1932

Abstract

The role of the autoimmune regulator (Aire) in central immune tolerance and thymic self-representation was first described more than 20 years ago, but fascinating new insights into its biology continue to emerge, particularly in the era of advanced single-cell genomics. We briefly describe the role of human genetics in the discovery of Aire, as well as insights into its function gained from genotype–phenotype correlations and the spectrum of Aire-associated autoimmunity—including insights from patients with Aire mutations with broad and diverse implications for human health. We then highlight emerging trends in Aire biology, focusing on three topic areas. First, we discuss medullary thymic epithelial diversity and the role of Aire in thymic epithelial development. Second, we highlight recent developments regarding the molecular mechanisms of Aire and its binding partners. Finally, we describe the rapidly evolving biology of the identity and function of extrathymic Aire-expressing cells (eTACs), and a novel eTAC subset called Janus cells, as well as their potential roles in immune homeostasis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-090222-101050
2024-06-28
2025-02-07
Loading full text...

Full text loading...

/deliver/fulltext/immunol/42/1/annurev-immunol-090222-101050.html?itemId=/content/journals/10.1146/annurev-immunol-090222-101050&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Sutphin A, Albright F, McCune DJ. 1943.. Five cases (three in siblings) of idiopathic hypoparathyroidism associated with moniliasis. . J. Clin. Endocrinol. Metab. 3:(12):62534
    [Crossref] [Google Scholar]
  2. 2.
    Perheentupa J. 2006.. Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. . J. Clin. Endocrinol. Metab. 91:(8):284350
    [Crossref] [Google Scholar]
  3. 3.
    Aaltonen J, Björses P, Perheentupa J, Horelli-Kuitunen N, Palotie A, et al. 1997.. An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. . Nat. Genet. 17:(4):399403
    [Crossref] [Google Scholar]
  4. 4.
    Nagamine K, Peterson P, Scott HS, Kudoh J, Minoshima S, et al. 1997.. Positional cloning of the APECED gene. . Nat. Genet. 17:(4):39398
    [Crossref] [Google Scholar]
  5. 5.
    Su MA, Giang K, Žumer K, Jiang H, Oven I, et al. 2008.. Mechanisms of an autoimmunity syndrome in mice caused by a dominant mutation in Aire. . J. Clin. Investig. 118:(5):171226
    [Crossref] [Google Scholar]
  6. 6.
    Heino M, Peterson P, Kudoh J, Nagamine K, Lagerstedt A, et al. 1999.. Autoimmune regulator is expressed in the cells regulating immune tolerance in thymus medulla. . Biochem. Biophys. Res. Commun. 257:(3):82125
    [Crossref] [Google Scholar]
  7. 7.
    Halonen M, Kangas H, Rüppell T, Ilmarinen T, Ollila J, et al. 2004.. APECED-causing mutations in AIRE reveal the functional domains of the protein. . Hum. Mutat. 23:(3):24557
    [Crossref] [Google Scholar]
  8. 8.
    Oftedal BE, Hellesen A, Erichsen MM, Bratland E, Vardi A, et al. 2015.. Dominant mutations in the autoimmune regulator AIRE are associated with common organ-specific autoimmune diseases. . Immunity 42:(6):118596
    [Crossref] [Google Scholar]
  9. 9.
    Cetani F, Barbesino G, Borsari S, Pardi E, Cianferotti L, et al. 2001.. A novel mutation of the autoimmune regulator gene in an Italian kindred with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy, acting in a dominant fashion and strongly cosegregating with hypothyroid autoimmune thyroiditis. . J. Clin. Endocrinol. Metab. 86:(10):474752
    [Crossref] [Google Scholar]
  10. 10.
    Eriksson D, Røyrvik EC, Aranda-Guillén M, Berger AH, Landegren N, et al. 2021.. GWAS for autoimmune Addison's disease identifies multiple risk loci and highlights AIRE in disease susceptibility. . Nat. Commun. 12::959
    [Crossref] [Google Scholar]
  11. 11.
    Derbinski J, Schulte A, Kyewski B, Klein L. 2001.. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. . Nat. Immunol. 2:(11):103239
    [Crossref] [Google Scholar]
  12. 12.
    Anderson MS, Venanzi ES, Klein L, Chen Z, Berzins SP, et al. 2002.. Projection of an immunological self shadow within the thymus by the Aire protein. . Science 298:(5597):13951401
    [Crossref] [Google Scholar]
  13. 13.
    Miller CN, Proekt I, von Moltke J, Wells KL, Rajpurkar AR, et al. 2018.. Thymic tuft cells promote an IL-4-enriched medulla and shape thymocyte development. . Nature 559:(7715):62731
    [Crossref] [Google Scholar]
  14. 14.
    Bornstein C, Nevo S, Giladi A, Kadouri N, Pouzolles M, et al. 2018.. Single-cell mapping of the thymic stroma identifies IL-25-producing tuft epithelial cells. . Nature 559:(7715):62226
    [Crossref] [Google Scholar]
  15. 15.
    Sansom SN, Shikama-Dorn N, Zhanybekova S, Nusspaumer G, Macaulay IC, et al. 2014.. Population and single-cell genomics reveal the Aire dependency, relief from Polycomb silencing, and distribution of self-antigen expression in thymic epithelia. . Genome Res. 24:(12):191831
    [Crossref] [Google Scholar]
  16. 16.
    Michelson DA, Hase K, Kaisho T, Benoist C, Mathis D. 2022.. Thymic epithelial cells co-opt lineage-defining transcription factors to eliminate autoreactive T cells. . Cell 185:(14):254258.e18
    [Crossref] [Google Scholar]
  17. 17.
    Bautista JL, Cramer NT, Miller CN, Chavez J, Berrios DI, et al. 2021.. Single-cell transcriptional profiling of human thymic stroma uncovers novel cellular heterogeneity in the thymic medulla. . Nat. Commun. 12::1096
    [Crossref] [Google Scholar]
  18. 18.
