/NF-κB/iNOS pathway in rats. . Physiol. Int. 107::8291
    [Crossref] [Google Scholar]
  45. 45.
    Liu M, Gu M, Xu D, Lv Q, Zhang W, Wu Y. 2010.. Protective effects of Toll-like receptor 4 inhibitor eritoran on renal ischemia-reperfusion injury. . Transplant. Proc. 42::153944
    [Crossref] [Google Scholar]
  46. 46.
    Andrade-Silva M, Cenedeze MA, Perandini LA, Felizardo RJF, Watanabe IKM, et al. 2018.. TLR2 and TLR4 play opposite role in autophagy associated with cisplatin-induced acute kidney injury. . Clin. Sci. 132::172539
    [Crossref] [Google Scholar]
  47. 47.
    Fu J, Wu H. 2023.. Structural mechanisms of NLRP3 inflammasome assembly and activation. . Annu. Rev. Immunol. 41::30116
    [Crossref] [Google Scholar]
  48. 48.
    Kanneganti TD. 2010.. Central roles of NLRs and inflammasomes in viral infection. . Nat. Rev. Immunol. 10::68898
    [Crossref] [Google Scholar]
  49. 49.
    Komada T, Muruve DA. 2019.. The role of inflammasomes in kidney disease. . Nat. Rev. Nephrol. 15::50120
    [Crossref] [Google Scholar]
  50. 50.
    Iyer SS, Pulskens WP, Sadler JJ, Butter LM, Teske GJ, et al. 2009.. Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. . PNAS 106::2038893
    [Crossref] [Google Scholar]
  51. 51.
    Mulay SR, Kulkarni OP, Rupanagudi KV, Migliorini A, Darisipudi MN, et al. 2013.. Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1β secretion. . J. Clin. Investig. 123::23646
    [Crossref] [Google Scholar]
  52. 52.
    Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J. 2006.. Gout-associated uric acid crystals activate the NALP3 inflammasome. . Nature 440::23741
    [Crossref] [Google Scholar]
  53. 53.
    Xiao J, Zhang XL, Fu C, Han R, Chen W, et al. 2015.. Soluble uric acid increases NALP3 inflammasome and interleukin-1β expression in human primary renal proximal tubule epithelial cells through the Toll-like receptor 4–mediated pathway. . Int. J. Mol. Med. 35::134754
    [Crossref] [Google Scholar]
  54. 54.
    Braga TT, Forni MF, Correa-Costa M, Ramos RN, Barbuto JA, et al. 2017.. Soluble uric acid activates the NLRP3 inflammasome. . Sci. Rep. 7::39884
    [Crossref] [Google Scholar]
  55. 55.
    Thurman JM, Lucia MS, Ljubanovic D, Holers VM. 2005.. Acute tubular necrosis is characterized by activation of the alternative pathway of complement. . Kidney Int. 67::52430
    [Crossref] [Google Scholar]
  56. 56.
    Thurman JM, Ljubanovic D, Edelstein CL, Gilkeson GS, Holers VM. 2003.. Lack of a functional alternative complement pathway ameliorates ischemic acute renal failure in mice. . J. Immunol. 170::151723
    [Crossref] [Google Scholar]
  57. 57.
    Stein JH, Osgood RW, Barnes JL, Reineck HJ, Pinckard RN, McManus LM. 1985.. The role of complement in the pathogenesis of postischemic acute renal failure. . Miner. Electrolyte Metab. 11::25661
    [Google Scholar]
  58. 58.
    de Vries B, Walter SJ, Peutz-Kootstra CJ, Wolfs TG, van Heurn LW, Buurman WA. 2004.. The mannose-binding lectin pathway is involved in complement activation in the course of renal ischemia-reperfusion injury. . Am. J. Pathol. 165::167788
    [Crossref] [Google Scholar]
  59. 59.
    Brown KM, Sacks SH, Sheerin NS. 2007.. Mechanisms of disease: the complement system in renal injury—new ways of looking at an old foe. . Nat. Clin. Pract. Nephrol. 3::27786
    [Crossref] [Google Scholar]
  60. 60.
    McCullough JW, Renner B, Thurman JM. 2013.. The role of the complement system in acute kidney injury. . Semin. Nephrol. 33::54356
    [Crossref] [Google Scholar]
  61. 61.
    Zhou W, Farrar CA, Abe K, Pratt JR, Marsh JE, et al. 2000.. Predominant role for C5b-9 in renal ischemia/reperfusion injury. . J. Clin. Investig. 105::136371
    [Crossref] [Google Scholar]
  62. 62.
    Danobeitia JS, Ziemelis M, Ma X, Zitur LJ, Zens T, et al. 2017.. Complement inhibition attenuates acute kidney injury after ischemia-reperfusion and limits progression to renal fibrosis in mice. . PLOS ONE 12::e0183701
    [Crossref] [Google Scholar]
  63. 63.
    Burne MJ, Daniels F, El Ghandour A, Mauiyyedi S, Colvin RB, et al. 2001.. Identification of the CD4+ T cell as a major pathogenic factor in ischemic acute renal failure. . J. Clin. Investig. 108::128390
    [Crossref] [Google Scholar]
  64. 64.
    Akcay A, Nguyen Q, He Z, Turkmen K, Won Lee D, et al. 2011.. IL-33 exacerbates acute kidney injury. . J. Am. Soc. Nephrol. 22::205767
    [Crossref] [Google Scholar]
  65. 65.
    Yokota N, Burne-Taney M, Racusen L, Rabb H. 2003.. Contrasting roles for STAT4 and STAT6 signal transduction pathways in murine renal ischemia-reperfusion injury. . Am. J. Physiol. Renal Physiol. 285::F31925
    [Crossref] [Google Scholar]
  66. 66.
    Jang HR, Gandolfo MT, Ko GJ, Satpute SR, Racusen L, Rabb H. 2010.. B cells limit repair after ischemic acute kidney injury. . J. Am. Soc. Nephrol. 21::65465
    [Crossref] [Google Scholar]
  67. 67.
    Inaba A, Tuong ZK, Riding AM, Mathews RJ, Martin JL, et al. 2020.. B lymphocyte–derived CCL7 augments neutrophil and monocyte recruitment, exacerbating acute kidney injury. . J. Immunol. 205::137684
    [Crossref] [Google Scholar]
  68. 68.
