1932

Abstract

The intestinal epithelium, which segregates the highly stimulatory lumen from the underlying tissue, harbors one of the largest lymphocyte populations in the body, intestinal intraepithelial lymphocytes (IELs). IELs must balance tolerance, resistance, and tissue protection to maintain epithelial homeostasis and barrier integrity. This review discusses the ontogeny, environmental imprinting, T cell receptor (TCR) repertoire, and function of intestinal IELs. Despite distinct developmental pathways, IEL subsets share core traits including an epithelium-adapted profile, innate-like properties, cytotoxic potential, and limited TCR diversity. IELs also receive important developmental and functional cues through interactions with epithelial cells, microbiota, and dietary components. The restricted TCR diversity of IELs suggests that a limited set of intestinal antigens drives IEL responses, with potential functional consequences. Finally, IELs play a key role in promoting homeostatic immunity and epithelial barrier integrity but can become pathogenic upon dysregulation. Therefore, IELs represent intriguing but underexamined therapeutic targets for inflammatory diseases and cancer.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-090222-100246
2024-06-28
2024-10-14
Loading full text...

Full text loading...

/deliver/fulltext/immunol/42/1/annurev-immunol-090222-100246.html?itemId=/content/journals/10.1146/annurev-immunol-090222-100246&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ansaldo E, Farley TK, Belkaid Y. 2021.. Control of immunity by the microbiota. . Annu. Rev. Immunol. 39::44979
    [Crossref] [Google Scholar]
  2. 2.
    Ivanov II, Tuganbaev T, Skelly AN, Honda K. 2022.. T cell responses to the microbiota. . Annu. Rev. Immunol. 40::55987
    [Crossref] [Google Scholar]
  3. 3.
    Maynard CL, Elson CO, Hatton RD, Weaver CT. 2012.. Reciprocal interactions of the intestinal microbiota and immune system. . Nature 489::23141
    [Crossref] [Google Scholar]
  4. 4.
    Matsunaga T, Rahman A. 1998.. What brought the adaptive immune system to vertebrates? The jaw hypothesis and the seahorse. . Immunol. Rev. 166::17786
    [Crossref] [Google Scholar]
  5. 5.
    Cheroutre H, Lambolez F, Mucida D. 2011.. The light and dark sides of intestinal intraepithelial lymphocytes. . Nat. Rev. Immunol. 11::44556
    [Crossref] [Google Scholar]
  6. 6.
    Van Kaer L, Olivares-Villagomez D. 2018.. Development, homeostasis, and functions of intestinal intraepithelial lymphocytes. . J. Immunol. 200::223544
    [Crossref] [Google Scholar]
  7. 7.
    Suzuki S, Sugahara S, Shimizu T, Tada T, Minagawa M, et al. 1998.. Low level of mixing of partner cells seen in extrathymic T cells in the liver and intestine of parabiotic mice: its biological implication. . Eur. J. Immunol. 28::371929
    [Crossref] [Google Scholar]
  8. 8.
    Sugahara S, Shimizu T, Yoshida Y, Aiba T, Yamagiwa S, et al. 1999.. Extrathymic derivation of gut lymphocytes in parabiotic mice. . Immunology 96::5765
    [Crossref] [Google Scholar]
  9. 9.
    Cheroutre H, Lambolez F. 2008.. Doubting the TCR coreceptor function of CD8αα. . Immunity 28::14959
    [Crossref] [Google Scholar]
  10. 10.
    Koningsberger JC, Chott A, Logtenberg T, Wiegman LJ, Blumberg RS, et al. 1997.. TCR expression in human fetal intestine and identification of an early T cell receptor β-chain transcript. . J. Immunol. 159::177582
    [Crossref] [Google Scholar]
  11. 11.
    Schattgen SA, Thomas PG. 2018.. Bohemian T cell receptors: sketching the repertoires of unconventional lymphocytes. . Immunol. Rev. 284::7990
    [Crossref] [Google Scholar]
  12. 12.
    Bilate AM, London M, Castro TBR, Mesin L, Bortolatto J, et al. 2020.. T cell receptor is required for differentiation, but not maintenance, of intestinal CD4+ intraepithelial lymphocytes. . Immunity 53::100114.e20
    [Crossref] [Google Scholar]
  13. 13.
    Nakandakari-Higa S, Canesso MCC, Walker S, Chudnovskiy A, Jacobsen JT, et al. 2023.. Universal recording of cell-cell contacts in vivo for interaction-based transcriptomics. . bioRxiv 2023.03.16.533003. https://doi.org/10.1101/2023.03.16.533003
  14. 14.
    Bousbaine D, Fisch LI, London M, Bhagchandani P, Rezende de Castro TB, et al. 2022.. A conserved Bacteroidetes antigen induces anti-inflammatory intestinal T lymphocytes. . Science 377::66066
    [Crossref] [Google Scholar]
  15. 15.
    McDonald BD, Jabri B, Bendelac A. 2018.. Diverse developmental pathways of intestinal intraepithelial lymphocytes. . Nat. Rev. Immunol. 18::51425
    [Crossref] [Google Scholar]
  16. 16.
    Reis BS, Rogoz A, Costa-Pinto FA, Taniuchi I, Mucida D. 2013.. Mutual expression of the transcription factors Runx3 and ThPOK regulates intestinal CD4+ T cell immunity. . Nat. Immunol. 14::27180
    [Crossref] [Google Scholar]
  17. 17.
    Reis BS, Hoytema van Konijnenburg DP, Grivennikov SI, Mucida D. 2014.. Transcription factor T-bet regulates intraepithelial lymphocyte functional maturation. . Immunity 41::24456
    [Crossref] [Google Scholar]
  18. 18.
    Konkel JE, Maruyama T, Carpenter AC, Xiong Y, Zamarron BF, et al. 2011.. Control of the development of CD8αα+ intestinal intraepithelial lymphocytes by TGF-β. . Nat. Immunol. 12::31219
    [Crossref] [Google Scholar]
  19. 19.
    Klose CS, Blatz K, d'Hargues Y, Hernandez PP, Kofoed-Nielsen M, et al. 2014.. The transcription factor T-bet is induced by IL-15 and thymic agonist selection and controls CD8αα+ intraepithelial lymphocyte development. . Immunity 41::23043
    [Crossref] [Google Scholar]
  20. 20.
    Leishman AJ, Naidenko OV, Attinger A, Koning F, Lena CJ, et al. 2001.. T cell responses modulated through interaction between CD8αα and the nonclassical MHC class I molecule, TL. . Science 294::193639
    [Crossref] [Google Scholar]
  21. 21.
    Liu Y, Xiong Y, Naidenko OV, Liu JH, Zhang R, et al. 2003.. The crystal structure of a TL/CD8αα complex at 2.1 Å resolution: implications for modulation of T cell activation and memory. . Immunity 18::20515
    [Crossref] [Google Scholar]
  22. 22.
    Olivares-Villagomez D, Mendez-Fernandez YV, Parekh VV, Lalani S, Vincent TL, et al. 2008.. Thymus leukemia antigen controls intraepithelial lymphocyte function and inflammatory bowel disease. . PNAS 105::1793136
    [Crossref] [Google Scholar]
  23. 23.
    Huang Y, Park Y, Wang-Zhu Y, Larange A, Arens R, et al. 2011.. Mucosal memory CD8+ T cells are selected in the periphery by an MHC class I molecule. . Nat. Immunol. 12::108695
    [Crossref] [Google Scholar]
  24. 24.
    Latthe M, Terry L, MacDonald TT. 1994.. High frequency of CD8αα homodimer-bearing T cells in human fetal intestine. . Eur. J. Immunol. 24::17035
    [Crossref] [Google Scholar]
  25. 25.
    Kuo S, El Guindy A, Panwala CM, Hagan PM, Camerini V. 2001.. Differential appearance of T cell subsets in the large and small intestine of neonatal mice. . Pediatr. Res. 49::54351
    [Crossref] [Google Scholar]
  26. 26.