    Park J-E, Botting RA, Conde CD, Popescu D-M, Lavaert M, et al. 2020.. A cell atlas of human thymic development defines T cell repertoire formation. . Science 367:(6480):eaay3224
    [Crossref] [Google Scholar]
  19. 19.
    Yayon N, Kedlian VR, Boehme L, Suo C, Wachter B, et al. 2023.. A spatial human thymus cell atlas mapped to a continuous tissue axis. . bioRxiv 2023.10.25.562925. https://www.biorxiv.org/content/10.1101/2023.10.25.562925v1
  20. 20.
    Mohammad A, Peyman B, Åsa H, Nora P, Gabor S, et al. 2008.. Autoimmune polyendocrine syndrome type 1 and NALP5, a parathyroid autoantigen. . N. Engl. J. Med. 358:(10):101828
    [Crossref] [Google Scholar]
  21. 21.
    Puel A, Döffinger R, Natividad A, Chrabieh M, Barcenas-Morales G, et al. 2010.. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. . J. Exp. Med. 207:(2):29197
    [Crossref] [Google Scholar]
  22. 22.
    Kisand K, Wolff ASB, Podkrajšek KT, Tserel L, Link M, et al. 2010.. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. . J. Exp. Med. 207:(2):299308
    [Crossref] [Google Scholar]
  23. 23.
    Meager A, Visvalingam K, Peterson P, Möll K, Murumägi A, et al. 2006.. Anti-interferon autoantibodies in autoimmune polyendocrinopathy syndrome type 1. . PLOS Med. 3:(7):e289
    [Crossref] [Google Scholar]
  24. 24.
    Larman HB, Zhao Z, Laserson U, Li MZ, Ciccia A, et al. 2011.. Autoantigen discovery with a synthetic human peptidome. . Nat. Biotechnol. 29:(6):53541
    [Crossref] [Google Scholar]
  25. 25.
    Landegren N, Sharon D, Freyhult E, Hallgren Å, Eriksson D, et al. 2016.. Proteome-wide survey of the autoimmune target repertoire in autoimmune polyendocrine syndrome type 1. . Sci. Rep. 6::20104
    [Crossref] [Google Scholar]
  26. 26.
    Wang EY, Dai Y, Rosen CE, Schmitt MM, Dong MX, et al. 2022.. High-throughput identification of autoantibodies that target the human exoproteome. . Cell Rep. Methods 2:(2):100172
    [Crossref] [Google Scholar]
  27. 27.
    Vazquez SE, Ferré EM, Scheel DW, Sunshine S, Miao B, et al. 2020.. Identification of novel, clinically correlated autoantigens in the monogenic autoimmune syndrome APS1 by proteome-wide PhIP-seq. . eLife 9::e55053
    [Crossref] [Google Scholar]
  28. 28.
    Mandel-Brehm C, Vazquez SE, Liverman C, Cheng M, Quandt Z, et al. 2022.. Autoantibodies to perilipin-1 define a subset of acquired generalized lipodystrophy. . Diabetes 72:(1):5970
    [Crossref] [Google Scholar]
  29. 29.
    Tansey JT, Sztalryd C, Gruia-Gray J, Roush DL, Zee JV, et al. 2001.. Perilipin ablation results in a lean mouse with aberrant adipocyte lipolysis, enhanced leptin production, and resistance to diet-induced obesity. . PNAS 98:(11):649499
    [Crossref] [Google Scholar]
  30. 30.
    Sheetal G, Caroline LD, William B, Pascale C, Philippe G, et al. 2011.. Perilipin deficiency and autosomal dominant partial lipodystrophy. . N. Engl. J. Med. 364:(8):74048
    [Crossref] [Google Scholar]
  31. 31.
    Garg A. 2011.. Lipodystrophies: genetic and acquired body fat disorders. . J. Clin. Endocrinol. Metab. 96:(11):331325
    [Crossref] [Google Scholar]
  32. 32.
    Corvillo F, Abel BS, López-Lera A, Ceccarini G, Magno S, et al. 2022.. Characterization and clinical association of autoantibodies against perilipin 1 in patients with acquired generalized lipodystrophy. . Diabetes 72:(1):7184
    [Crossref] [Google Scholar]
  33. 33.
    Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann H-H, et al. 2020.. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. . Science 370:(6515):eabd4585
    [Crossref] [Google Scholar]
  34. 34.
    Beccuti G, Ghizzoni L, Cambria V, Codullo V, Sacchi P, et al. 2020.. A COVID-19 pneumonia case report of autoimmune polyendocrine syndrome type 1 in Lombardy, Italy: letter to the editor. . J. Endocrinol. Investig. 43:(8):117577
    [Crossref] [Google Scholar]
  35. 35.
    Casanova J-L, Anderson MS. 2023.. Unlocking life-threatening COVID-19 through two types of inborn errors of type I IFNs. . J. Clin. Investig. 133:(3):e166283
    [Crossref] [Google Scholar]
  36. 36.
    Bastard P, Orlova E, Sozaeva L, Lévy R, James A, et al. 2021.. Preexisting autoantibodies to type I IFNs underlie critical COVID-19 pneumonia in patients with APS-1. . J. Exp. Med. 218:(7):e20210554
    [Crossref] [Google Scholar]
  37. 37.
    Bastard P, Gervais A, Voyer TL, Rosain J, Philippot Q, et al. 2021.. Autoantibodies neutralizing type I IFNs are present in ∼4% of uninfected individuals over 70 years old and account for ∼20% of COVID-19 deaths. . Sci. Immunol. 6:(62):eabl4340
    [Crossref] [Google Scholar]
  38. 38.
    Manry J, Bastard P, Gervais A, Voyer TL, Rosain J, et al. 2022.. The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies. . PNAS 119:(21):e2200413119
    [Crossref] [Google Scholar]
  39. 39.
    van der Wijst MGP, Vazquez SE, Hartoularos GC, Bastard P, Grant T, et al. 2021.. Type I interferon autoantibodies are associated with systemic immune alterations in patients with COVID-19. . Sci. Transl. Med. 13:(612):eabh2624
    [Crossref] [Google Scholar]
  40. 40.