    Burne-Taney MJ, Yokota-Ikeda N, Rabb H. 2005.. Effects of combined T- and B-cell deficiency on murine ischemia reperfusion injury. . Am. J. Transplant. 5::118693
    [Crossref] [Google Scholar]
  69. 69.
    Collaboration GBDCKD. 2020.. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. . Lancet 395::70933
    [Crossref] [Google Scholar]
  70. 70.
    Sundstrom J, Bodegard J, Bollmann A, Vervloet MG, Mark PB, et al. 2022.. Prevalence, outcomes, and cost of chronic kidney disease in a contemporary population of 2.4 million patients from 11 countries: the CaReMe CKD study. . Lancet Reg. Health Eur. 20::100438
    [Crossref] [Google Scholar]
  71. 71.
    Eddy S, Mariani LH, Kretzler M. 2020.. Integrated multi-omics approaches to improve classification of chronic kidney disease. . Nat. Rev. Nephrol. 16::65768
    [Crossref] [Google Scholar]
  72. 72.
    Provenzano M, Serra R, Garofalo C, Michael A, Crugliano G, et al. 2021.. OMICS in chronic kidney disease: focus on prognosis and prediction. . Int. J. Mol. Sci. 23::336
    [Crossref] [Google Scholar]
  73. 73.
    Doke T, Abedini A, Aldridge DL, Yang YW, Park J, et al. 2022.. Single-cell analysis identifies the interaction of altered renal tubules with basophils orchestrating kidney fibrosis. . Nat. Immunol. 23::94759
    [Crossref] [Google Scholar]
  74. 74.
    Kurts C, Panzer U, Anders HJ, Rees AJ. 2013.. The immune system and kidney disease: basic concepts and clinical implications. . Nat. Rev. Immunol. 13::73853
    [Crossref] [Google Scholar]
  75. 75.
    Avila VF, Foresto-Neto O, Arias SCA, Faustino VD, Malheiros D, et al. 2019.. Pathogenic role of angiotensin II and the NF-κB system in a model of malignant hypertensive nephrosclerosis. . Hypertens. Res. 42::77989
    [Crossref] [Google Scholar]
  76. 76.
    Foresto-Neto O, Albino AH, Arias SCA, Faustino VD, Zambom FFF, et al. 2020.. NF-κB system is chronically activated and promotes glomerular injury in experimental type 1 diabetic kidney disease. . Front. Physiol. 11::84
    [Crossref] [Google Scholar]
  77. 77.
    Faustino VD, Arias SCA, Ferreira Avila V, Foresto-Neto O, Zambom FFF, et al. 2018.. Simultaneous activation of innate and adaptive immunity participates in the development of renal injury in a model of heavy proteinuria. . Biosci. Rep. 38::BSR20180762
    [Crossref] [Google Scholar]
  78. 78.
    Rempel LCT, Faustino VD, Foresto-Neto O, Fanelli C, Arias SCA, et al. 2019.. Chronic exposure to hypoxia attenuates renal injury and innate immunity activation in the remnant kidney model. . Am. J. Physiol. Renal Physiol. 317::F128592
    [Crossref] [Google Scholar]
  79. 79.
    Shen J, Dai Z, Li Y, Zhu H, Zhao L. 2022.. TLR9 regulates NLRP3 inflammasome activation via the NF-κB signaling pathway in diabetic nephropathy. . Diabetol. Metab. Syndr. 14::26
    [Crossref] [Google Scholar]
  80. 80.
    Vilaysane A, Chun J, Seamone ME, Wang W, Chin R, et al. 2010.. The NLRP3 inflammasome promotes renal inflammation and contributes to CKD. . J. Am. Soc. Nephrol. 21::173244
    [Crossref] [Google Scholar]
  81. 81.
    Foresto-Neto O, Avila VF, Arias SCA, Zambom FFF, Rempel LCT, et al. 2018.. NLRP3 inflammasome inhibition ameliorates tubulointerstitial injury in the remnant kidney model. . Lab. Investig. 98::77382
    [Crossref] [Google Scholar]
  82. 82.
    Campden RI, Zhang Y. 2019.. The role of lysosomal cysteine cathepsins in NLRP3 inflammasome activation. . Arch. Biochem. Biophys. 670::3242
    [Crossref] [Google Scholar]
  83. 83.
    Liu D, Wen Y, Tang TT, Lv LL, Tang RN, et al. 2015.. Megalin/cubulin-lysosome-mediated albumin reabsorption is involved in the tubular cell activation of NLRP3 inflammasome and tubulointerstitial inflammation. . J. Biol. Chem. 290::1801828
    [Crossref] [Google Scholar]
  84. 84.
    Liu D, Xu M, Ding LH, Lv LL, Liu H, et al. 2014.. Activation of the Nlrp3 inflammasome by mitochondrial reactive oxygen species: a novel mechanism of albumin-induced tubulointerstitial inflammation. . Int. J. Biochem. Cell Biol. 57::719
    [Crossref] [Google Scholar]
  85. 85.
    Wei C, Li T, Xuan X, Hu H, Xiao X, Li J. 2021.. Serum albumin predicts hyperuricemia in patients with idiopathic membranous nephropathy. . Clin. Nephrol. 96::19198
    [Crossref] [Google Scholar]
  86. 86.
    Xiao J, Fu C, Zhang X, Zhu D, Chen W, et al. 2015.. Soluble monosodium urate, but not its crystal, induces Toll like receptor 4–dependent immune activation in renal mesangial cells. . Mol. Immunol. 66::31018
    [Crossref] [Google Scholar]
  87. 87.
    Li Z, Sheng Y, Liu C, Li K, Huang X, et al. 2016.. Nox4 has a crucial role in uric acid–induced oxidative stress and apoptosis in renal tubular cells. . Mol. Med. Rep. 13::434348
    [Crossref] [Google Scholar]
  88. 88.
    Li D, Wang L, Ou J, Wang C, Zhou J, et al. 2021.. Reactive oxygen species induced by uric acid promote NRK-52E cell apoptosis through the NEK7-NLRP3 signaling pathway. . Mol. Med. Rep. 24::729
    [Crossref] [Google Scholar]
  89. 89.
    Verzola D, Ratto E, Villaggio B, Parodi EL, Pontremoli R, et al. 2014.. Uric acid promotes apoptosis in human proximal tubule cells by oxidative stress and the activation of NADPH oxidase NOX 4. . PLOS ONE 9::e115210
    [Crossref] [Google Scholar]
  90. 90.