    Torow N, Yu K, Hassani K, Freitag J, Schulz O, et al. 2015.. Active suppression of intestinal CD4+TCRαβ+ T-lymphocyte maturation during the postnatal period. . Nat. Commun. 6::7725
    [Crossref] [Google Scholar]
  27. 27.
    Manzano M, Abadia-Molina AC, Garcia-Olivares E, Gil A, Rueda R. 2002.. Absolute counts and distribution of lymphocyte subsets in small intestine of BALB/c mice change during weaning. . J. Nutr. 132::275762
    [Crossref] [Google Scholar]
  28. 28.
    Helgeland L, Brandtzaeg P, Rolstad B, Vaage JT. 1997.. Sequential development of intraepithelial γδ and αβ T lymphocytes expressing CD8αβ in neonatal rat intestine: requirement for the thymus. . Immunology 92::44756
    [Crossref] [Google Scholar]
  29. 29.
    Steege JC, Buurman WA, Forget PP. 1997.. The neonatal development of intraepithelial and lamina propria lymphocytes in the murine small intestine. . Dev. Immunol. 5::12128
    [Crossref] [Google Scholar]
  30. 30.
    Umesaki Y, Setoyama H, Matsumoto S, Okada Y. 1993.. Expansion of αβ T-cell receptor–bearing intestinal intraepithelial lymphocytes after microbial colonization in germ-free mice and its independence from thymus. . Immunology 79::3237
    [Google Scholar]
  31. 31.
    Lockhart A, Reed A, Rezende de Castro T, Herman C, Campos Canesso MC, Mucida D. 2023.. Dietary protein shapes the profile and repertoire of intestinal CD4+ T cells. . J. Exp. Med. 220::e20221816
    [Crossref] [Google Scholar]
  32. 32.
    Eberl G, Littman DR. 2004.. Thymic origin of intestinal αβ T cells revealed by fate mapping of RORγt+ cells. . Science 305::24851
    [Crossref] [Google Scholar]
  33. 33.
    Levelt CN, de Jong YP, Mizoguchi E, O'Farrelly C, Bhan AK, et al. 1999.. High- and low-affinity single-peptide/MHC ligands have distinct effects on the development of mucosal CD8αα and CD8αβ T lymphocytes. . PNAS 96::562833
    [Crossref] [Google Scholar]
  34. 34.
    Leishman AJ, Gapin L, Capone M, Palmer E, MacDonald HR, et al. 2002.. Precursors of functional MHC class I– or class II–restricted CD8αα+ T cells are positively selected in the thymus by agonist self-peptides. . Immunity 16::35564
    [Crossref] [Google Scholar]
  35. 35.
    Yamagata T, Mathis D, Benoist C. 2004.. Self-reactivity in thymic double-positive cells commits cells to a CD8αα lineage with characteristics of innate immune cells. . Nat. Immunol. 5::597605
    [Crossref] [Google Scholar]
  36. 36.
    Gangadharan D, Lambolez F, Attinger A, Wang-Zhu Y, Sullivan BA, Cheroutre H. 2006.. Identification of pre- and postselection TCRαβ+ intraepithelial lymphocyte precursors in the thymus. . Immunity 25::63141
    [Crossref] [Google Scholar]
  37. 37.
    Moran AE, Holzapfel KL, Xing Y, Cunningham NR, Maltzman JS, et al. 2011.. T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. . J. Exp. Med. 208::127989
    [Crossref] [Google Scholar]
  38. 38.
    Stritesky GL, Jameson SC, Hogquist KA. 2012.. Selection of self-reactive T cells in the thymus. . Annu. Rev. Immunol. 30::95114
    [Crossref] [Google Scholar]
  39. 39.
    Regnault A, Cumano A, Vassalli P, Guy-Grand D, Kourilsky P. 1994.. Oligoclonal repertoire of the CD8αα and the CD8αβ TCR-α/β murine intestinal intraepithelial T lymphocytes: evidence for the random emergence of T cells. . J. Exp. Med. 180::134558
    [Crossref] [Google Scholar]
  40. 40.
    Helgeland L, Johansen FE, Utgaard JO, Vaage JT, Brandtzaeg P. 1999.. Oligoclonality of rat intestinal intraepithelial T lymphocytes: overlapping TCR β-chain repertoires in the CD4 single-positive and CD4/CD8 double-positive subsets. . J. Immunol. 162::268392
    [Crossref] [Google Scholar]
  41. 41.
    Helgeland L, Vaage JT, Rolstad B, Midtvedt T, Brandtzaeg P. 1996.. Microbial colonization influences composition and T-cell receptor Vβ repertoire of intraepithelial lymphocytes in rat intestine. . Immunology 89::494501
    [Crossref] [Google Scholar]
  42. 42.
    Regnault A, Levraud JP, Lim A, Six A, Moreau C, et al. 1996.. The expansion and selection of T cell receptor αβ intestinal intraepithelial T cell clones. . Eur. J. Immunol. 26::91421
    [Crossref] [Google Scholar]
  43. 43.
    Arstila T, Arstila TP, Calbo S, Selz F, Malassis-Seris M, et al. 2000.. Identical T cell clones are located within the mouse gut epithelium and lamina propia and circulate in the thoracic duct lymph. . J. Exp. Med. 191::82334
    [Crossref] [Google Scholar]
  44. 44.
    Helgeland L, Dissen E, Dai KZ, Midtvedt T, Brandtzaeg P, Vaage JT. 2004.. Microbial colonization induces oligoclonal expansions of intraepithelial CD8 T cells in the gut. . Eur. J. Immunol. 34::3389400
    [Crossref] [Google Scholar]
  45. 45.
    McDonald BD, Bunker JJ, Ishizuka IE, Jabri B, Bendelac A. 2014.. Elevated T cell receptor signaling identifies a thymic precursor to the TCRαβ+CD4CD8β intraepithelial lymphocyte lineage. . Immunity 41::21929
    [Crossref] [Google Scholar]
  46. 46.
    Bilate AM, Bousbaine D, Mesin L, Agudelo M, Leube J, et al. 2016.. Tissue-specific emergence of regulatory and intraepithelial T cells from a clonal T cell precursor. . Sci. Immunol. 1::eaaf7471
    [Crossref] [Google Scholar]
  47. 47.
    Mayans S, Stepniak D, Palida SF, Larange A, Dreux J, et al. 2014.. αβ T cell receptors expressed by CD4CD8αβ intraepithelial T cells drive their fate into a unique lineage with unusual MHC reactivities. . Immunity 41::20718
    [Crossref] [Google Scholar]
  48. 48.
    Camerini V, Panwala C, Kronenberg M. 1993.. Regional specialization of the mucosal immune system. Intraepithelial lymphocytes of the large intestine have a different phenotype and function than those of the small intestine. . J. Immunol. 151::176576
    [Crossref] [Google Scholar]
  49. 49.
    Beagley KW, Fujihashi K, Lagoo AS, Lagoo-Deenadaylan S, Black CA, et al. 1995.. Differences in intraepithelial lymphocyte T cell subsets isolated from murine small versus large intestine. . J. Immunol. 154::561119
    [Crossref] [Google Scholar]
  50. 50.
    Boll G, Rudolphi A, Spiess S, Reimann J. 1995.. Regional specialization of intraepithelial T cells in the murine small and large intestine. . Scand. J. Immunol. 41::10313
    [Crossref] [Google Scholar]
  51. 51.
    Lundqvist C, Baranov V, Hammarstrom S, Athlin L, Hammarstrom ML. 1995.. Intra-epithelial lymphocytes. Evidence for regional specialization and extrathymic T cell maturation in the human gut epithelium. . Int. Immunol. 7::147387
    [Crossref] [Google Scholar]
  52. 52.