    Meager A, Vincent A, Newsom-Davis J, Willcox N. 1997.. Spontaneous neutralising antibodies to interferon-α and interleukin-12 in thymoma-associated autoimmune disease. . Lancet 350:(9091):159697
    [Crossref] [Google Scholar]
  41. 41.
    Cheng MH, Una F, Navdeep G, Michael B, Anand M, et al. 2010.. Acquired autoimmune polyglandular syndrome, thymoma, and an AIRE defect. . N. Engl. J. Med. 362:(8):76466
    [Crossref] [Google Scholar]
  42. 42.
    Marx A, Hohenberger P, Hoffmann H, Pfannschmidt J, Schnabel P, et al. 2010.. The autoimmune regulator AIRE in thymoma biology: autoimmunity and beyond. . J. Thorac. Oncol. 5:(10):S26672
    [Crossref] [Google Scholar]
  43. 43.
    Bodansky A, Vazquez SE, Chou J, Novak T, Al-Musa A, et al. 2023.. NFKB2 haploinsufficiency identified via screening for IFN-α2 autoantibodies in children and adolescents hospitalized with SARS-CoV-2-related complications. . J. Allergy Clin. Immunol. 151:(4):92630.e2
    [Crossref] [Google Scholar]
  44. 44.
    Walter JE, Rosen LB, Csomos K, Rosenberg JM, Mathew D, et al. 2015.. Broad-spectrum antibodies against self-antigens and cytokines in RAG deficiency. . J. Clin. Investig. 125:(11):413548
    [Crossref] [Google Scholar]
  45. 45.
    Rosenberg JM, Maccari ME, Barzaghi F, Allenspach EJ, Pignata C, et al. 2018.. Neutralizing anti-cytokine autoantibodies against interferon-α in immunodysregulation polyendocrinopathy enteropathy X-linked. . Front. Immunol. 9::544
    [Crossref] [Google Scholar]
  46. 46.
    Abramson J, Anderson G. 2016.. Thymic epithelial cells. . Annu. Rev. Immunol. 35::134
    [Google Scholar]
  47. 47.
    Kadouri N, Nevo S, Goldfarb Y, Abramson J. 2020.. Thymic epithelial cell heterogeneity: TEC by TEC. . Nat. Rev. Immunol. 20:(4):23953
    [Crossref] [Google Scholar]
  48. 48.
    Sekai M, Hamazaki Y, Minato N. 2014.. Medullary thymic epithelial stem cells maintain a functional thymus to ensure lifelong central T cell tolerance. . Immunity 41:(5):75361
    [Crossref] [Google Scholar]
  49. 49.
    Akiyama N, Takizawa N, Miyauchi M, Yanai H, Tateishi R, et al. 2016.. Identification of embryonic precursor cells that differentiate into thymic epithelial cells expressing autoimmune regulator. . J. Exp. Med. 213:(8):144158
    [Crossref] [Google Scholar]
  50. 50.
    Baik S, Sekai M, Hamazaki Y, Jenkinson WE, Anderson G. 2016.. Relb acts downstream of medullary thymic epithelial stem cells and is essential for the emergence of RANK+ medullary epithelial progenitors. . Eur. J. Immunol. 46:(4):85762
    [Crossref] [Google Scholar]
  51. 51.
    Ohigashi I, Zuklys S, Sakata M, Mayer CE, Hamazaki Y, et al. 2015.. Adult thymic medullary epithelium is maintained and regenerated by lineage-restricted cells rather than bipotent progenitors. . Cell Rep. 13:(7):143243
    [Crossref] [Google Scholar]
  52. 52.
    Wells KL, Miller CN, Gschwind AR, Wei W, Phipps JD, et al. 2020.. Combined transient ablation and single-cell RNA-sequencing reveals the development of medullary thymic epithelial cells. . eLife 9::e60188
    [Crossref] [Google Scholar]
  53. 53.
    Onder L, Nindl V, Scandella E, Chai Q, Cheng H, et al. 2015.. Alternative NF-κB signaling regulates mTEC differentiation from podoplanin-expressing precursors in the cortico-medullary junction. . Eur. J. Immunol. 45:(8):221831
    [Crossref] [Google Scholar]
  54. 54.
    Ohigashi I, White AJ, Yang M-T, Fujimori S, Tanaka Y, et al. 2023.. Developmental conversion of thymocyte-attracting cells into self-antigen-displaying cells in embryonic thymus medulla epithelium. . bioRxiv 2023.10.03.560657. https://www.biorxiv.org/content/10.1101/2023.10.03.560657v1
  55. 55.
    Dhalla F, Baran-Gale J, Maio S, Chappell L, Holländer GA, Ponting CP. 2020.. Biologically indeterminate yet ordered promiscuous gene expression in single medullary thymic epithelial cells. . EMBO J. 39::e101828
    [Crossref] [Google Scholar]
  56. 56.
    Baran-Gale J, Morgan MD, Maio S, Dhalla F, Calvo-Asensio I, et al. 2020.. Ageing compromises mouse thymus function and remodels epithelial cell differentiation. . eLife 9::e56221
    [Crossref] [Google Scholar]
  57. 57.
    Rodewald H-R, Paul S, Haller C, Bluethmann H, Blum C. 2001.. Thymus medulla consisting of epithelial islets each derived from a single progenitor. . Nature 414:(6865):76368
    [Crossref] [Google Scholar]
  58. 58.
    Lucas B, White AJ, Klein F, Veiga-Villauriz C, Handel A, et al. 2023.. Embryonic keratin19+ progenitors generate multiple functionally distinct progeny to maintain epithelial diversity in the adult thymus medulla. . Nat. Commun. 14::2066
    [Crossref] [Google Scholar]
  59. 59.
    Goldfarb Y, Kadouri N, Levi B, Sela A, Herzig Y, et al. 2016.. HDAC3 is a master regulator of mTEC development. . Cell Rep. 15:(3):65165
    [Crossref] [Google Scholar]
  60. 60.
    Li J, Gordon J, Chen ELY, Xiao S, Wu L, et al. 2019.. NOTCH1 signaling establishes the medullary thymic epithelial cell progenitor pool during mouse fetal development. . Development 147:(12):dev178988
    [Google Scholar]
  61. 61.