    Braga TT, Davanso MR, Mendes D, de Souza TA, de Brito AF, et al. 2021.. Sensing soluble uric acid by Naip1-Nlrp3 platform. . Cell Death Dis. 12::158
    [Crossref] [Google Scholar]
  91. 91.
    Kim SM, Kim YG, Kim DJ, Park SH, Jeong KH, et al. 2018.. Inflammasome-independent role of NLRP3 mediates mitochondrial regulation in renal injury. . Front. Immunol. 9::2563
    [Crossref] [Google Scholar]
  92. 92.
    Park S, Juliana C, Hong S, Datta P, Hwang I, et al. 2013.. The mitochondrial antiviral protein MAVS associates with NLRP3 and regulates its inflammasome activity. . J. Immunol. 191::435866
    [Crossref] [Google Scholar]
  93. 93.
    Doke T, Mukherjee S, Mukhi D, Dhillon P, Abedini A, et al. 2023.. NAD+ precursor supplementation prevents mtRNA/RIG-I-dependent inflammation during kidney injury. . Nat. Metab. 5::41430
    [Google Scholar]
  94. 94.
    Chung KW, Dhillon P, Huang S, Sheng X, Shrestha R, et al. 2019.. Mitochondrial damage and activation of the STING pathway lead to renal inflammation and fibrosis. . Cell Metab. 30::78499.e5
    [Crossref] [Google Scholar]
  95. 95.
    Wu J, Raman A, Coffey NJ, Sheng X, Wahba J, et al. 2021.. The key role of NLRP3 and STING in APOL1-associated podocytopathy. . J. Clin. Investig. 131::e136329
    [Crossref] [Google Scholar]
  96. 96.
    Bi X, Du C, Wang X, Wang XY, Han W, et al. 2021.. Mitochondrial damage–induced innate immune activation in vascular smooth muscle cells promotes chronic kidney disease-associated plaque vulnerability. . Adv. Sci. 8::2002738
    [Crossref] [Google Scholar]
  97. 97.
    Dhillon P, Mulholland KA, Hu H, Park J, Sheng X, et al. 2023.. Increased levels of endogenous retroviruses trigger fibroinflammation and play a role in kidney disease development. . Nat. Commun. 14::559
    [Crossref] [Google Scholar]
  98. 98.
    Nakaya Y, Lilue J, Stavrou S, Moran EA, Ross SR. 2017.. AIM2-like receptors positively and negatively regulate the interferon response induced by cytosolic DNA. . mBio 8::e00944
    [Crossref] [Google Scholar]
  99. 99.
    Xia J, Hou Y, Cai A, Xu Y, Yang W, et al. 2023.. An integrated co-expression network analysis reveals novel genetic biomarkers for immune cell infiltration in chronic kidney disease. . Front. Immunol. 14::1129524
    [Crossref] [Google Scholar]
  100. 100.
    Nakamichi R, Hishikawa A, Chikuma S, Yoshimura A, Sasaki T, et al. 2023.. DNA-damaged podocyte–CD8 T cell crosstalk exacerbates kidney injury by altering DNA methylation. . Cell Rep. 42::112302
    [Crossref] [Google Scholar]
  101. 101.
    Kye YC, Lee GW, Lee SW, Ju YJ, Kim HO, et al. 2021.. STAT1 maintains naive CD8+ T cell quiescence by suppressing the type I IFN–STAT4–mTORC1 signaling axis. . Sci. Adv. 7::eabg8764
    [Crossref] [Google Scholar]
  102. 102.
    Heymann F, Meyer-Schwesinger C, Hamilton-Williams EE, Hammerich L, Panzer U, et al. 2009.. Kidney dendritic cell activation is required for progression of renal disease in a mouse model of glomerular injury. . J. Clin. Investig. 119::128697
    [Crossref] [Google Scholar]
  103. 103.
    Peng X, Xiao Z, Zhang J, Li Y, Dong Y, Du J. 2015.. IL-17A produced by both γδ T and Th17 cells promotes renal fibrosis via RANTES-mediated leukocyte infiltration after renal obstruction. . J. Pathol. 235::7989
    [Crossref] [Google Scholar]
  104. 104.
    Mastrangelo A, Serafinelli J, Giani M, Montini G. 2020.. Clinical and pathophysiological insights into immunological mediated glomerular diseases in childhood. . Front. Pediatr. 8::205
    [Crossref] [Google Scholar]
  105. 105.
    Chang S, Li XK. 2020.. The role of immune modulation in pathogenesis of IgA nephropathy. . Front. Med. 7::92
    [Crossref] [Google Scholar]
  106. 106.
    Lai KN, Leung JC, Chan LY, Saleem MA, Mathieson PW, et al. 2009.. Podocyte injury induced by mesangial-derived cytokines in IgA nephropathy. . Nephrol. Dial. Transplant. 24::6272
    [Crossref] [Google Scholar]
  107. 107.
    Lai KN, Leung JC, Chan LY, Saleem MA, Mathieson PW, et al. 2008.. Activation of podocytes by mesangial-derived TNF-α: glomerulo-podocytic communication in IgA nephropathy. . Am. J. Physiol. Renal Physiol. 294::F94555
    [Crossref] [Google Scholar]
  108. 108.
    Falk MC, Ng G, Zhang GY, Fanning GC, Roy LP, et al. 1995.. Infiltration of the kidney by αβ and γδ T cells: effect on progression in IgA nephropathy. . Kidney Int. 47::17785
    [Crossref] [Google Scholar]
  109. 109.
    Sonnemann J, Klocke J, Bieringer M, Rousselle A, Eckardt KU, et al. 2023.. Urinary T cells identify renal antineutrophil cytoplasmic antibody-associated vasculitis and predict prognosis: a proof of concept study. . Kidney Int. Rep. 8::87183
    [Crossref] [Google Scholar]
  110. 110.
    Hu SY, Jia XY, Li JN, Zheng X, Ao J, et al. 2016.. T cell infiltration is associated with kidney injury in patients with anti-glomerular basement membrane disease. . Sci. China Life Sci. 59::128289
    [Crossref] [Google Scholar]
  111. 111.
