1932

Abstract

T cell responses must be balanced to ensure adequate protection against malignant transformation and an array of pathogens while also limiting damage to healthy cells and preventing autoimmunity. T cell exhaustion serves as a regulatory mechanism to limit the activity and effector function of T cells undergoing chronic antigen stimulation. Exhausted T cells exhibit poor proliferative potential; high inhibitory receptor expression; altered transcriptome, epigenome, and metabolism; and, most importantly, reduced effector function. While exhaustion helps to restrain damage caused by aberrant T cells in settings of autoimmune disease, it also limits the ability of cells to respond against persistent infection and cancer, leading to disease progression. Here we review the process of T cell exhaustion, detailing the key characteristics and drivers as well as highlighting our current understanding of the underlying transcriptional and epigenetic programming. We also discuss how exhaustion can be targeted to enhance T cell functionality in cancer.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-090222-110914
2024-06-28
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/immunol/42/1/annurev-immunol-090222-110914.html?itemId=/content/journals/10.1146/annurev-immunol-090222-110914&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Collier JL, Weiss SA, Pauken KE, Sen DR, Sharpe AH. 2021.. Not-so-opposite ends of the spectrum: CD8+ T cell dysfunction across chronic infection, cancer and autoimmunity. . Nat. Immunol. 22::80919
    [Crossref] [Google Scholar]
  2. 2.
    Hashimoto M, Kamphorst AO, Im SJ, Kissick HT, Pillai RN, et al. 2018.. CD8 T cell exhaustion in chronic infection and cancer: opportunities for interventions. . Annu. Rev. Med. 69::30118
    [Crossref] [Google Scholar]
  3. 3.
    Blank CU, Haining WN, Held W, Hogan PG, Kallies A, et al. 2019.. Defining “T cell exhaustion. .” Nat. Rev. Immunol. 19::66574
    [Crossref] [Google Scholar]
  4. 4.
    McLane LM, Abdel-Hakeem MS, Wherry EJ. 2019.. CD8 T cell exhaustion during chronic viral infection and cancer. . Annu. Rev. Immunol. 37::45795
    [Crossref] [Google Scholar]
  5. 5.
    Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, et al. 2006.. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. . Nature 443::35054
    [Crossref] [Google Scholar]
  6. 6.
    Radziewicz H, Ibegbu CC, Fernandez ML, Workowski KA, Obideen K, et al. 2007.. Liver-infiltrating lymphocytes in chronic human hepatitis C virus infection display an exhausted phenotype with high levels of PD-1 and low levels of CD127 expression. . J. Virol. 81::254553
    [Crossref] [Google Scholar]
  7. 7.
    Urbani S, Amadei B, Tola D, Massari M, Schivazappa S, et al. 2006.. PD-1 expression in acute hepatitis C virus (HCV) infection is associated with HCV-specific CD8 exhaustion. . J. Virol. 80::11398403
    [Crossref] [Google Scholar]
  8. 8.
    Fenwick C, Joo V, Jacquier P, Noto A, Banga R, et al. 2019.. T-cell exhaustion in HIV infection. . Immunol. Rev. 292::14963
    [Crossref] [Google Scholar]
  9. 9.
    Baitsch L, Baumgaertner P, Devevre E, Raghav SK, Legat A, et al. 2011.. Exhaustion of tumor-specific CD8+ T cells in metastases from melanoma patients. . J. Clin. Investig. 121::235060
    [Crossref] [Google Scholar]
  10. 10.
    Guo X, Zhang Y, Zheng L, Zheng C, Song J, et al. 2018.. Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing. . Nat. Med. 24::97885
    [Crossref] [Google Scholar]
  11. 11.
    Cillo AR, Kurten CHL, Tabib T, Qi Z, Onkar S, et al. 2020.. Immune landscape of viral- and carcinogen-driven head and neck cancer. . Immunity 52::18399.e9
    [Crossref] [Google Scholar]
  12. 12.
    Tilstra JS, Avery L, Menk AV, Gordon RA, Smita S, et al. 2018.. Kidney-infiltrating T cells in murine lupus nephritis are metabolically and functionally exhausted. . J. Clin. Investig. 128::488497
    [Crossref] [Google Scholar]
  13. 13.
    Smita S, Chikina M, Shlomchik MJ, Tilstra JS. 2022.. Heterogeneity and clonality of kidney-infiltrating T cells in murine lupus nephritis. . JCI Insight 7::e156048
    [Crossref] [Google Scholar]
  14. 14.