    Liu D, Kousa AI, O'Neill KE, Rouse P, Popis M, et al. 2020.. Canonical Notch signaling controls the early thymic epithelial progenitor cell state and emergence of the medullary epithelial lineage in fetal thymus development. . Development 147:(12):dev178582
    [Crossref] [Google Scholar]
  62. 62.
    Nusser A, Sagar, Swann JB, Krauth B, Diekhoff D, et al. 2022.. Developmental dynamics of two bipotent thymic epithelial progenitor types. . Nature 606:(7912):16571
    [Crossref] [Google Scholar]
  63. 63.
    Li L, Bowling S, McGeary SE, Yu Q, Lemke B, et al. 2023.. A mouse model with high clonal barcode diversity for joint lineage, transcriptomic, and epigenomic profiling in single cells. . Cell 186:(23):518399.e22
    [Crossref] [Google Scholar]
  64. 64.
    Rossi SW, Kim M-Y, Leibbrandt A, Parnell SM, Jenkinson WE, et al. 2007.. RANK signals from CD4+3 inducer cells regulate development of Aire-expressing epithelial cells in the thymic medulla. . J. Exp. Med. 204:(6):126772
    [Crossref] [Google Scholar]
  65. 65.
    Hikosaka Y, Nitta T, Ohigashi I, Yano K, Ishimaru N, et al. 2008.. The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator. . Immunity 29:(3):43850
    [Crossref] [Google Scholar]
  66. 66.
    Roberts NA, White AJ, Jenkinson WE, Turchinovich G, Nakamura K, et al. 2012.. Rank signaling links the development of invariant γδ T cell progenitors and Aire+ medullary epithelium. . Immunity 36:(3):42737
    [Crossref] [Google Scholar]
  67. 67.
    Khan IS, Mouchess ML, Zhu M-L, Conley B, Fasano KJ, et al. 2014.. Enhancement of an anti-tumor immune response by transient blockade of central T cell tolerance. . J. Exp. Med. 211:(5):76168
    [Crossref] [Google Scholar]
  68. 68.
    Haljasorg U, Bichele R, Saare M, Guha M, Maslovskaja J, et al. 2015.. A highly conserved NF-κB-responsive enhancer is critical for thymic expression of Aire in mice. . Eur. J. Immunol. 45:(12):324656
    [Crossref] [Google Scholar]
  69. 69.
    LaFlam TN, Seumois G, Miller CN, Lwin W, Fasano KJ, et al. 2015.. Identification of a novel cis-regulatory element essential for immune tolerance. . J. Exp. Med. 212:(12):19932002
    [Crossref] [Google Scholar]
  70. 70.
    Desanti GE, Cowan JE, Baik S, Parnell SM, White AJ, et al. 2012.. Developmentally regulated availability of RANKL and CD40 ligand reveals distinct mechanisms of fetal and adult cross-talk in the thymus medulla. . J. Immunol. 189:(12):551926
    [Crossref] [Google Scholar]
  71. 71.
    Jones R, Cosway EJ, Willis C, White AJ, Jenkinson WE, et al. 2018.. Dynamic changes in intrathymic ILC populations during murine neonatal development. . Eur. J. Immunol. 48:(9):148191
    [Crossref] [Google Scholar]
  72. 72.
    Lkhagvasuren E, Sakata M, Ohigashi I, Takahama Y. 2013.. Lymphotoxin β receptor regulates the development of CCL21-expressing subset of postnatal medullary thymic epithelial cells. . J. Immunol. 190:(10):511017
    [Crossref] [Google Scholar]
  73. 73.
    Lucas B, White AJ, Cosway EJ, Parnell SM, James KD, et al. 2020.. Diversity in medullary thymic epithelial cells controls the activity and availability of iNKT cells. . Nat. Commun. 11::2198
    [Crossref] [Google Scholar]
  74. 74.
    Herzig Y, Nevo S, Bornstein C, Brezis MR, Ben-Hur S, et al. 2017.. Transcriptional programs that control expression of the autoimmune regulator gene Aire. . Nat. Immunol. 18:(2):16172
    [Crossref] [Google Scholar]
  75. 75.
    Farr AG, Rudensky A. 1998.. Medullary thymic epithelium: a mosaic of epithelial “self”?. J. Exp. Med. 188:(1):14
    [Crossref] [Google Scholar]
  76. 76.
    Gillard GO, Farr AG. 2005.. Contrasting models of promiscuous gene expression by thymic epithelium. . J. Exp. Med. 202:(1):1519
    [Crossref] [Google Scholar]
  77. 77.
    Gillard GO, Dooley J, Erickson M, Peltonen L, Farr AG. 2007.. Aire-dependent alterations in medullary thymic epithelium indicate a role for aire in thymic epithelial differentiation. . J. Immunol. 178:(5):300715
    [Crossref] [Google Scholar]
  78. 78.
    Dooley J, Erickson M, Farr AG. 2008.. Alterations of the medullary epithelial compartment in the Aire-deficient thymus: implications for programs of thymic epithelial differentiation. . J. Immunol. 181:(8):522532
    [Crossref] [Google Scholar]
  79. 79.
    Derbinski J, Gäbler J, Brors B, Tierling S, Jonnakuty S, et al. 2005.. Promiscuous gene expression in thymic epithelial cells is regulated at multiple levels. . J. Exp. Med. 202:(1):3345
    [Crossref] [Google Scholar]
  80. 80.
    Mathis D, Benoist C. 2009.. Aire. . Annu. Rev. Immunol. 27::287312
    [Crossref] [Google Scholar]
  81. 81.
    Villaseñor J, Besse W, Benoist C, Mathis D. 2008.. Ectopic expression of peripheral-tissue antigens in the thymic epithelium: probabilistic, monoallelic, misinitiated. . PNAS 105:(41):1585459
    [Crossref] [Google Scholar]
  82. 82.
    Gray D, Abramson J, Benoist C, Mathis D. 2007.. Proliferative arrest and rapid turnover of thymic epithelial cells expressing Aire. . J. Exp. Med. 204:(11):252128
    [Crossref] [Google Scholar]
  83. 83.