    Paust HJ, Song N, De Feo D, Asada N, Tuzlak S, et al. 2023.. CD4+ T cells produce GM-CSF and drive immune-mediated glomerular disease by licensing monocyte-derived cells to produce MMP12. . Sci. Transl. Med. 15::eadd6137
    [Crossref] [Google Scholar]
  112. 112.
    Okyay GU, Inal S, Onec K, Er RE, Pasaoglu O, et al. 2013.. Neutrophil to lymphocyte ratio in evaluation of inflammation in patients with chronic kidney disease. . Renal Fail. 35::2936
    [Crossref] [Google Scholar]
  113. 113.
    Solak Y, Yilmaz MI, Sonmez A, Saglam M, Cakir E, et al. 2013.. Neutrophil to lymphocyte ratio independently predicts cardiovascular events in patients with chronic kidney disease. . Clin. Exp. Nephrol. 17::53240
    [Crossref] [Google Scholar]
  114. 114.
    Sun J, Axelsson J, Machowska A, Heimburger O, Barany P, et al. 2016.. Biomarkers of cardiovascular disease and mortality risk in patients with advanced CKD. . Clin. J. Am. Soc. Nephrol. 11::116372
    [Crossref] [Google Scholar]
  115. 115.
    Speer T, Ridker PM, von Eckardstein A, Schunk SJ, Fliser D. 2021.. Lipoproteins in chronic kidney disease: from bench to bedside. . Eur. Heart J. 42::217085
    [Crossref] [Google Scholar]
  116. 116.
    Speer T, Owala FO, Holy EW, Zewinger S, Frenzel FL, et al. 2014.. Carbamylated low-density lipoprotein induces endothelial dysfunction. . Eur. Heart J. 35::302132
    [Crossref] [Google Scholar]
  117. 117.
    Zewinger S, Reiser J, Jankowski V, Alansary D, Hahm E, et al. 2020.. Apolipoprotein C3 induces inflammation and organ damage by alternative inflammasome activation. . Nat. Immunol. 21::3041
    [Crossref] [Google Scholar]
  118. 118.
    Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, et al. 2010.. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. . Nature 464::135761
    [Crossref] [Google Scholar]
  119. 119.
    Moffat FL, Ketcham AS. 1990.. Has mammography led to too many breast biopsies?. J. Surg. Oncol. 45::13
    [Crossref] [Google Scholar]
  120. 120.
    Gonçalves LED, Andrade-Silva M, Basso PJ, Câmara NOS. 2023.. Vitamin D and chronic kidney disease: insights on lipid metabolism of tubular epithelial cell and macrophages in tubulointerstitial fibrosis. . Front. Physiol. 14::1145233
    [Crossref] [Google Scholar]
  121. 121.
    Brito RBO, Rebello JF, Grabulosa CC, Pinto W, Morales A Jr., et al. 2020.. 25-vitamin D reduces inflammation in uremic environment. . Sci. Rep. 10::128
    [Crossref] [Google Scholar]
  122. 122.
    Cantarelli C, Angeletti A, Cravedi P. 2019.. Erythropoietin, a multifaceted protein with innate and adaptive immune modulatory activity. . Am. J. Transplant. 19::240714
    [Crossref] [Google Scholar]
  123. 123.
    Otsuka H, Abe M, Kobayashi H. 2023.. The effect of aldosterone on cardiorenal and metabolic systems. . Int. J. Mol. Sci. 24::5370
    [Crossref] [Google Scholar]
  124. 124.
    Johar S, Cave AC, Narayanapanicker A, Grieve DJ, Shah AM. 2006.. Aldosterone mediates angiotensin II–induced interstitial cardiac fibrosis via a Nox2-containing NADPH oxidase. . FASEB J. 20::154648
    [Crossref] [Google Scholar]
  125. 125.
    Rossaint J, Oehmichen J, Van Aken H, Reuter S, Pavenstadt HJ, et al. 2016.. FGF23 signaling impairs neutrophil recruitment and host defense during CKD. . J. Clin. Investig. 126::96274
    [Crossref] [Google Scholar]
  126. 126.
    Verkade MA, van Druningen CJ, Op de Hoek CT, Weimar W, Betjes MG. 2007.. Decreased antigen-specific T-cell proliferation by moDC among hepatitis B vaccine non-responders on haemodialysis. . Clin. Exp. Med. 7::6571
    [Crossref] [Google Scholar]
  127. 127.
    Stenvinkel P, Ketteler M, Johnson RJ, Lindholm B, Pecoits-Filho R, et al. 2005.. IL-10, IL-6, and TNF-α: central factors in the altered cytokine network of uremia—the good, the bad, and the ugly. . Kidney Int. 67::121633
    [Crossref] [Google Scholar]
  128. 128.
    Fernández-Fresnedo G, Ramos MA, Gonzalez-Pardo MC, de Francisco AL, López-Hoyos M, Arias M. 2000.. B lymphopenia in uremia is related to an accelerated in vitro apoptosis and dysregulation of Bcl-2. . Nephrol. Dial. Transplant. 15::50210
    [Crossref] [Google Scholar]
  129. 129.
    de Graeff PA, Dankert J, de Zeeuw D, Gips CH, van der Hem GK. 1985.. Immune response to two different hepatitis B vaccines in haemodialysis patients: a 2-year follow-up. . Nephron 40::15560
    [Crossref] [Google Scholar]
  130. 130.
    Rautenberg P, Teifke I, Schlegelberger T, Ullmann U. 1988.. Influenza subtype–specific IgA, IgM and IgG responses in patients on hemodialysis after influenza vaccination. . Infection 16::32328
    [Crossref] [Google Scholar]
  131. 131.
    Girndt M, Pietsch M, Kohler H. 1995.. Tetanus immunization and its association to hepatitis B vaccination in patients with chronic renal failure. . Am. J. Kidney Dis. 26::45460
    [Crossref] [Google Scholar]
  132. 132.
    Kreft B, Klouche M, Kreft R, Kirchner H, Sack K. 1997.. Low efficiency of active immunization against diphtheria in chronic hemodialysis patients. . Kidney Int. 52::21216
    [Crossref] [Google Scholar]
  133. 133.
    Syed-Ahmed M, Narayanan M. 2019.. Immune dysfunction and risk of infection in chronic kidney disease. . Adv. Chronic Kidney Dis. 26::815
    [Crossref] [Google Scholar]
  134. 134.