    Hoytema van Konijnenburg DP, Reis BS, Pedicord VA, Farache J, Victora GD, Mucida D. 2017.. Intestinal epithelial and intraepithelial T cell crosstalk mediates a dynamic response to infection. . Cell 171::78394.e13
    [Crossref] [Google Scholar]
  53. 53.
    Ribot JC, deBarros A, Pang DJ, Neves JF, Peperzak V, et al. 2009.. CD27 is a thymic determinant of the balance between interferon-γ- and interleukin-17-producing γδ T cell subsets. . Nat. Immunol. 10::42736
    [Crossref] [Google Scholar]
  54. 54.
    Muñoz-Ruiz M, Ribot JC, Grosso AR, Gonçalves-Sousa N, Pamplona A, et al. 2016.. TCR signal strength controls thymic differentiation of discrete proinflammatory γδ T cell subsets. . Nat. Immunol. 17::72127
    [Crossref] [Google Scholar]
  55. 55.
    Jensen KD, Su X, Shin S, Li L, Youssef S, et al. 2008.. Thymic selection determines γδ T cell effector fate: Antigen-naive cells make interleukin-17 and antigen-experienced cells make interferon γ. . Immunity 29::90100
    [Crossref] [Google Scholar]
  56. 56.
    Willcox BE, Willcox CR. 2019.. γδ TCR ligands: the quest to solve a 500-million-year-old mystery. . Nat. Immunol. 20::12128
    [Crossref] [Google Scholar]
  57. 57.
    Vandereyken M, James OJ, Swamy M. 2020.. Mechanisms of activation of innate-like intraepithelial T lymphocytes. . Mucosal Immunol. 13::72131
    [Crossref] [Google Scholar]
  58. 58.
    Davis MM, Bjorkman PJ. 1988.. T-cell antigen receptor genes and T-cell recognition. . Nature 334::395402
    [Crossref] [Google Scholar]
  59. 59.
    Lafaille JJ, DeCloux A, Bonneville M, Takagaki Y, Tonegawa S. 1989.. Junctional sequences of T cell receptor γδ genes: implications for γδ T cell lineages and for a novel intermediate of VDJ joining. . Cell 59::85970
    [Crossref] [Google Scholar]
  60. 60.
    Takagaki Y, DeCloux A, Bonneville M, Tonegawa S. 1989.. Diversity of γδ T-cell receptors on murine intestinal intra-epithelial lymphocytes. . Nature 339::71214
    [Crossref] [Google Scholar]
  61. 61.
    Parker ME, Ciofani M. 2020.. Regulation of γδ T cell effector diversification in the thymus. . Front. Immunol. 11::42
    [Crossref] [Google Scholar]
  62. 62.
    Hayday A, Gibbons D. 2008.. Brokering the peace: the origin of intestinal T cells. . Mucosal Immunol. 1::17274
    [Crossref] [Google Scholar]
  63. 63.
    Laky K, Lefrançois L, Lingenheld EG, Ishikawa H, Lewis JM, et al. 2000.. Enterocyte expression of interleukin 7 induces development of γδ T cells and Peyer's patches. . J. Exp. Med. 191::156980
    [Crossref] [Google Scholar]
  64. 64.
    Naito T, Shiohara T, Hibi T, Suematsu M, Ishikawa H. 2008.. RORγt is dispensable for the development of intestinal mucosal T cells. . Mucosal Immunol. 1::198207
    [Crossref] [Google Scholar]
  65. 65.
    Bas A, Swamy M, Abeler-Dorner L, Williams G, Pang DJ, et al. 2011.. Butyrophilin-like 1 encodes an enterocyte protein that selectively regulates functional interactions with T lymphocytes. . PNAS 108::437681
    [Crossref] [Google Scholar]
  66. 66.
    Lebrero-Fernández C, Bergström JH, Pelaseyed T, Bas-Forsberg A. 2016.. Murine butyrophilin-like 1 and Btnl6 form heteromeric complexes in small intestinal epithelial cells and promote proliferation of local T lymphocytes. . Front. Immunol. 7::1
    [Crossref] [Google Scholar]
  67. 67.
    Di Marco Barros R, Roberts NA, Dart RJ, Vantourout P, Jandke A, et al. 2016.. Epithelia use butyrophilin-like molecules to shape organ-specific γδ T cell compartments. . Cell 167::20318.e17
    [Crossref] [Google Scholar]
  68. 68.
    Melandri D, Zlatareva I, Chaleil RAG, Dart RJ, Chancellor A, et al. 2018.. The γδTCR combines innate immunity with adaptive immunity by utilizing spatially distinct regions for agonist selection and antigen responsiveness. . Nat. Immunol. 19::135265
    [Crossref] [Google Scholar]
  69. 69.
    Willcox CR, Vantourout P, Salim M, Zlatareva I, Melandri D, et al. 2019.. Butyrophilin-like 3 directly binds a human Vγ4+ T cell receptor using a modality distinct from clonally-restricted antigen. . Immunity 51::81325.e4
    [Crossref] [Google Scholar]
  70. 70.
    Boyden LM, Lewis JM, Barbee SD, Bas A, Girardi M, et al. 2008.. Skint1, the prototype of a newly identified immunoglobulin superfamily gene cluster, positively selects epidermal γδ T cells. . Nat. Genet. 40::65662
    [Crossref] [Google Scholar]
  71. 71.
    Herrmann T, Karunakaran MM, Fichtner AS. 2020.. A glance over the fence: using phylogeny and species comparison for a better understanding of antigen recognition by human γδ T-cells. . Immunol. Rev. 298::21836
    [Crossref] [Google Scholar]
  72. 72.
    Crowley MP, Fahrer AM, Baumgarth N, Hampl J, Gutgemann I, et al. 2000.. A population of murine γδ T cells that recognize an inducible MHC class Ib molecule. . Science 287::31416
    [Crossref] [Google Scholar]
  73. 73.
    Shin S, El-Diwany R, Schaffert S, Adams EJ, Garcia KC, et al. 2005.. Antigen recognition determinants of γδ T cell receptors. . Science 308::25255
    [Crossref] [Google Scholar]
  74. 74.
    Hahn AM, Vogg L, Brey S, Schneider A, Schafer S, et al. 2023.. A monoclonal Trd chain supports the development of the complete set of functional γδ T cell lineages. . Cell Rep. 42::112558
    [Crossref] [Google Scholar]
  75. 75.
    Rock EP, Sibbald PR, Davis MM, Chien YH. 1994.. CDR3 length in antigen-specific immune receptors. . J. Exp. Med. 179::32338
    [Crossref] [Google Scholar]
  76. 76.
    Correa I, Bix M, Liao NS, Zijlstra M, Jaenisch R, Raulet D. 1992.. Most γδ T cells develop normally in β2-microglobulin-deficient mice. . PNAS 89::65357
    [Crossref] [Google Scholar]
  77. 77.
    Bigby M, Markowitz JS, Bleicher PA, Grusby MJ, Simha S, et al. 1993.. Most γδ T cells develop normally in the absence of MHC class II molecules. . J. Immunol. 151::446575
    [Crossref] [Google Scholar]
  78. 78.
    Modlin RL, Pirmez C, Hofman FM, Torigian V, Uyemura K, et al. 1989.. Lymphocytes bearing antigen-specific γδ T-cell receptors accumulate in human infectious disease lesions. . Nature 339::54448
    [Crossref] [Google Scholar]
  79. 79.
    Halary F, Pitard V, Dlubek D, Krzysiek R, de la Salle H, et al. 2005.. Shared reactivity of Vδ2neg γδ T cells against cytomegalovirus-infected cells and tumor intestinal epithelial cells. . J. Exp. Med. 201::156778
    [Crossref] [Google Scholar]
  80. 80.
    Ravens S, Schultze-Florey C, Raha S, Sandrock I, Drenker M, et al. 2017.. Human γδ T cells are quickly reconstituted after stem-cell transplantation and show adaptive clonal expansion in response to viral infection. . Nat. Immunol. 18::393401
    [Crossref] [Google Scholar]
  81. 81.