    Metzger TC, Khan IS, Gardner JM, Mouchess ML, Johannes KP, et al. 2013.. Lineage tracing and cell ablation identify a post-Aire-expressing thymic epithelial cell population. . Cell Rep. 5:(1):16679
    [Crossref] [Google Scholar]
  84. 84.
    Nishikawa Y, Nishijima H, Matsumoto M, Morimoto J, Hirota F, et al. 2014.. Temporal lineage tracing of Aire-expressing cells reveals a requirement for Aire in their maturation program. . J. Immunol. 192:(6):258592
    [Crossref] [Google Scholar]
  85. 85.
    Kawano H, Nishijima H, Morimoto J, Hirota F, Morita R, et al. 2015.. Aire expression is inherent to most medullary thymic epithelial cells during their differentiation program. . J. Immunol. 195:(11):514958
    [Crossref] [Google Scholar]
  86. 86.
    Michelson DA, Zuo C, Verzi M, Benoist C, Mathis D. 2023.. Hnf4 activates mimetic-cell enhancers to recapitulate gut and liver development within the thymus. . J. Exp. Med. 220:(10):e20230461
    [Crossref] [Google Scholar]
  87. 87.
    Givony T, Leshkowitz D, Del Castillo D, Nevo S, Kadouri N, et al. 2023.. Thymic mimetic cells function beyond self-tolerance. . Nature 622:(7981):16472
    [Crossref] [Google Scholar]
  88. 88.
    Coomer MA, Ham L, Stumpf MPH. 2022.. Noise distorts the epigenetic landscape and shapes cell-fate decisions. . Cell Syst. 13:(1):83102.e6
    [Crossref] [Google Scholar]
  89. 89.
    Bouwman BAM, Crosetto N, Bienko M. 2022.. The era of 3D and spatial genomics. . Trends Genet. 38:(10):106275
    [Crossref] [Google Scholar]
  90. 90.
    Zaret KS. 2020.. Pioneer transcription factors initiating gene network changes. . Annu. Rev. Genet. 54::36785
    [Crossref] [Google Scholar]
  91. 91.
    Smith KM, Olson DC, Hirose R, Hanahan D. 1997.. Pancreatic gene expression in rare cells of thymic medulla: evidence for functional contribution to T cell tolerance. . Int. Immunol. 9:(9):135565
    [Crossref] [Google Scholar]
  92. 92.
    Meredith M, Zemmour D, Mathis D, Benoist C. 2015.. Aire controls gene expression in the thymic epithelium with ordered stochasticity. . Nat. Immunol. 16:(9):94249
    [Crossref] [Google Scholar]
  93. 93.
    Taniguchi RT, DeVoss JJ, Moon JJ, Sidney J, Sette A, et al. 2012.. Detection of an autoreactive T-cell population within the polyclonal repertoire that undergoes distinct autoimmune regulator (Aire)-mediated selection. . PNAS 109:(20):784752
    [Crossref] [Google Scholar]
  94. 94.
    Purohit S, Kumar PG, Laloraya M, She J-X. 2005.. Mapping DNA-binding domains of the autoimmune regulator protein. . Biochem. Biophys. Res. Commun. 327:(3):93944
    [Crossref] [Google Scholar]
  95. 95.
    Ruan Q-G, Tung K, Eisenman D, Setiady Y, Eckenrode S, et al. 2007.. The autoimmune regulator directly controls the expression of genes critical for thymic epithelial function. . J. Immunol. 178:(11):717380
    [Crossref] [Google Scholar]
  96. 96.
    Kumar PG, Laloraya M, Wang C-Y, Ruan Q-G, Davoodi-Semiromi A, et al. 2001.. The autoimmune regulator (AIRE) is a DNA-binding protein. . J. Biol. Chem. 276:(44):4135764
    [Crossref] [Google Scholar]
  97. 97.
    Surdo PL, Bottomley MJ, Sattler M, Scheffzek K. 2003.. Crystal structure and nuclear magnetic resonance analyses of the SAND domain from glucocorticoid modulatory element binding protein 1 reveals deoxyribonucleic acid and zinc binding regions. . Mol. Endocrinol. 17:(7):128395
    [Crossref] [Google Scholar]
  98. 98.
    Johnnidis JB, Venanzi ES, Taxman DJ, Ting JP-Y, Benoist CO, Mathis DJ. 2005.. Chromosomal clustering of genes controlled by the aire transcription factor. . PNAS 102:(20):723338
    [Crossref] [Google Scholar]
  99. 99.
    Gotter J, Brors B, Hergenhahn M, Kyewski B. 2004.. Medullary epithelial cells of the human thymus express a highly diverse selection of tissue-specific genes colocalized in chromosomal clusters. . J. Exp. Med. 199:(2):15566
    [Crossref] [Google Scholar]
  100. 100.
    Brennecke P, Reyes A, Pinto S, Rattay K, Nguyen M, et al. 2015.. Single-cell transcriptome analysis reveals coordinated ectopic gene-expression patterns in medullary thymic epithelial cells. . Nat. Immunol. 16:(9):93341
    [Crossref] [Google Scholar]
  101. 101.
    Guerau-de-Arellano M, Mathis D, Benoist C. 2008.. Transcriptional impact of Aire varies with cell type. . PNAS 105:(37):1401116
    [Crossref] [Google Scholar]
  102. 102.
    Giraud M, Yoshida H, Abramson J, Rahl PB, Young RA, et al. 2012.. Aire unleashes stalled RNA polymerase to induce ectopic gene expression in thymic epithelial cells. . PNAS 109:(2):53540
    [Crossref] [Google Scholar]
  103. 103.
    Abramson J, Giraud M, Benoist C, Mathis D. 2010.. Aire's partners in the molecular control of immunological tolerance. . Cell 140:(1):12335
    [Crossref] [Google Scholar]
  104. 104.