    Grebinoski S, Zhang Q, Cillo AR, Manne S, Xiao H, et al. 2022.. Autoreactive CD8+ T cells are restrained by an exhaustion-like program that is maintained by LAG3. . Nat. Immunol. 23::86877
    [Crossref] [Google Scholar]
  15. 15.
    Andrews LP, Yano H, Vignali DAA. 2019.. Inhibitory receptors and ligands beyond PD-1, PD-L1 and CTLA-4: breakthroughs or backups. . Nat. Immunol. 20::142534
    [Crossref] [Google Scholar]
  16. 16.
    Robert C. 2020.. A decade of immune-checkpoint inhibitors in cancer therapy. . Nat. Commun. 11::3801
    [Crossref] [Google Scholar]
  17. 17.
    Robert C, Ribas A, Hamid O, Daud A, Wolchok JD, et al. 2018.. Durable complete response after discontinuation of pembrolizumab in patients with metastatic melanoma. . J. Clin. Oncol. 36::166874
    [Crossref] [Google Scholar]
  18. 18.
    Haslam A, Gill J, Prasad V. 2020.. Estimation of the percentage of US patients with cancer who are eligible for immune checkpoint inhibitor drugs. . JAMA Netw. Open 3::e200423
    [Crossref] [Google Scholar]
  19. 19.
    Macian F, Im SH, Garcia-Cozar FJ, Rao A. 2004.. T-cell anergy. . Curr. Opin. Immunol. 16::20916
    [Crossref] [Google Scholar]
  20. 20.
    Xing Y, Hogquist KA. 2012.. T-cell tolerance: central and peripheral. . Cold Spring Harb. Perspect. Biol. 4::a006957
    [Crossref] [Google Scholar]
  21. 21.
    Hogquist KA, Baldwin TA, Jameson SC. 2005.. Central tolerance: learning self-control in the thymus. . Nat. Rev. Immunol. 5::77282
    [Crossref] [Google Scholar]
  22. 22.
    Gallimore A, Glithero A, Godkin A, Tissot AC, Plückthun A, et al. 1998.. Induction and exhaustion of lymphocytic choriomeningitis virus–specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class I–peptide complexes. . J. Exp. Med. 187::138393
    [Crossref] [Google Scholar]
  23. 23.
    Zajac AJ, Blattman JN, Murali-Krishna K, Sourdive DJ, Suresh M, et al. 1998.. Viral immune evasion due to persistence of activated T cells without effector function. . J. Exp. Med. 188::220513
    [Crossref] [Google Scholar]
  24. 24.
    Miller BC, Sen DR, Al Abosy R, Bi K, Virkud YV, et al. 2019.. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. . Nat. Immunol. 20::32636
    [Crossref] [Google Scholar]
  25. 25.
    Wherry EJ, Blattman JN, Murali-Krishna K, van der Most R, Ahmed R. 2003.. Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. . J. Virol. 77::491127
    [Crossref] [Google Scholar]
  26. 26.
    Fuller MJ, Zajac AJ. 2003.. Ablation of CD8 and CD4 T cell responses by high viral loads. . J. Immunol. 170::47786
    [Crossref] [Google Scholar]
  27. 27.
    Shin H, Blackburn SD, Blattman JN, Wherry EJ. 2007.. Viral antigen and extensive division maintain virus-specific CD8 T cells during chronic infection. . J. Exp. Med. 204::94149
    [Crossref] [Google Scholar]
  28. 28.
    Blackburn SD, Shin H, Freeman GJ, Wherry EJ. 2008.. Selective expansion of a subset of exhausted CD8 T cells by αPD-L1 blockade. . PNAS 105::1501621
    [Crossref] [Google Scholar]
  29. 29.
    Jin X, Bauer DE, Tuttleton SE, Lewin S, Gettie A, et al. 1999.. Dramatic rise in plasma viremia after CD8+ T cell depletion in simian immunodeficiency virus–infected macaques. . J. Exp. Med. 189::99198
    [Crossref] [Google Scholar]
  30. 30.
    Schmitz JE, Kuroda MJ, Santra S, Sasseville VG, Simon MA, et al. 1999.. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. . Science 283::85760
    [Crossref] [Google Scholar]
  31. 31.
    Siddiqui I, Schaeuble K, Chennupati V, Fuertes Marraco SA, Calderon-Copete S, et al. 2019.. Intratumoral Tcf1+PD-1+CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. . Immunity 50::195211.e10
    [Crossref] [Google Scholar]
  32. 32.