    Davey MS, Willcox CR, Joyce SP, Ladell K, Kasatskaya SA, et al. 2017.. Clonal selection in the human Vδ1 T cell repertoire indicates γδTCR-dependent adaptive immune surveillance. . Nat. Commun. 8::14760
    [Crossref] [Google Scholar]
  82. 82.
    Verstichel G, Vermijlen D, Martens L, Goetgeluk G, Brouwer M, et al. 2017.. The checkpoint for agonist selection precedes conventional selection in human thymus. . Sci. Immunol. 2::eaah4232
    [Crossref] [Google Scholar]
  83. 83.
    Mayassi T, Jabri B. 2018.. Human intraepithelial lymphocytes. . Mucosal Immunol. 11::128189
    [Crossref] [Google Scholar]
  84. 84.
    Denning TL, Granger SW, Mucida D, Graddy R, Leclercq G, et al. 2007.. Mouse TCRαβ+CD8αα intraepithelial lymphocytes express genes that down-regulate their antigen reactivity and suppress immune responses. . J. Immunol. 178::423039
    [Crossref] [Google Scholar]
  85. 85.
    Pobezinsky LA, Angelov GS, Tai X, Jeurling S, Van Laethem F, et al. 2012.. Clonal deletion and the fate of autoreactive thymocytes that survive negative selection. . Nat. Immunol. 13::56978
    [Crossref] [Google Scholar]
  86. 86.
    Guy-Grand D, Vassalli P, Eberl G, Pereira P, Burlen-Defranoux O, et al. 2013.. Origin, trafficking, and intraepithelial fate of gut-tropic T cells. . J. Exp. Med. 210::183954
    [Crossref] [Google Scholar]
  87. 87.
    Nie J, Carpenter AC, Chopp LB, Chen T, Balmaceno-Criss M, et al. 2022.. The transcription factor LRF promotes integrin β7 expression by and gut homing of CD8αα+ intraepithelial lymphocyte precursors. . Nat. Immunol. 23::594604
    [Crossref] [Google Scholar]
  88. 88.
    Staton TL, Habtezion A, Winslow MM, Sato T, Love PE, Butcher EC. 2006.. CD8+ recent thymic emigrants home to and efficiently repopulate the small intestine epithelium. . Nat. Immunol. 7::48288
    [Crossref] [Google Scholar]
  89. 89.
    Ruscher R, Lee ST, Salgado OC, Breed ER, Osum SH, Hogquist KA. 2020.. Intestinal CD8αα IELs derived from two distinct thymic precursors have staggered ontogeny. . J. Exp. Med. 217::e20192336
    [Crossref] [Google Scholar]
  90. 90.
    Ruscher R, Kummer RL, Lee YJ, Jameson SC, Hogquist KA. 2017.. CD8αα intraepithelial lymphocytes arise from two main thymic precursors. . Nat. Immunol. 18::77179
    [Crossref] [Google Scholar]
  91. 91.
    Das G, Gould DS, Augustine MM, Fragoso G, Sciutto E, et al. 2000.. Qa-2-dependent selection of CD8α/α T cell receptor α/β+ cells in murine intestinal intraepithelial lymphocytes. . J. Exp. Med. 192::152128
    [Crossref] [Google Scholar]
  92. 92.
    Gapin L, Cheroutre H, Kronenberg M. 1999.. Cutting edge: TCRαβ+ CD8αα+ T cells are found in intestinal intraepithelial lymphocytes of mice that lack classical MHC class I molecules. . J. Immunol. 163::41004
    [Crossref] [Google Scholar]
  93. 93.
    Park SH, Guy-Grand D, Lemonnier FA, Wang CR, Bendelac A, Jabri B. 1999.. Selection and expansion of CD8α/α1 T cell receptor α/β1 intestinal intraepithelial lymphocytes in the absence of both classical major histocompatibility complex class I and nonclassical CD1 molecules. . J. Exp. Med. 190::88590
    [Crossref] [Google Scholar]
  94. 94.
    Wojciech L, Szurek E, Kuczma M, Cebula A, Elhefnawy WR, et al. 2018.. Non-canonicaly recruited TCRαβCD8αα IELs recognize microbial antigens. . Sci. Rep. 8::10848
    [Crossref] [Google Scholar]
  95. 95.
    Masopust D, Vezys V, Wherry EJ, Barber DL, Ahmed R. 2006.. Cutting edge: Gut microenvironment promotes differentiation of a unique memory CD8 T cell population. . J. Immunol. 176::207983
    [Crossref] [Google Scholar]
  96. 96.
    Crowl JT, Heeg M, Ferry A, Milner JJ, Omilusik KD, et al. 2022.. Tissue-resident memory CD8+ T cells possess unique transcriptional, epigenetic and functional adaptations to different tissue environments. . Nat. Immunol. 23::112131
    [Crossref] [Google Scholar]
  97. 97.
    Shires J, Theodoridis E, Hayday AC. 2001.. Biological insights into TCRγδ+ and TCRαβ+ intraepithelial lymphocytes provided by serial analysis of gene expression (SAGE). . Immunity 15::41934
    [Crossref] [Google Scholar]
  98. 98.
    Masopust D, Jiang J, Shen H, Lefrançois L. 2001.. Direct analysis of the dynamics of the intestinal mucosa CD8 T cell response to systemic virus infection. . J. Immunol. 166::234856
    [Crossref] [Google Scholar]
  99. 99.
    Sheridan BS, Pham QM, Lee YT, Cauley LS, Puddington L, Lefrançois L. 2014.. Oral infection drives a distinct population of intestinal resident memory CD8+ T cells with enhanced protective function. . Immunity 40::74757
    [Crossref] [Google Scholar]
  100. 100.
    Ferguson A. 1977.. Intraepithelial lymphocytes of the small intestine. . Gut 18::92137
    [Crossref] [Google Scholar]
  101. 101.
    Mowat AM. 1990.. Human intraepithelial lymphocytes. . Springer Semin. Immunopathol. 12::16590
    [Crossref] [Google Scholar]
  102. 102.
    Gebhardt T, Wakim LM, Eidsmo L, Reading PC, Heath WR, Carbone FR. 2009.. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. . Nat. Immunol. 10::52430
    [Crossref] [Google Scholar]
  103. 103.
    Masopust D, Choo D, Vezys V, Wherry EJ, Duraiswamy J, et al. 2010.. Dynamic T cell migration program provides resident memory within intestinal epithelium. . J. Exp. Med. 207::55364
    [Crossref] [Google Scholar]
  104. 104.
    Yang K, Kallies A. 2021.. Tissue-specific differentiation of CD8+ resident memory T cells. . Trends Immunol. 42::87690
    [Crossref] [Google Scholar]
  105. 105.
    Szabo PA, Miron M, Farber DL. 2019.. Location, location, location: tissue resident memory T cells in mice and humans. . Sci. Immunol. 4::aas9673
    [Crossref] [Google Scholar]
  106. 106.
    Schreiner D, King CG. 2018.. CD4+ memory T cells at home in the tissue: mechanisms for health and disease. . Front. Immunol. 9::2394
    [Crossref] [Google Scholar]
  107. 107.
    Zhang N, Bevan MJ. 2013.. Transforming growth factor β signaling controls the formation and maintenance of gut-resident memory T cells by regulating migration and retention. . Immunity 39::68796
    [Crossref] [Google Scholar]
  108. 108.
    Milner JJ, Toma C, Yu B, Zhang K, Omilusik K, et al. 2017.. Runx3 programs CD8+ T cell residency in non-lymphoid tissues and tumours. . Nature 552::25357
    [Crossref] [Google Scholar]
  109. 109.