    Deng CL, Song XW, Liang HJ, Feng C, Sheng YJ, Wang MY. 2006.. Chronic hepatitis B serum promotes apoptotic damage in human renal tubular cells. . World J. Gastroenterol. 12::175256
    [Crossref] [Google Scholar]
  135. 135.
    He XY, Fang LJ, Zhang YE, Sheng FY, Zhang XR, Guo MY. 1998.. In situ hybridization of hepatitis B DNA in hepatitis B–associated glomerulonephritis. . Pediatr. Nephrol. 12::11720
    [Crossref] [Google Scholar]
  136. 136.
    Gupta A, Quigg RJ. 2015.. Glomerular diseases associated with hepatitis B and C. . Adv. Chronic Kidney Dis. 22::34351
    [Crossref] [Google Scholar]
  137. 137.
    Prasad N, Patel MR. 2018.. Infection-induced kidney diseases. . Front. Med. 5::327
    [Crossref] [Google Scholar]
  138. 138.
    Walker A, Ellis J, Irama M, Senkungu J, Nansera D, et al. 2007.. Eosinophilic glomerulonephritis in children in Southwestern Uganda. . Kidney Int. 71::56973
    [Crossref] [Google Scholar]
  139. 139.
    Sethi S, D'Costa MR, Hermann SM, Nasr SH, Fervenza FC. 2021.. Immune-complex glomerulonephritis after COVID-19 infection. . Kidney Int. Rep. 6::117073
    [Crossref] [Google Scholar]
  140. 140.
    Andrade Silva M, da Silva A, do Amaral MA, Fragas MG, Câmara NOS. 2021.. Metabolic alterations in SARS-CoV-2 infection and its implication in kidney dysfunction. . Front. Physiol. 12::624698
    [Crossref] [Google Scholar]
  141. 141.
    Yende S, Parikh CR. 2021.. Long COVID and kidney disease. . Nat. Rev. Nephrol. 17::79293
    [Crossref] [Google Scholar]
  142. 142.
    Flannery AH, Li X, Delozier NL, Toto RD, Moe OW, et al. 2021.. Sepsis-associated acute kidney disease and long-term kidney outcomes. . Kidney Med. 3::50714.e1
    [Crossref] [Google Scholar]
  143. 143.
    Janosevic D, Myslinski J, McCarthy TW, Zollman A, Syed F, et al. 2021.. The orchestrated cellular and molecular responses of the kidney to endotoxin define a precise sepsis timeline. . eLife 10::e62270
    [Crossref] [Google Scholar]
  144. 144.
    Hsu RK, Hsu C-Y. 2016.. The role of acute kidney injury in chronic kidney disease. . Semin. Nephrol. 36::28392
    [Crossref] [Google Scholar]
  145. 145.
    Yu SMW, Bonventre JV. 2018.. Acute kidney injury and progression of diabetic kidney disease. . Adv. Chronic Kidney Dis. 25::16680
    [Crossref] [Google Scholar]
  146. 146.
    Advani A. 2020.. Acute kidney injury: a bona fide complication of diabetes. . Diabetes 69::222937
    [Crossref] [Google Scholar]
  147. 147.
    Niewczas MA, Pavkov ME, Skupien J, Smiles A, Md Dom ZI, et al. 2019.. A signature of circulating inflammatory proteins and development of end-stage renal disease in diabetes. . Nat. Med. 25::80513
    [Crossref] [Google Scholar]
  148. 148.
    Tang SCW, Yiu WH. 2020.. Innate immunity in diabetic kidney disease. . Nat. Rev. Nephrol. 16::20622
    [Crossref] [Google Scholar]
  149. 149.
    Chevalier RL. 2017.. Evolutionary nephrology. . Kidney Int. Rep. 2::30217
    [Crossref] [Google Scholar]
  150. 150.
    Sharifian R, Okamura DM, Denisenko O, Zager RA, Johnson A, et al. 2018.. Distinct patterns of transcriptional and epigenetic alterations characterize acute and chronic kidney injury. . Sci. Rep. 8::17870
    [Crossref] [Google Scholar]
  151. 151.
    Yatim KM, Lakkis FG. 2015.. A brief journey through the immune system. . Clin. J. Am. Soc. Nephrol. 10::127481
    [Crossref] [Google Scholar]
  152. 152.
    Liu C, Shen Y, Huang L, Wang J. 2022.. TLR2/caspase-5/Panx1 pathway mediates necrosis-induced NLRP3 inflammasome activation in macrophages during acute kidney injury. . Cell Death Discov. 8::232
    [Crossref] [Google Scholar]
  153. 153.
    Albino AH, Zambom FFF, Foresto-Neto O, Oliveira KC, Ávila VF, et al. 2021.. Renal inflammation and innate immune activation underlie the transition from gentamicin-induced acute kidney injury to renal fibrosis. . Front. Physiol. 12::606392
    [Crossref] [Google Scholar]
  154. 154.
    Brennan E, Kantharidis P, Cooper ME, Godson C. 2021.. Pro-resolving lipid mediators: regulators of inflammation, metabolism and kidney function. . Nat. Rev. Nephrol. 17::72539
    [Crossref] [Google Scholar]
  155. 155.
    Couser WG, Johnson RJ. 2014.. The etiology of glomerulonephritis: roles of infection and autoimmunity. . Kidney Int. 86::90514
    [Crossref] [Google Scholar]
  156. 156.
    Zheng T, Tan Y, Qiu J, Xie Z, Hu X, et al. 2021.. Alternative polyadenylation trans-factor FIP1 exacerbates UUO/IRI-induced kidney injury and contributes to AKI-CKD transition via ROS-NLRP3 axis. . Cell Death Dis. 12::512
    [Crossref] [Google Scholar]
  157. 157.
    Nam BY, Jhee JH, Park J, Kim S, Kim G, et al. 2022.. PGC-1α inhibits the NLRP3 inflammasome via preserving mitochondrial viability to protect kidney fibrosis. . Cell Death Dis. 13::31
    [Crossref] [Google Scholar]
  158. 158.
    Ke Q, Yuan Q, Qin N, Shi C, Luo J, et al. 2020.. UCP2-induced hypoxia promotes lipid accumulation and tubulointerstitial fibrosis during ischemic kidney injury. . Cell Death Dis. 11::26
    [Crossref] [Google Scholar]
  159. 159.