    Waterfield M, Khan IS, Cortez JT, Fan U, Metzger T, et al. 2014.. The transcriptional regulator Aire coopts the repressive ATF7ip-MBD1 complex for the induction of immunotolerance. . Nat. Immunol. 15:(3):25865
    [Crossref] [Google Scholar]
  105. 105.
    Rattay K, Claude J, Rezavandy E, Matt S, Hofmann TG, et al. 2015.. Homeodomain-interacting protein kinase 2, a novel autoimmune regulator interaction partner, modulates promiscuous gene expression in medullary thymic epithelial cells. . J. Immunol. 194:(3):92128
    [Crossref] [Google Scholar]
  106. 106.
    Liiv I, Rebane A, Org T, Saare M, Maslovskaja J, et al. 2008.. DNA-PK contributes to the phosphorylation of AIRE: importance in transcriptional activity. . Biochim. Biophys. Acta Mol. Cell Res. 1783:(1):7483
    [Crossref] [Google Scholar]
  107. 107.
    Org T, Chignola F, Hetényi C, Gaetani M, Rebane A, et al. 2008.. The autoimmune regulator PHD finger binds to non-methylated histone H3K4 to activate gene expression. . EMBO Rep. 9:(4):37076
    [Crossref] [Google Scholar]
  108. 108.
    Koh AS, Kuo AJ, Park SY, Cheung P, Abramson J, et al. 2008.. Aire employs a histone-binding module to mediate immunological tolerance, linking chromatin regulation with organ-specific autoimmunity. . PNAS 105:(41):1587883
    [Crossref] [Google Scholar]
  109. 109.
    Koh AS, Kingston RE, Benoist C, Mathis D. 2010.. Global relevance of Aire binding to hypomethylated lysine-4 of histone-3. . PNAS 107:(29):1301621
    [Crossref] [Google Scholar]
  110. 110.
    Barthlott T, Handel AE, Teh HY, Wirasinha RC, Hafen K, et al. 2021.. Indispensable epigenetic control of thymic epithelial cell development and function by polycomb repressive complex 2. . Nat. Commun. 12::3933
    [Crossref] [Google Scholar]
  111. 111.
    Henriques T, Scruggs BS, Inouye MO, Muse GW, Williams LH, et al. 2018.. Widespread transcriptional pausing and elongation control at enhancers. . Genes Dev. 32:(1):2641
    [Crossref] [Google Scholar]
  112. 112.
    Muse GW, Gilchrist DA, Nechaev S, Shah R, Parker JS, et al. 2007.. RNA polymerase is poised for activation across the genome. . Nat. Genet. 39:(12):150711
    [Crossref] [Google Scholar]
  113. 113.
    Oven I, Brdičková N, Kohoutek J, Vaupotič T, Narat M, Peterlin BM. 2007.. AIRE recruits P-TEFb for transcriptional elongation of target genes in medullary thymic epithelial cells. . Mol. Cell. Biol. 27:(24):881523
    [Crossref] [Google Scholar]
  114. 114.
    Giraud M, Jmari N, Du L, Carallis F, Nieland TJF, et al. 2014.. An RNAi screen for Aire cofactors reveals a role for Hnrnpl in polymerase release and Aire-activated ectopic transcription. . PNAS 111:(4):149196
    [Crossref] [Google Scholar]
  115. 115.
    Peterlin BM, Price DH. 2006.. Controlling the elongation phase of transcription with P-TEFb. . Mol. Cell 23:(3):297305
    [Crossref] [Google Scholar]
  116. 116.
    Vos SM, Farnung L, Boehning M, Wigge C, Linden A, et al. 2018.. Structure of activated transcription complex Pol II–DSIF–PAF–SPT6. . Nature 560:(7720):60712
    [Crossref] [Google Scholar]
  117. 117.
    Vos SM, Farnung L, Urlaub H, Cramer P. 2018.. Structure of paused transcription complex Pol II–DSIF–NELF. . Nature 560:(7720):6016
    [Crossref] [Google Scholar]
  118. 118.
    Yoshida H, Bansal K, Schaefer U, Chapman T, Rioja I, et al. 2015.. Brd4 bridges the transcriptional regulators, Aire and P-TEFb, to promote elongation of peripheral-tissue antigen transcripts in thymic stromal cells. . PNAS 112:(32):E444857
    [Crossref] [Google Scholar]
  119. 119.
    Huang F, Shao W, Fujinaga K, Peterlin BM. 2018.. Bromodomain-containing protein 4–independent transcriptional activation by autoimmune regulator (AIRE) and NF-κB. . J. Biol. Chem. 293:(14):49935004
    [Crossref] [Google Scholar]
  120. 120.
    Schröder S, Cho S, Zeng L, Zhang Q, Kaehlcke K, et al. 2012.. Two-pronged binding with bromodomain-containing protein 4 liberates positive transcription elongation factor b from inactive ribonucleoprotein complexes. . J. Biol. Chem. 287:(2):109099
    [Crossref] [Google Scholar]
  121. 121.
    Yang Z, Yik JHN, Chen R, He N, Jang MK, et al. 2005.. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. . Mol. Cell 19:(4):53545
    [Crossref] [Google Scholar]
  122. 122.
    Jang MK, Mochizuki K, Zhou M, Jeong H-S, Brady JN, Ozato K. 2005.. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II–dependent transcription. . Mol. Cell 19:(4):52334
    [Crossref] [Google Scholar]
  123. 123.
    Žumer K, Plemenitaš A, Saksela K, Peterlin BM. 2011.. Patient mutation in AIRE disrupts P-TEFb binding and target gene transcription. . Nucleic Acids Res. 39:(18):790819
    [Crossref] [Google Scholar]
  124. 124.
    Bansal K, Yoshida H, Benoist C, Mathis D. 2017.. The transcriptional regulator Aire binds to and activates super-enhancers. . Nat. Immunol. 18:(3):26373
    [Crossref] [Google Scholar]
  125. 125.
    Ju B-G, Lunyak VV, Perissi V, Garcia-Bassets I, Rose DW, et al. 2006.. A topoisomerase Iiβ–mediated dsDNA break required for regulated transcription. . Science 312:(5781):1798802
    [Crossref] [Google Scholar]
  126. 126.