    Cervantes-Barragan L, Chai JN, Tianero MD, Di Luccia B, Ahern PP, et al. 2017.. Lactobacillus reuteri induces gut intraepithelial CD4+CD8αα+ T cells. . Science 357::80610
    [Crossref] [Google Scholar]
  110. 110.
    Wijeyesinghe S, Beura LK, Pierson MJ, Stolley JM, Adam OA, et al. 2021.. Expansible residence decentralizes immune homeostasis. . Nature 592::45762
    [Crossref] [Google Scholar]
  111. 111.
    Rubtsov YP, Niec RE, Josefowicz S, Li L, Darce J, et al. 2010.. Stability of the regulatory T cell lineage in vivo. . Science 329::166771
    [Crossref] [Google Scholar]
  112. 112.
    Sujino T, London M, Hoytema van Konijnenburg DP, Rendon T, Buch T, et al. 2016.. Tissue adaptation of regulatory and intraepithelial CD4+ T cells controls gut inflammation. . Science 352::158186
    [Crossref] [Google Scholar]
  113. 113.
    London M, Bilate AM, Castro TBR, Sujino T, Mucida D. 2021.. Stepwise chromatin and transcriptional acquisition of an intraepithelial lymphocyte program. . Nat. Immunol. 22::44959
    [Crossref] [Google Scholar]
  114. 114.
    Sarrabayrouse G, Bossard C, Chauvin JM, Jarry A, Meurette G, et al. 2014.. CD4CD8αα lymphocytes, a novel human regulatory T cell subset induced by colonic bacteria and deficient in patients with inflammatory bowel disease. . PLOS Biol. 12::e1001833
    [Crossref] [Google Scholar]
  115. 115.
    Mucida D, Husain MM, Muroi S, van Wijk F, Shinnakasu R, et al. 2013.. Transcriptional reprogramming of mature CD4+ helper T cells generates distinct MHC class II–restricted cytotoxic T lymphocytes. . Nat. Immunol. 14::28189
    [Crossref] [Google Scholar]
  116. 116.
    Parsa R, London M, Rezende de Castro TB, Reis B, Buissant des Amorie J, et al. 2022.. Newly recruited intraepithelial Ly6A+CCR9+CD4+ T cells protect against enteric viral infection. . Immunity 55::123449.e6
    [Crossref] [Google Scholar]
  117. 117.
    Wagner N, Lohler J, Kunkel EJ, Ley K, Leung E, et al. 1996.. Critical role for β7 integrins in formation of the gut-associated lymphoid tissue. . Nature 382::36670
    [Crossref] [Google Scholar]
  118. 118.
    Lefrançois L, Parker CM, Olson S, Muller W, Wagner N, et al. 1999.. The role of β7 integrins in CD8 T cell trafficking during an antiviral immune response. . J. Exp. Med. 189::163138
    [Crossref] [Google Scholar]
  119. 119.
    Iwata M, Hirakiyama A, Eshima Y, Kagechika H, Kato C, Song SY. 2004.. Retinoic acid imprints gut-homing specificity on T cells. . Immunity 21::52738
    [Crossref] [Google Scholar]
  120. 120.
    Shiow LR, Rosen DB, Brdickova N, Xu Y, An J, et al. 2006.. CD69 acts downstream of interferon-α/β to inhibit S1P1 and lymphocyte egress from lymphoid organs. . Nature 440::54044
    [Crossref] [Google Scholar]
  121. 121.
    Schon MP, Arya A, Murphy EA, Adams CM, Strauch UG, et al. 1999.. Mucosal T lymphocyte numbers are selectively reduced in integrin αE (CD103)-deficient mice. . J. Immunol. 162::664149
    [Crossref] [Google Scholar]
  122. 122.
    Cepek KL, Shaw SK, Parker CM, Russell GJ, Morrow JS, et al. 1994.. Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the αEβ7 integrin. . Nature 372::19093
    [Crossref] [Google Scholar]
  123. 123.
    Lodolce JP, Boone DL, Chai S, Swain RE, Dassopoulos T, et al. 1998.. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. . Immunity 9::66976
    [Crossref] [Google Scholar]
  124. 124.
    Yu Q, Tang C, Xun S, Yajima T, Takeda K, Yoshikai Y. 2006.. MyD88-dependent signaling for IL-15 production plays an important role in maintenance of CD8αα TCRαβ and TCR γδ intestinal intraepithelial lymphocytes. . J. Immunol. 176::618085
    [Crossref] [Google Scholar]
  125. 125.
    Meresse B, Chen Z, Ciszewski C, Tretiakova M, Bhagat G, et al. 2004.. Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. . Immunity 21::35766
    [Crossref] [Google Scholar]
  126. 126.
    Barrett TA, Gajewski TF, Danielpour D, Chang EB, Beagley KW, Bluestone JA. 1992.. Differential function of intestinal intraepithelial lymphocyte subsets. . J. Immunol. 149::112430
    [Crossref] [Google Scholar]
  127. 127.
    Lundqvist C, Melgar S, Yeung MM, Hammarstrom S, Hammarstrom ML. 1996.. Intraepithelial lymphocytes in human gut have lytic potential and a cytokine profile that suggest T helper 1 and cytotoxic functions. . J. Immunol. 157::192634
    [Crossref] [Google Scholar]
  128. 128.
    Fahrer AM, Konigshofer Y, Kerr EM, Ghandour G, Mack DH, et al. 2001.. Attributes of γδ intraepithelial lymphocytes as suggested by their transcriptional profile. . PNAS 98::1026166
    [Crossref] [Google Scholar]
  129. 129.
    Bandeira A, Mota-Santos T, Itohara S, Degermann S, Heusser C, et al. 1990.. Localization of γ/δ T cells to the intestinal epithelium is independent of normal microbial colonization. . J. Exp. Med. 172::23944
    [Crossref] [Google Scholar]
  130. 130.
    Li Y, Innocentin S, Withers DR, Roberts NA, Gallagher AR, et al. 2011.. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. . Cell 147::62940
    [Crossref] [Google Scholar]
  131. 131.
    Panda SK, Peng V, Sudan R, Ulezko Antonova A, Di Luccia B, et al. 2023.. Repression of the aryl-hydrocarbon receptor prevents oxidative stress and ferroptosis of intestinal intraepithelial lymphocytes. . Immunity 56::797812.e4
    [Crossref] [Google Scholar]
  132. 132.
    Das G, Augustine MM, Das J, Bottomly K, Ray P, Ray A. 2003.. An important regulatory role for CD4+CD8αα T cells in the intestinal epithelial layer in the prevention of inflammatory bowel disease. . PNAS 100::532429
    [Crossref] [Google Scholar]
  133. 133.
    Takeuchi M, Miyazaki H, Mirokawa K, Yokokura T, Yoshikai Y. 1993.. Age-related changes of T cell subsets in intestinal intraepithelial lymphocytes of mice. . Eur. J. Immunol. 23::140911
    [Crossref] [Google Scholar]
  134. 134.
    Lin CH, Chen MC, Lin LL, Christian DA, Min B, et al. 2021.. Gut epithelial IL-27 confers intestinal immunity through the induction of intraepithelial lymphocytes. . J. Exp. Med. 218::e20210021
    [Crossref] [Google Scholar]
  135. 135.
    Fulgoni VL 3rd. 2008.. Current protein intake in America: analysis of the National Health and Nutrition Examination Survey, 2003–2004. . Am. J. Clin. Nutr. 87:(Suppl.):155457
    [Crossref] [Google Scholar]
  136. 136.
    Sun CM, Hall JA, Blank RB, Bouladoux N, Oukka M, et al. 2007.. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 Treg cells via retinoic acid. . J. Exp. Med. 204::177585
    [Crossref] [Google Scholar]
  137. 137.
    Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, Hall J, Sun CM, et al. 2007.. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid–dependent mechanism. . J. Exp. Med. 204::175764
    [Crossref] [Google Scholar]
  138. 138.