    Kurts C, Panzer U, Anders HJ, Rees AJ. 2013.. The immune system and kidney disease: basic concepts and clinical implications. . Nat. Rev. Immunol. 13::73853
    [Crossref] [Google Scholar]
  160. 160.
    Lv J, Wong MG, Hladunewich MA, Jha V, Hooi LS, et al. 2022.. Effect of oral methylprednisolone on decline in kidney function or kidney failure in patients with IgA nephropathy: the TESTING randomized clinical trial. . JAMA 327::188898
    [Crossref] [Google Scholar]
  161. 161.
    Barratt J, Lafayette R, Kristensen J, Stone A, Cattran D, et al. 2023.. Results from part A of the multi-center, double-blind, randomized, placebo-controlled NefIgArd trial, which evaluated targeted-release formulation of budesonide for the treatment of primary immunoglobulin A nephropathy. . Kidney Int. 103::391402
    [Crossref] [Google Scholar]
  162. 162.
    Heerspink HJL, Radhakrishnan J, Alpers CE, Barratt J, Bieler S, et al. 2023.. Sparsentan in patients with IgA nephropathy: a prespecified interim analysis from a randomised, double-blind, active-controlled clinical trial. . Lancet 401::158494
    [Crossref] [Google Scholar]
  163. 163.
    Jayne D, Rovin B, Mysler EF, Furie RA, Houssiau FA, et al. 2022.. Phase II randomised trial of type I interferon inhibitor anifrolumab in patients with active lupus nephritis. . Ann. Rheum. Dis. 81::496506
    [Crossref] [Google Scholar]
  164. 164.
    Jourde-Chiche N, Costedoat-Chalumeau N, Baumstarck K, Loundou A, Bouillet L, et al. 2022.. Weaning of maintenance immunosuppressive therapy in lupus nephritis (WIN-Lupus): results of a multicentre randomised controlled trial. . Ann. Rheum. Dis. 81::142027
    [Crossref] [Google Scholar]
  165. 165.
    Watts AJB, Keller KH, Lerner G, Rosales I, Collins AB, et al. 2022.. Discovery of autoantibodies targeting nephrin in minimal change disease supports a novel autoimmune etiology. . J. Am. Soc. Nephrol. 33::23852
    [Crossref] [Google Scholar]
  166. 166.
    Jalal A, Li T. 2023.. The evolving landscape of immune-mediated glomerular diseases. . Nat. Rev. Nephrol. 19::8182
    [Crossref] [Google Scholar]
  167. 167.
    Xie ZY, Dong W, Zhang L, Wang MJ, Xiao ZM, et al. 2022.. NFAT inhibitor 11R-VIVIT ameliorates mouse renal fibrosis after ischemia-reperfusion-induced acute kidney injury. . Acta Pharmacol. Sin. 43::208193
    [Crossref] [Google Scholar]
  168. 168.
    Speer T, Dimmeler S, Schunk SJ, Fliser D, Ridker PM. 2022.. Targeting innate immunity-driven inflammation in CKD and cardiovascular disease. . Nat. Rev. Nephrol. 18::76278
    [Crossref] [Google Scholar]
  169. 169.
    Murphy MP, O'Neill LAJ. 2020.. How should we talk about metabolism?. Nat. Immunol. 21::71315
    [Crossref] [Google Scholar]
  170. 170.
    Houten SM, Violante S, Ventura FV, Wanders RJ. 2016.. The biochemistry and physiology of mitochondrial fatty acid β-oxidation and its genetic disorders. . Annu. Rev. Physiol. 78::2344
    [Crossref] [Google Scholar]
  171. 171.
    Howie D, Cobbold SP, Adams E, Ten Bokum A, Necula AS, et al. 2017.. Foxp3 drives oxidative phosphorylation and protection from lipotoxicity. . JCI Insight 2::e89160
    [Crossref] [Google Scholar]
  172. 172.
    Namgaladze D, Brune B. 2016.. Macrophage fatty acid oxidation and its roles in macrophage polarization and fatty acid–induced inflammation. . Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1861::1796807
    [Crossref] [Google Scholar]
  173. 173.
    Park JG, Na M, Kim MG, Park SH, Lee HJ, et al. 2020.. Immune cell composition in normal human kidneys. . Sci. Rep. 10::15678
    [Crossref] [Google Scholar]
  174. 174.
    Lam WY, Becker AM, Kennerly KM, Wong R, Curtis JD, et al. 2016.. Mitochondrial pyruvate import promotes long-term survival of antibody-secreting plasma cells. . Immunity 45::6073
    [Crossref] [Google Scholar]
  175. 175.
    Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, et al. 2011.. Cutting edge: Distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. . J. Immunol. 186::3299303
    [Crossref] [Google Scholar]
  176. 176.
    van der Windt GJ, O'Sullivan D, Everts B, Huang SC, Buck MD, et al. 2013.. CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. . PNAS 110::1433641
    [Crossref] [Google Scholar]
  177. 177.
    van der Windt GJ, Everts B, Chang CH, Curtis JD, Freitas TC, et al. 2012.. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. . Immunity 36::6878
    [Crossref] [Google Scholar]
  178. 178.
    Liu GY, Sabatini DM. 2020.. mTOR at the nexus of nutrition, growth, ageing and disease. . Nat. Rev. Mol. Cell Biol. 21::183203
    [Crossref] [Google Scholar]
  179. 179.
    Jeon SM. 2016.. Regulation and function of AMPK in physiology and diseases. . Exp. Mol. Med. 48::e245
    [Crossref] [Google Scholar]
  180. 180.
    Thorens B, Mueckler M. 2010.. Glucose transporters in the 21st century. . Am. J. Physiol. Endocrinol. Metab. 298::E14145
    [Crossref] [Google Scholar]
  181. 181.
    Macintyre AN, Gerriets VA, Nichols AG, Michalek RD, Rudolph MC, et al. 2014.. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. . Cell Metab. 20::6172
    [Crossref] [Google Scholar]
  182. 182.
    Caro-Maldonado A, Wang R, Nichols AG, Kuraoka M, Milasta S, et al. 2014.. Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells. . J. Immunol. 192::362636
    [Crossref] [Google Scholar]
  183. 183.