    Bunch H, Lawney BP, Lin Y-F, Asaithamby A, Murshid A, et al. 2015.. Transcriptional elongation requires DNA break–induced signalling. . Nat. Commun. 6::10191
    [Crossref] [Google Scholar]
  127. 127.
    Baranello L, Wojtowicz D, Cui K, Devaiah BN, Chung HJ, et al. 2016.. RNA polymerase II regulates topoisomerase 1 activity to favor efficient transcription. . Cell 165:(2):35771
    [Crossref] [Google Scholar]
  128. 128.
    Bansal K, Michelson DA, Ramirez RN, Viny AD, Levine RL, et al. 2021.. Aire regulates chromatin looping by evicting CTCF from domain boundaries and favoring accumulation of cohesin on superenhancers. . PNAS 118:(38):e2110991118
    [Crossref] [Google Scholar]
  129. 129.
    Pitkanen J, Rebane A, Rowell J, Murumagi A, Strobel P, et al. 2005.. Cooperative activation of transcription by autoimmune regulator AIRE and CBP. . Biochem. Biophys. Res. Commun. 333:(3):94453
    [Crossref] [Google Scholar]
  130. 130.
    Incani F, Serra M, Meloni A, Cossu C, Saba L, et al. 2014.. AIRE acetylation and deacetylation: effect on protein stability and transactivation activity. . J. Biomed. Sci. 21:(1):85
    [Crossref] [Google Scholar]
  131. 131.
    Saare M, Rebane A, Rajashekar B, Vilo J, Peterson P. 2012.. Autoimmune regulator is acetylated by transcription coactivator CBP/p300. . Exp. Cell Res. 318:(14):176778
    [Crossref] [Google Scholar]
  132. 132.
    Chuprin A, Avin A, Goldfarb Y, Herzig Y, Levi B, et al. 2015.. The deacetylase Sirt1 is an essential regulator of Aire-mediated induction of central immunological tolerance. . Nat. Immunol. 16:(7):73745
    [Crossref] [Google Scholar]
  133. 133.
    Tomofuji Y, Takaba H, Suzuki HI, Benlaribi R, Martinez CDP, et al. 2020.. Chd4 choreographs self-antigen expression for central immune tolerance. . Nat. Immunol. 21:(8):892901
    [Crossref] [Google Scholar]
  134. 134.
    Koh AS, Miller EL, Buenrostro JD, Moskowitz DM, Wang J, et al. 2018.. Rapid chromatin repression by Aire provides precise control of immune tolerance. . Nat. Immunol. 19:(2):16272
    [Crossref] [Google Scholar]
  135. 135.
    Heinlein M, Gandolfo LC, Zhao K, Teh CE, Nguyen N, et al. 2022.. The acetyltransferase KAT7 is required for thymic epithelial cell expansion, expression of AIRE target genes, and thymic tolerance. . Sci. Immunol. 7:(67):eabb6032
    [Google Scholar]
  136. 136.
    Pitkanen J, Vahamurto P, Krohn K, Peterson P. 2001.. Subcellular localization of the autoimmune regulator protein. Characterization of nuclear targeting and transcriptional activation domain. . J. Biol. Chem. 276:(22):19597602
    [Crossref] [Google Scholar]
  137. 137.
    Ramsey C, Bukrinsky A, Peltonen L. 2002.. Systematic mutagenesis of the functional domains of AIRE reveals their role in intracellular targeting. . Hum. Mol. Genet. 11:(26):3299308
    [Crossref] [Google Scholar]
  138. 138.
    Abramson J, Giraud M, Benoist C, Mathis D. 2010.. Aire's partners in the molecular control of immunological tolerance. . Cell 140:(1):12335
    [Crossref] [Google Scholar]
  139. 139.
    Huoh YS, Wu B, Park S, Yang D, Bansal K, et al. 2020.. Dual functions of Aire CARD multimerization in the transcriptional regulation of T cell tolerance. . Nat. Commun. 11::1625
    [Crossref] [Google Scholar]
  140. 140.
    Anderson MS, Venanzi ES, Chen Z, Berzins SP, Benoist C, Mathis D. 2005.. The cellular mechanism of Aire control of T cell tolerance. . Immunity 23:(2):22739
    [Crossref] [Google Scholar]
  141. 141.
    Guerau-de-Arellano M, Martinic M, Benoist C, Mathis D. 2009.. Neonatal tolerance revisited: a perinatal window for Aire control of autoimmunity. . J. Exp. Med. 206:(6):124552
    [Crossref] [Google Scholar]
  142. 142.
    Gardner JM, Devoss JJ, Friedman RS, Wong DJ, Tan YX, et al. 2008.. Deletional tolerance mediated by extrathymic Aire-expressing cells. . Science 321:(5890):84347
    [Crossref] [Google Scholar]
  143. 143.
    Gardner JM, Metzger TC, McMahon EJ, Au-Yeung BB, Krawisz AK, et al. 2013.. Extrathymic Aire-expressing cells are a distinct bone marrow–derived population that induce functional inactivation of CD4+ T cells. . Immunity 39:(3):56072
    [Crossref] [Google Scholar]
  144. 144.
    Gillis-Buck E, Miller H, Sirota M, Sanders SJ, Ntranos V, et al. 2021.. Extrathymic Aire-expressing cells support maternal-fetal tolerance. . Sci. Immunol. 6:(61):eabf1968
    [Crossref] [Google Scholar]
  145. 145.
    Miller JC, Brown BD, Shay T, Gautier EL, Jojic V, et al. 2012.. Deciphering the transcriptional network of the dendritic cell lineage. . Nat. Immunol. 13:(9):88899
    [Crossref] [Google Scholar]
  146. 146.
    Idoyaga J, Fiorese C, Zbytnuik L, Lubkin A, Miller J, et al. 2013.. Specialized role of migratory dendritic cells in peripheral tolerance induction. . J. Clin. Investig. 123:(2):84454
    [Google Scholar]
  147. 147.