    Yu S, Bruce D, Froicu M, Weaver V, Cantorna MT. 2008.. Failure of T cell homing, reduced CD4/CD8αα intraepithelial lymphocytes, and inflammation in the gut of vitamin D receptor KO mice. . PNAS 105::2083439
    [Crossref] [Google Scholar]
  139. 139.
    Bruce D, Cantorna MT. 2011.. Intrinsic requirement for the vitamin D receptor in the development of CD8αα-expressing T cells. . J. Immunol. 186::281925
    [Crossref] [Google Scholar]
  140. 140.
    Veldhoen M, Brucklacher-Waldert V. 2012.. Dietary influences on intestinal immunity. . Nat. Rev. Immunol. 12::696708
    [Crossref] [Google Scholar]
  141. 141.
    Sonnenburg JL, Backhed F. 2016.. Diet–microbiota interactions as moderators of human metabolism. . Nature 535::5664
    [Crossref] [Google Scholar]
  142. 142.
    Hill JH, Round JL. 2021.. Snapshot: microbiota effects on host physiology. . Cell 184::2796.e1
    [Crossref] [Google Scholar]
  143. 143.
    Gensollen T, Iyer SS, Kasper DL, Blumberg RS. 2016.. How colonization by microbiota in early life shapes the immune system. . Science 352::53944
    [Crossref] [Google Scholar]
  144. 144.
    Kawaguchi M, Nanno M, Umesaki Y, Matsumoto S, Okada Y, et al. 1993.. Cytolytic activity of intestinal intraepithelial lymphocytes in germ-free mice is strain dependent and determined by T cells expressing γδ T-cell antigen receptors. . PNAS 90::859194
    [Crossref] [Google Scholar]
  145. 145.
    Ismail AS, Behrendt CL, Hooper LV. 2009.. Reciprocal interactions between commensal bacteria and γδ intraepithelial lymphocytes during mucosal injury. . J. Immunol. 182::304754
    [Crossref] [Google Scholar]
  146. 146.
    Ismail AS, Severson KM, Vaishnava S, Behrendt CL, Yu X, et al. 2011.. γδ intraepithelial lymphocytes are essential mediators of host–microbial homeostasis at the intestinal mucosal surface. . PNAS 108::874348
    [Crossref] [Google Scholar]
  147. 147.
    Hoytema van Konijnenburg DP, Mucida D. 2017.. Intraepithelial lymphocytes. . Curr. Biol. 27::R73739
    [Crossref] [Google Scholar]
  148. 148.
    Donaldson GP, Lee SM, Mazmanian SK. 2016.. Gut biogeography of the bacterial microbiota. . Nat. Rev. Microbiol. 14::2032
    [Crossref] [Google Scholar]
  149. 149.
    Chen B, Ni X, Sun R, Zeng B, Wei H, et al. 2018.. Commensal bacteria–dependent CD8αβ+ T cells in the intestinal epithelium produce antimicrobial peptides. . Front. Immunol. 9::1065
    [Crossref] [Google Scholar]
  150. 150.
    Brugiroux S, Beutler M, Pfann C, Garzetti D, Ruscheweyh HJ, et al. 2016.. Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium. . Nat. Microbiol. 2::16215
    [Crossref] [Google Scholar]
  151. 151.
    Biton M, Haber AL, Rogel N, Burgin G, Beyaz S, et al. 2018.. T helper cell cytokines modulate intestinal stem cell renewal and differentiation. . Cell 175::130720.e22
    [Crossref] [Google Scholar]
  152. 152.
    Koyama M, Mukhopadhyay P, Schuster IS, Henden AS, Hulsdunker J, et al. 2019.. MHC class II antigen presentation by the intestinal epithelium initiates graft-versus-host disease and is influenced by the microbiota. . Immunity 51::88598.e7
    [Crossref] [Google Scholar]
  153. 153.
    Umesaki Y, Okada Y, Matsumoto S, Imaoka A, Setoyama H. 1995.. Segmented filamentous bacteria are indigenous intestinal bacteria that activate intraepithelial lymphocytes and induce MHC class II molecules and fucosyl asialo GM1 glycolipids on the small intestinal epithelial cells in the ex-germ-free mouse. . Microbiol. Immunol. 39::55562
    [Crossref] [Google Scholar]
  154. 154.
    Moon S, Park Y, Hyeon S, Kim YM, Kim JH, et al. 2021.. Niche-specific MHC II and PD-L1 regulate CD4+CD8αα+ intraepithelial lymphocyte differentiation. . J. Exp. Med. 218::e20201665
    [Crossref] [Google Scholar]
  155. 155.
    Gordon S. 2008.. Elie Metchnikoff: father of natural immunity. . Eur. J. Immunol. 38::325764
    [Crossref] [Google Scholar]
  156. 156.
    Hayday AC. 2019.. γδ T cell update: adaptate orchestrators of immune surveillance. . J. Immunol. 203::31120
    [Crossref] [Google Scholar]
  157. 157.
    Gullicksrud JA, Sateriale A, Engiles JB, Gibson AR, Shaw S, et al. 2022.. Enterocyte-innate lymphoid cell crosstalk drives early IFN-γ-mediated control of Cryptosporidium. . Mucosal Immunol. 15::36272
    [Crossref] [Google Scholar]
  158. 158.
    Reis BS, Darcy PW, Khan IZ, Moon CS, Kornberg AE, et al. 2022.. TCR-Vγδ usage distinguishes protumor from antitumor intestinal γδ T cell subsets. . Science 377::27684
    [Crossref] [Google Scholar]
  159. 159.
    Halper-Stromberg A, Jabri B. 2022.. Maladaptive consequences of inflammatory events shape individual immune identity. . Nat. Immunol. 23::167586
    [Crossref] [Google Scholar]
  160. 160.
    Olivares-Villagomez D, Van Kaer L. 2018.. Intestinal intraepithelial lymphocytes: sentinels of the mucosal barrier. . Trends Immunol. 39::26475
    [Crossref] [Google Scholar]
  161. 161.
    Guy-Grand D, Cuenod-Jabri B, Malassis-Seris M, Selz F, Vassalli P. 1996.. Complexity of the mouse gut T cell immune system: identification of two distinct natural killer T cell intraepithelial lineages. . Eur. J. Immunol. 26::224856
    [Crossref] [Google Scholar]
  162. 162.
    Jabri B, Abadie V. 2015.. IL-15 functions as a danger signal to regulate tissue-resident T cells and tissue destruction. . Nat. Rev. Immunol. 15::77183
    [Crossref] [Google Scholar]
  163. 163.
    Edelblum KL, Shen L, Weber CR, Marchiando AM, Clay BS, et al. 2012.. Dynamic migration of γδ intraepithelial lymphocytes requires occludin. . PNAS 109::7097102
    [Crossref] [Google Scholar]
  164. 164.
    Komano H, Fujiura Y, Kawaguchi M, Matsumoto S, Hashimoto Y, et al. 1995.. Homeostatic regulation of intestinal epithelia by intraepithelial γδ T cells. . PNAS 92::614751
    [Crossref] [Google Scholar]
  165. 165.
    Guy-Grand D, DiSanto JP, Henchoz P, Malassis-Seris M, Vassalli P. 1998.. Small bowel enteropathy: role of intraepithelial lymphocytes and of cytokines (IL-12, IFN-γ, TNF) in the induction of epithelial cell death and renewal. . Eur. J. Immunol. 28::73044
    [Crossref] [Google Scholar]
  166. 166.
    Boismenu R, Havran WL. 1994.. Modulation of epithelial cell growth by intraepithelial γδ T cells. . Science 266::125355
    [Crossref] [Google Scholar]
  167. 167.
    Fujihashi K, Dohi T, Kweon MN, McGhee JR, Koga T, et al. 1999.. γδ T cells regulate mucosally induced tolerance in a dose-dependent fashion. . Int. Immunol. 11::190716
    [Crossref] [Google Scholar]
  168. 168.