    Freemerman AJ, Zhao L, Pingili AK, Teng B, Cozzo AJ, et al. 2019.. Myeloid Slc2a1-deficient murine model revealed macrophage activation and metabolic phenotype are fueled by GLUT1. . J. Immunol. 202::126586
    [Crossref] [Google Scholar]
  184. 184.
    Wolf AJ, Reyes CN, Liang W, Becker C, Shimada K, et al. 2016.. Hexokinase is an innate immune receptor for the detection of bacterial peptidoglycan. . Cell 166::62436
    [Crossref] [Google Scholar]
  185. 185.
    Angiari S, Runtsch MC, Sutton CE, Palsson-McDermott EM, Kelly B, et al. 2020.. Pharmacological activation of pyruvate kinase M2 inhibits CD4+ T cell pathogenicity and suppresses autoimmunity. . Cell Metab. 31::391405.e8
    [Crossref] [Google Scholar]
  186. 186.
    Dalga D, Verissimo T, de Seigneux S. 2023.. Gluconeogenesis in the kidney: in health and in chronic kidney disease. . Clin. Kidney J. 16::124957
    [Crossref] [Google Scholar]
  187. 187.
    Uchida S, Endou H. 1988.. Substrate specificity to maintain cellular ATP along the mouse nephron. . Am. J. Physiol. Renal Physiol. 255::F97783
    [Crossref] [Google Scholar]
  188. 188.
    Wang G, Heijs B, Kostidis S, Rietjens RGJ, Koning M, et al. 2022.. Spatial dynamic metabolomics identifies metabolic cell fate trajectories in human kidney differentiation. . Cell Stem Cell 29::158093.e7
    [Crossref] [Google Scholar]
  189. 189.
    Yuan Q, Miao J, Yang Q, Fang L, Fang Y, et al. 2020.. Role of pyruvate kinase M2–mediated metabolic reprogramming during podocyte differentiation. . Cell Death Dis. 11::355
    [Crossref] [Google Scholar]
  190. 190.
    Basso PJ, Andrade-Oliveira V, Câmara NOS. 2021.. Targeting immune cell metabolism in kidney diseases. . Nat. Rev. Nephrol. 17::46580
    [Crossref] [Google Scholar]
  191. 191.
    Zheng Z, Ma H, Zhang X, Tu F, Wang X, et al. 2017.. Enhanced glycolytic metabolism contributes to cardiac dysfunction in polymicrobial sepsis. . J. Infect. Dis. 215::1396406
    [Crossref] [Google Scholar]
  192. 192.
    McCall CE, Zabalawi M, Liu T, Martin A, Long DL, et al. 2018.. Pyruvate dehydrogenase complex stimulation promotes immunometabolic homeostasis and sepsis survival. . JCI Insight 3::e99292
    [Crossref] [Google Scholar]
  193. 193.
    Chen G, Dong Z, Liu H, Liu Y, Duan S, et al. 2016.. mTOR signaling regulates protective activity of transferred CD4+Foxp3+ T cells in repair of acute kidney injury. . J. Immunol. 197::391726
    [Crossref] [Google Scholar]
  194. 194.
    Raybuck AL, Cho SH, Li J, Rogers MC, Lee K, et al. 2018.. B cell–intrinsic mTORC1 promotes germinal center–defining transcription factor gene expression, somatic hypermutation, and memory B cell generation in humoral immunity. . J. Immunol. 200::262739
    [Crossref] [Google Scholar]
  195. 195.
    Meng X, Grotsch B, Luo Y, Knaup KX, Wiesener MS, et al. 2018.. Hypoxia-inducible factor 1α is a critical transcription factor for IL-10-producing B cells in autoimmune disease. . Nat. Commun. 9::251
    [Crossref] [Google Scholar]
  196. 196.
    Lieberthal W, Tang M, Lusco M, Abate M, Levine JS. 2016.. Preconditioning mice with activators of AMPK ameliorates ischemic acute kidney injury in vivo. . Am. J. Physiol. Renal Physiol. 311::F73139
    [Crossref] [Google Scholar]
  197. 197.
    Wang J, Li Z, Gao L, Qi Y, Zhu H, Qin X. 2018.. The regulation effect of AMPK in immune related diseases. . Sci. China Life Sci. 61::52333
    [Crossref] [Google Scholar]
  198. 198.
    Chen SC, Hung CC, Kuo MC, Lee JJ, Chiu YW, et al. 2013.. Association of dyslipidemia with renal outcomes in chronic kidney disease. . PLOS ONE 8::e55643
    [Crossref] [Google Scholar]
  199. 199.
    Jankowski J, Floege J, Fliser D, Böhm M, Marx N. 2021.. Cardiovascular disease in chronic kidney disease pathophysiological insights and therapeutic options. . Circulation 143::115772
    [Crossref] [Google Scholar]
  200. 200.
    Noels H, Lehrke M, Vanholder R, Jankowski J. 2021.. Lipoproteins and fatty acids in chronic kidney disease: molecular and metabolic alterations. . Nat. Rev. Nephrol. 17::52842
    [Crossref] [Google Scholar]
  201. 201.
    Baek J, He C, Afshinnia F, Michailidis G, Pennathur S. 2022.. Lipidomic approaches to dissect dysregulated lipid metabolism in kidney disease. . Nat. Rev. Nephrol. 18::3855
    [Crossref] [Google Scholar]
  202. 202.
    Afshinnia F, Rajendiran TM, Soni T, Byun J, Wernisch S, et al. 2018.. Impaired β-oxidation and altered complex lipid fatty acid partitioning with advancing CKD. . J. Am. Soc. Nephrol. 29::295306
    [Crossref] [Google Scholar]
  203. 203.
    Li ZL, Wang B, Lv LL, Tang TT, Wen Y, et al. 2021.. FIH-1-modulated HIF-1α C-TAD promotes acute kidney injury to chronic kidney disease progression via regulating KLF5 signaling. . Acta Pharmacol. Sin. 42::210619
    [Crossref] [Google Scholar]
  204. 204.
    Li H, Leung JCK, Yiu WH, Chan LYY, Li B, et al. 2022.. Tubular β-catenin alleviates mitochondrial dysfunction and cell death in acute kidney injury. . Cell Death Dis. 13::1061
    [Crossref] [Google Scholar]
  205. 205.