    Maier B, Leader AM, Chen ST, Tung N, Chang C, et al. 2020.. A conserved dendritic-cell regulatory program limits antitumour immunity. . Nature 580:(7802):25762
    [Crossref] [Google Scholar]
  148. 148.
    Kulshrestha D, Yeh LT, Chien MW, Chou FC, Sytwu HK. 2017.. Peripheral autoimmune regulator induces exhaustion of CD4+ and CD8+ effector T cells to attenuate autoimmune diabetes in non-obese diabetic mice. . Front. Immunol. 8::1128
    [Crossref] [Google Scholar]
  149. 149.
    Zou X, Wang S, Zhang Y, Wang X, Zhang R, et al. 2021.. AIRE-overexpressing BMDCs suppress TFH cells through ICOSL to prevent and attenuate autoimmune diabetes in NOD mice. . Int. Immunopharmacol. 99::107979
    [Crossref] [Google Scholar]
  150. 150.
    Lindmark E, Chen Y, Georgoudaki AM, Dudziak D, Lindh E, et al. 2013.. AIRE expressing marginal zone dendritic cells balances adaptive immunity and T-follicular helper cell recruitment. . J. Autoimmun. 42::6270
    [Crossref] [Google Scholar]
  151. 151.
    Zhang Y, Lu Y, Gao Y, Liang X, Zhang R, et al. 2023.. Effects of Aire on perforin expression in BMDCs via TLR7/8 and its therapeutic effect on type 1 diabetes. . Int. Immunopharmacol. 117::109890
    [Crossref] [Google Scholar]
  152. 152.
    Yamano T, Dobes J, Voboril M, Steinert M, Brabec T, et al. 2019.. Aire-expressing ILC3-like cells in the lymph node display potent APC features. . J. Exp. Med. 216:(5):102737
    [Crossref] [Google Scholar]
  153. 153.
    Dobes J, Ben-Nun O, Binyamin A, Stoler-Barak L, Oftedal BE, et al. 2022.. Extrathymic expression of Aire controls the induction of effective TH17 cell–mediated immune response to Candida albicans. . Nat. Immunol. 23:(7):1098108
    [Crossref] [Google Scholar]
  154. 154.
    Yamano T, Nedjic J, Hinterberger M, Steinert M, Koser S, et al. 2015.. Thymic B cells are licensed to present self antigens for central T cell tolerance induction. . Immunity 42:(6):104861
    [Crossref] [Google Scholar]
  155. 155.
    Miyazawa R, Nagao JI, Arita-Morioka KI, Matsumoto M, Morimoto J, et al. 2023.. Dispensable role of Aire in CD11c+ conventional dendritic cells for antigen presentation and shaping the transcriptome. . ImmunoHorizons 7:(1):14058
    [Crossref] [Google Scholar]
  156. 156.
    Dobes J, Edenhofer F, Voboril M, Brabec T, Dobesova M, et al. 2018.. A novel conditional Aire allele enables cell-specific ablation of the immune tolerance regulator Aire. . Eur. J. Immunol. 48:(3):54648
    [Crossref] [Google Scholar]
  157. 157.
    Poliani PL, Kisand K, Marrella V, Ravanini M, Notarangelo LD, et al. 2010.. Human peripheral lymphoid tissues contain autoimmune regulator–expressing dendritic cells. . Am. J. Pathol. 176:(3):110412
    [Crossref] [Google Scholar]
  158. 158.
    Fergusson JR, Morgan MD, Bruchard M, Huitema L, Heesters BA, et al. 2018.. Maturing human CD127+CCR7+PDL1+ dendritic cells express AIRE in the absence of tissue restricted antigens. . Front. Immunol. 9::2902
    [Crossref] [Google Scholar]
  159. 159.
    Conde CD, Xu C, Jarvis LB, Rainbow DB, Wells SB, et al. 2022.. Cross-tissue immune cell analysis reveals tissue-specific features in humans. . Science 376:(6594):eabl5197
    [Crossref] [Google Scholar]
  160. 160.
    Wang J, Lareau CA, Bautista JL, Gupta AR, Sandor K, et al. 2021.. Single-cell multiomics defines tolerogenic extrathymic Aire-expressing populations with unique homology to thymic epithelium. . Sci. Immunol. 6:(65):eabl5053
    [Crossref] [Google Scholar]
  161. 161.
    Hepworth MR, Monticelli LA, Fung TC, Ziegler CG, Grunberg S, et al. 2013.. Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. . Nature 498:(7452):11317
    [Crossref] [Google Scholar]
  162. 162.
    Hepworth MR, Fung TC, Masur SH, Kelsen JR, McConnell FM, et al. 2015.. Immune tolerance: Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria–specific CD4+ T cells. . Science 348:(6238):103135
    [Crossref] [Google Scholar]
  163. 163.
    Kedmi R, Najar TA, Mesa KR, Grayson A, Kroehling L, et al. 2022.. A RORγt+ cell instructs gut microbiota–specific Treg cell differentiation. . Nature 610:(7933):73743
    [Crossref] [Google Scholar]
  164. 164.
    Akagbosu B, Tayyebi Z, Shibu G, Iza YAP, Deep D, et al. 2022.. Novel antigen-presenting cell imparts Treg-dependent tolerance to gut microbiota. . Nature 610:(7933):75260
    [Crossref] [Google Scholar]
  165. 165.
    Lyu M, Suzuki H, Kang L, Gaspal F, Zhou W, et al. 2022.. ILC3s select microbiota-specific regulatory T cells to establish tolerance in the gut. . Nature 610:(7933):74451
    [Crossref] [Google Scholar]
  166. 166.
    Gardner JM, Liston A. 2022.. RORγt-lineage APCs: the Aire apparent. . Sci. Immunol. 7:(78):eade9240
    [Crossref] [Google Scholar]
  167. 167.
    Org T, Chignola F, Hetenyi C, Gaetani M, Rebane A, et al. 2008.. The autoimmune regulator PHD finger binds to non-methylated histone H3K4 to activate gene expression. . EMBO Rep. 9:(4):37076
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-immunol-090222-101050
Loading
/content/journals/10.1146/annurev-immunol-090222-101050
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error