    Mengel J, Cardillo F, Aroeira LS, Williams O, Russo M, Vaz NM. 1995.. Anti–γδ T cell antibody blocks the induction and maintenance of oral tolerance to ovalbumin in mice. . Immunol. Lett. 48::97102
    [Crossref] [Google Scholar]
  169. 169.
    Matsuzawa-Ishimoto Y, Yao X, Koide A, Ueberheide BM, Axelrad JE, et al. 2022.. The γδ IEL effector API5 masks genetic susceptibility to Paneth cell death. . Nature 610::54754
    [Crossref] [Google Scholar]
  170. 170.
    Witherden DA, Verdino P, Rieder SE, Garijo O, Mills RE, et al. 2010.. The junctional adhesion molecule JAML is a costimulatory receptor for epithelial γδ T cell activation. . Science 329::120510
    [Crossref] [Google Scholar]
  171. 171.
    Shui JW, Larange A, Kim G, Vela JL, Zahner S, et al. 2012.. HVEM signalling at mucosal barriers provides host defence against pathogenic bacteria. . Nature 488::22225
    [Crossref] [Google Scholar]
  172. 172.
    Basu J, Reis BS, Peri S, Zha J, Hua X, et al. 2021.. Essential role of a ThPOK autoregulatory loop in the maintenance of mature CD4+ T cell identity and function. . Nat. Immunol. 22::96982
    [Crossref] [Google Scholar]
  173. 173.
    Garside P, Steel M, Liew FY, Mowat AM. 1995.. CD4+ but not CD8+ T cells are required for the induction of oral tolerance. . Int. Immunol. 7::5014
    [Crossref] [Google Scholar]
  174. 174.
    Mucida D, Kutchukhidze N, Erazo A, Russo M, Lafaille JJ, Curotto de Lafaille MA. 2005.. Oral tolerance in the absence of naturally occurring Tregs. . J. Clin. Investig. 115::192333
    [Crossref] [Google Scholar]
  175. 175.
    Hadis U, Wahl B, Schulz O, Hardtke-Wolenski M, Schippers A, et al. 2011.. Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. . Immunity 34::23746
    [Crossref] [Google Scholar]
  176. 176.
    Tuganbaev T, Mor U, Bashiardes S, Liwinski T, Nobs SP, et al. 2020.. Diet diurnally regulates small intestinal microbiome-epithelial-immune homeostasis and enteritis. . Cell 182::144159 e21
    [Crossref] [Google Scholar]
  177. 177.
    He S, Kahles F, Rattik S, Nairz M, McAlpine CS, et al. 2019.. Gut intraepithelial T cells calibrate metabolism and accelerate cardiovascular disease. . Nature 566::11519
    [Crossref] [Google Scholar]
  178. 178.
    Markle JG, Mortin-Toth S, Wong AS, Geng L, Hayday A, Danska JS. 2013.. γδ T cells are essential effectors of type 1 diabetes in the nonobese diabetic mouse model. . J. Immunol. 190::5392401
    [Crossref] [Google Scholar]
  179. 179.
    Mehta P, Nuotio-Antar AM, Smith CW. 2015.. γδ T cells promote inflammation and insulin resistance during high fat diet–induced obesity in mice. . J. Leukoc. Biol. 97::12134
    [Crossref] [Google Scholar]
  180. 180.
    Sullivan ZA, Khoury-Hanold W, Lim J, Smillie C, Biton M, et al. 2021.. γδ T cells regulate the intestinal response to nutrient sensing. . Science 371::eaba8310
    [Crossref] [Google Scholar]
  181. 181.
    Dalton JE, Cruickshank SM, Egan CE, Mears R, Newton DJ, et al. 2006.. Intraepithelial γδ+ lymphocytes maintain the integrity of intestinal epithelial tight junctions in response to infection. . Gastroenterology 131::81829
    [Crossref] [Google Scholar]
  182. 182.
    Edelblum KL, Singh G, Odenwald MA, Lingaraju A, El Bissati K, et al. 2015.. γδ intraepithelial lymphocyte migration limits transepithelial pathogen invasion and systemic disease in mice. . Gastroenterology 148::141726
    [Crossref] [Google Scholar]
  183. 183.
    Li Z, Zhang C, Zhou Z, Zhang J, Zhang J, Tian Z. 2012.. Small intestinal intraepithelial lymphocytes expressing CD8 and T cell receptor γδ are involved in bacterial clearance during Salmonella enterica serovar Typhimurium infection. . Infect. Immun. 80::56574
    [Crossref] [Google Scholar]
  184. 184.
    Sheridan BS, Romagnoli PA, Pham QM, Fu HH, Alonzo F 3rd, et al. 2013.. γδ T cells exhibit multifunctional and protective memory in intestinal tissues. . Immunity 39::18495
    [Crossref] [Google Scholar]
  185. 185.
    Maradana MR, Marzook NB, Diaz OE, Mkandawire T, Diny NL, et al. 2023.. Dietary environmental factors shape the immune defence against Cryptosporidium infection. . bioRxiv 2023.03.30.534739. https://doi.org/10.1101/2023.03.30.534739
  186. 186.
    Buzoni-Gatel D, Debbabi H, Mennechet FJ, Martin V, Lepage AC, et al. 2001.. Murine ileitis after intracellular parasite infection is controlled by TGF-β-producing intraepithelial lymphocytes. . Gastroenterology 120::91424
    [Crossref] [Google Scholar]
  187. 187.
    Mennechet FJ, Kasper LH, Rachinel N, Minns LA, Luangsay S, et al. 2004.. Intestinal intraepithelial lymphocytes prevent pathogen-driven inflammation and regulate the Smad/T-bet pathway of lamina propria CD4+ T cells. . Eur. J. Immunol. 34::105967
    [Crossref] [Google Scholar]
  188. 188.
    Mackay LK, Stock AT, Ma JZ, Jones CM, Kent SJ, et al. 2012.. Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation. . PNAS 109::703742
    [Crossref] [Google Scholar]
  189. 189.
    Casey KA, Fraser KA, Schenkel JM, Moran A, Abt MC, et al. 2012.. Antigen-independent differentiation and maintenance of effector-like resident memory T cells in tissues. . J. Immunol. 188::486675
    [Crossref] [Google Scholar]
  190. 190.
    Jarry A, Cerf-Bensussan N, Brousse N, Selz F, Guy-Grand D. 1990.. Subsets of CD3+ (T cell receptor α/β or γ/δ) and CD3 lymphocytes isolated from normal human gut epithelium display phenotypical features different from their counterparts in peripheral blood. . Eur. J. Immunol. 20::1097103
    [Crossref] [Google Scholar]
  191. 191.
    Rosen DB, Araki M, Hamerman JA, Chen T, Yamamura T, Lanier LL. 2004.. A Structural basis for the association of DAP12 with mouse, but not human, NKG2D. . J. Immunol. 173::247078
    [Crossref] [Google Scholar]
  192. 192.
    Meresse B, Curran SA, Ciszewski C, Orbelyan G, Setty M, et al. 2006.. Reprogramming of CTLs into natural killer–like cells in celiac disease. . J. Exp. Med. 203::134355
    [Crossref] [Google Scholar]
  193. 193.
    Schmitz JE, Forman MA, Lifton MA, Concepcion O, Reimann KA Jr., et al. 1998.. Expression of the CD8α β-heterodimer on CD8+ T lymphocytes in peripheral blood lymphocytes of human immunodeficiency virus and human immunodeficiency virus+ individuals. . Blood 92::198206
    [Crossref] [Google Scholar]
  194. 194.
    Walker LJ, Marrinan E, Muenchhoff M, Ferguson J, Kloverpris H, et al. 2013.. CD8αα expression marks terminally differentiated human CD8+ T cells expanded in chronic viral infection. . Front. Immunol. 4::223
    [Crossref] [Google Scholar]
  195. 195.