    Chen Y, Yan Q, Lv M, Song K, Dai Y, et al. 2020.. Involvement of FATP2-mediated tubular lipid metabolic reprogramming in renal fibrogenesis. . Cell Death Dis. 11::994
    [Crossref] [Google Scholar]
  206. 206.
    Hou Y, Wang Q, Han B, Chen Y, Qiao X, Wang L. 2021.. CD36 promotes NLRP3 inflammasome activation via the mtROS pathway in renal tubular epithelial cells of diabetic kidneys. . Cell Death Dis. 12::523
    [Crossref] [Google Scholar]
  207. 207.
    Kang HM, Ahn SH, Choi P, Ko YA, Han SH, et al. 2015.. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. . Nat. Med. 21::3746
    [Crossref] [Google Scholar]
  208. 208.
    Miguel V, Tituana J, Herrero JI, Herrero L, Serra D, et al. 2021.. Renal tubule Cpt1a overexpression protects from kidney fibrosis by restoring mitochondrial homeostasis. . J. Clin. Investig. 131::e140695
    [Crossref] [Google Scholar]
  209. 209.
    Morigi M, Perico L, Benigni A. 2018.. Sirtuins in renal health and disease. . J. Am. Soc. Nephrol. 29::1799809
    [Crossref] [Google Scholar]
  210. 210.
    Dhillon P, Park J, Hurtado Del Pozo C, Li L, Doke T, et al. 2021.. The nuclear receptor ESRRA protects from kidney disease by coupling metabolism and differentiation. . Cell Metab. 33::37994.e8
    [Crossref] [Google Scholar]
  211. 211.
    Mori Y, Ajay AK, Chang JH, Mou S, Zhao H, et al. 2021.. KIM-1 mediates fatty acid uptake by renal tubular cells to promote progressive diabetic kidney disease. . Cell Metab. 33::104261.e7
    [Crossref] [Google Scholar]
  212. 212.
    Giustina AD, Bonfante S, Zarbato GF, Danielski LG, Mathias K, et al. 2018.. Dimethyl fumarate modulates oxidative stress and inflammation in organs after sepsis in rats. . Inflammation 41::31527
    [Crossref] [Google Scholar]
  213. 213.
    Wei Q, Su J, Dong G, Zhang M, Huo Y, Dong Z. 2019.. Glycolysis inhibitors suppress renal interstitial fibrosis via divergent effects on fibroblasts and tubular cells. . Am. J. Physiol. Renal Physiol. 316::F116272
    [Crossref] [Google Scholar]
  214. 214.
    McEvoy CM, Murphy JM, Zhang L, Clotet-Freixas S, Mathews JA, et al. 2022.. Single-cell profiling of healthy human kidney reveals features of sex-based transcriptional programs and tissue-specific immunity. . Nat. Commun. 13::7634
    [Crossref] [Google Scholar]
  215. 215.
    Rao DA, Arazi A, Wofsy D, Diamond B. 2020.. Design and application of single-cell RNA sequencing to study kidney immune cells in lupus nephritis. . Nat. Rev. Nephrol. 16::23850
    [Crossref] [Google Scholar]
  216. 216.
    Arazi A, Rao DA, Berthier CC, Davidson A, Liu Y, et al. 2019.. The immune cell landscape in kidneys of patients with lupus nephritis. . Nat. Immunol. 20::90214
    [Crossref] [Google Scholar]
  217. 217.
    Schreibing F, Kramann R. 2022.. Mapping the human kidney using single-cell genomics. . Nat. Rev. Nephrol. 18::34760
    [Crossref] [Google Scholar]
  218. 218.
    Peruzzi L, Deaglio S. 2023.. Rejection markers in kidney transplantation: Do new technologies help children?. Pediatr. Nephrol. 38::293955
    [Crossref] [Google Scholar]
  219. 219.
    Abedi M, Marateb HR, Mohebian MR, Aghaee-Bakhtiari SH, Nassiri SM, Gheisari Y. 2021.. Systems biology and machine learning approaches identify drug targets in diabetic nephropathy. . Sci. Rep. 11::23452
    [Crossref] [Google Scholar]
  220. 220.
    Al Mehedi Hasan M, Maniruzzaman M, Shin J. 2022.. Identification of key candidate genes for IgA nephropathy using machine learning and statistics based bioinformatics models. . Sci. Rep. 12::13963
    [Crossref] [Google Scholar]
  221. 221.
    Cox SN, Chiurlia S, Divella C, Rossini M, Serino G, et al. 2020.. Formalin-fixed paraffin-embedded renal biopsy tissues: an underexploited biospecimen resource for gene expression profiling in IgA nephropathy. . Sci. Rep. 10::15164
    [Crossref] [Google Scholar]
  222. 222.
    Klinkhammer BM, Lammers T, Mottaghy FM, Kiessling F, Floege J, Boor P. 2021.. Non-invasive molecular imaging of kidney diseases. . Nat. Rev. Nephrol. 17::688703
    [Crossref] [Google Scholar]
  223. 223.
    Torkamani N, Jerums G, Crammer P, Skene A, Power DA, et al. 2019.. Three dimensional glomerular reconstruction: a novel approach to evaluate renal microanatomy in diabetic kidney disease. . Sci. Rep. 9::1829
    [Crossref] [Google Scholar]
  224. 224.
    Hölscher DL, Bouteldja N, Joodaki M, Russo ML, Lan YC, et al. 2023.. Next-generation morphometry for pathomics-data mining in histopathology. . Nat. Commun. 14::470
    [Crossref] [Google Scholar]
  225. 225.
    Zhang W, Qi R, Li T, Zhang X, Shi Y, et al. 2021.. Kidney organoids as a novel platform to evaluate lipopolysaccharide-induced oxidative stress and apoptosis in acute kidney injury. . Front. Med. 8::766073
    [Crossref] [Google Scholar]
  226. 226.
    Ajay AK. 2022.. Functional drug screening using kidney cells on-a-chip: advances in disease modeling and development of biomarkers. . Kidney360 3::19498
    [Crossref] [Google Scholar]
  227. 227.
    Ashammakhi N, Wesseling-Perry K, Hasan A, Elkhammas E, Zhang YS. 2018.. Kidney-on-a-chip: untapped opportunities. . Kidney Int. 94::107386
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-immunol-090122-045843
Loading
/content/journals/10.1146/annurev-immunol-090122-045843
Loading

Data & Media loading...

  • Article Type: Review Article