    Werwitzke S, Tiede A, Jacobs R, Zielinska-Skowronek M, Buyny S, et al. 2008.. CD8α+βlow effector T cells in systemic lupus erythematosus. . Scand. J. Immunol. 67::5018
    [Crossref] [Google Scholar]
  196. 196.
    Ohteki T, MacDonald HR. 1993.. Expression of the CD28 costimulatory molecule on subsets of murine intestinal intraepithelial lymphocytes correlates with lineage and responsiveness. . Eur. J. Immunol. 23::125155
    [Crossref] [Google Scholar]
  197. 197.
    Van Houten N, Mixter PF, Wolfe J, Budd RC. 1993.. CD2 expression on murine intestinal intraepithelial lymphocytes is bimodal and defines proliferative capacity. . Int. Immunol. 5::66572
    [Crossref] [Google Scholar]
  198. 198.
    Wencker M, Turchinovich G, Di Marco Barros R, Deban L, Jandke A, et al. 2014.. Innate-like T cells straddle innate and adaptive immunity by altering antigen-receptor responsiveness. . Nat. Immunol. 15::8087
    [Crossref] [Google Scholar]
  199. 199.
    Ferguson A, Murray D. 1971.. Quantitation of intraepithelial lymphocytes in human jejunum. . Gut 12::98894
    [Crossref] [Google Scholar]
  200. 200.
    Marsh MN, Heal CJ. 2017.. Evolutionary developments in interpreting the gluten-induced mucosal celiac lesion: an Archimedian heuristic. . Nutrients 9::213
    [Crossref] [Google Scholar]
  201. 201.
    Matysiak-Budnik T, Malamut G, de Serre NP, Grosdidier E, Seguier S, et al. 2007.. Long-term follow-up of 61 coeliac patients diagnosed in childhood: Evolution toward latency is possible on a normal diet. . Gut 56::137986
    [Crossref] [Google Scholar]
  202. 202.
    Bouziat R, Hinterleitner R, Brown JJ, Stencel-Baerenwald JE, Ikizler M, et al. 2017.. Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. . Science 356::4450
    [Crossref] [Google Scholar]
  203. 203.
    Abadie V, Kim SM, Lejeune T, Palanski BA, Ernest JD, et al. 2020.. IL-15, gluten and HLA-DQ8 drive tissue destruction in coeliac disease. . Nature 578::6004
    [Crossref] [Google Scholar]
  204. 204.
    Christophersen A, Raki M, Bergseng E, Lundin KE, Jahnsen J, et al. 2014.. Tetramer-visualized gluten-specific CD4+ T cells in blood as a potential diagnostic marker for coeliac disease without oral gluten challenge. . United Eur. Gastroenterol. J. 2::26878
    [Crossref] [Google Scholar]
  205. 205.
    Vezys V, Olson S, Lefrançois L. 2000.. Expression of intestine-specific antigen reveals novel pathways of CD8 T cell tolerance induction. . Immunity 12::50514
    [Crossref] [Google Scholar]
  206. 206.
    Cellier C, Delabesse E, Helmer C, Patey N, Matuchansky C, et al. 2000.. Refractory sprue, coeliac disease, and enteropathy-associated T-cell lymphoma. . Lancet 356::2038
    [Crossref] [Google Scholar]
  207. 207.
    Cellier C, Patey N, Mauvieux L, Jabri B, Delabesse E, et al. 1998.. Abnormal intestinal intraepithelial lymphocytes in refractory sprue. . Gastroenterology 114::47181
    [Crossref] [Google Scholar]
  208. 208.
    Eggesbo LM, Risnes LF, Neumann RS, Lundin KEA, Christophersen A, Sollid LM. 2020.. Single-cell TCR sequencing of gut intraepithelial γδ T cells reveals a vast and diverse repertoire in celiac disease. . Mucosal Immunol. 13::31321
    [Crossref] [Google Scholar]
  209. 209.
    Mayassi T, Ladell K, Gudjonson H, McLaren JE, Shaw DG, et al. 2019.. Chronic inflammation permanently reshapes tissue-resident immunity in celiac disease. . Cell 176::96781.e19
    [Crossref] [Google Scholar]
  210. 210.
    Mikulak J, Oriolo F, Bruni E, Roberto A, Colombo FS, et al. 2019.. NKp46-expressing human gut–resident intraepithelial Vδ1 T cell subpopulation exhibits high antitumor activity against colorectal cancer. . JCI Insight 4::e125884
    [Crossref] [Google Scholar]
  211. 211.
    de Vries NL, van de Haar J, Veninga V, Chalabi M, Ijsselsteijn ME, et al. 2023. γδ T cells are effectors of immunotherapy in cancers with HLA class I defects. . Nature 613::74350
    [Crossref] [Google Scholar]
  212. 212.
    McGraw JM, Thelen F, Hampton EN, Bruno NE, Young TS, et al. 2021.. JAML promotes CD8 and γδ T cell antitumor immunity and is a novel target for cancer immunotherapy. . J. Exp. Med. 218::e20202644
    [Crossref] [Google Scholar]
  213. 213.
    Harmon C, Zaborowski A, Moore H, St. Louis P, Slattery K, et al. 2023.. γδ T cell dichotomy with opposing cytotoxic and wound healing functions in human solid tumors. . Nat. Cancer 4::112237
    [Crossref] [Google Scholar]
  214. 214.
    Rei M, Gonçalves-Sousa N, Lanca T, Thompson RG, Mensurado S, et al. 2014.. Murine CD27Vγ6+ γδ T cells producing IL-17A promote ovarian cancer growth via mobilization of protumor small peritoneal macrophages. . PNAS 111::E356270
    [Crossref] [Google Scholar]
  215. 215.
    Jin C, Lagoudas GK, Zhao C, Bullman S, Bhutkar A, et al. 2019.. Commensal microbiota promote lung cancer development via γδ T cells. . Cell 176::9981013.e16
    [Crossref] [Google Scholar]
  216. 216.
    Silva-Santos B, Mensurado S, Coffelt SB. 2019.. γδ T cells: pleiotropic immune effectors with therapeutic potential in cancer. . Nat. Rev. Cancer 19::392404
    [Crossref] [Google Scholar]
  217. 217.
    Ribot JC, Lopes N, Silva-Santos B. 2021.. γδ T cells in tissue physiology and surveillance. . Nat. Rev. Immunol. 21::22132
    [Crossref] [Google Scholar]
  218. 218.
    Xavier RJ, Podolsky DK. 2007.. Unravelling the pathogenesis of inflammatory bowel disease. . Nature 448::42734
    [Crossref] [Google Scholar]
  219. 219.
    van Hemert S, Skonieczna-Zydecka K, Loniewski I, Szredzki P, Marlicz W. 2018.. Microscopic colitis—microbiome, barrier function and associated diseases. . Ann. Transl. Med. 6::39
    [Crossref] [Google Scholar]
  220. 220.
    Tack GJ, Verbeek WH, Schreurs MW, Mulder CJ. 2010.. The spectrum of celiac disease: epidemiology, clinical aspects and treatment. . Nat. Rev. Gastroenterol. Hepatol. 7::20413
    [Crossref] [Google Scholar]
  221. 221.
    Racle J, Guillaume P, Schmidt J, Michaux J, Larabi A, et al. 2023.. Machine learning predictions of MHC-II specificities reveal alternative binding mode of class II epitopes. . Immunity 56::135975
    [Crossref] [Google Scholar]
  222. 222.
    Brabec T, Schwarzer M, Kováčová K, Dobešová M, Schierová D, . 2024.. Segmented filamentous bacteria-induced epithelial MHCII regulates cognate CD4+ IELs and epithelial turnover. . J. Exp. Med. 221:(1):e20230194. . 2024.. J. Exp. Med. 221:(1):e2023019411132023c
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-090222-100246
Loading
/content/journals/10.1146/annurev-immunol-090222-100246
Loading

Data & Media loading...

  • Article Type: Review Article