    Wherry EJ, Ha SJ, Kaech SM, Haining WN, Sarkar S, et al. 2007.. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. . Immunity 27::67084
    [Crossref] [Google Scholar]
  33. 33.
    Blackburn SD, Shin H, Haining WN, Zou T, Workman CJ, et al. 2009.. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. . Nat. Immunol. 10::2937
    [Crossref] [Google Scholar]
  34. 34.
    Jiang Y, Li Y, Zhu B. 2015.. T-cell exhaustion in the tumor microenvironment. . Cell Death Dis. 6::e1792
    [Crossref] [Google Scholar]
  35. 35.
    Crotty S. 2019.. T follicular helper cell biology: a decade of discovery and diseases. . Immunity 50::113248
    [Crossref] [Google Scholar]
  36. 36.
    Linsley PS, Brady W, Urnes M, Grosmaire LS, Damle NK, Ledbetter JA. 1991.. CTLA-4 is a second receptor for the B cell activation antigen B7. . J. Exp. Med. 174::56169
    [Crossref] [Google Scholar]
  37. 37.
    Walunas TL, Lenschow DJ, Bakker CY, Linsley PS, Freeman GJ, et al. 1994.. CTLA-4 can function as a negative regulator of T cell activation. . Immunity 1::40513
    [Crossref] [Google Scholar]
  38. 38.
    Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH. 1995.. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. . Immunity 3::54147
    [Crossref] [Google Scholar]
  39. 39.
    Esensten JH, Helou YA, Chopra G, Weiss A, Bluestone JA. 2016.. CD28 costimulation: from mechanism to therapy. . Immunity 44::97388
    [Crossref] [Google Scholar]
  40. 40.
    Linsley PS, Greene JL, Brady W, Bajorath J, Ledbetter JA, Peach R. 1994.. Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. . Immunity 1::793801
    [Crossref] [Google Scholar]
  41. 41.
    Wei SC, Duffy CR, Allison JP. 2018.. Fundamental mechanisms of immune checkpoint blockade therapy. . Cancer Discov. 8::106986
    [Crossref] [Google Scholar]
  42. 42.
    Leach DR, Krummel MF, Allison JP. 1996.. Enhancement of antitumor immunity by CTLA-4 blockade. . Science 271::173436
    [Crossref] [Google Scholar]
  43. 43.
    Okazaki T, Honjo T. 2006.. The PD-1–PD-L pathway in immunological tolerance. . Trends Immunol. 27::195201
    [Crossref] [Google Scholar]
  44. 44.
    Agata Y, Kawasaki A, Nishimura H, Ishida Y, Tsubata T, et al. 1996.. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. . Int. Immunol. 8::76572
    [Crossref] [Google Scholar]
  45. 45.
    Sharpe AH, Pauken KE. 2018.. The diverse functions of the PD1 inhibitory pathway. . Nat. Rev. Immunol. 18::15367
    [Crossref] [Google Scholar]
  46. 46.
    Frebel H, Nindl V, Schuepbach RA, Braunschweiler T, Richter K, et al. 2012.. Programmed death 1 protects from fatal circulatory failure during systemic virus infection of mice. . J. Exp. Med. 209::248599
    [Crossref] [Google Scholar]
  47. 47.
    Nishimura H, Nose M, Hiai H, Minato N, Honjo T. 1999.. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. . Immunity 11::14151
    [Crossref] [Google Scholar]
  48. 48.
    Ansari MJ, Salama AD, Chitnis T, Smith RN, Yagita H, et al. 2003.. The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice. . J. Exp. Med. 198::6369
    [Crossref] [Google Scholar]
  49. 49.
    Wang J, Yoshida T, Nakaki F, Hiai H, Okazaki T, Honjo T. 2005.. Establishment of NOD-Pdcd1−/− mice as an efficient animal model of type I diabetes. . PNAS 102::1182328
    [Crossref] [Google Scholar]
  50. 50.
    Reynoso ED, Elpek KG, Francisco L, Bronson R, Bellemare-Pelletier A, et al. 2009.. Intestinal tolerance is converted to autoimmune enteritis upon PD-1 ligand blockade. . J. Immunol. 182::210212
    [Crossref] [Google Scholar]
  51. 51.
    Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, et al. 2006.. Restoring function in exhausted CD8 T cells during chronic viral infection. . Nature 439::68287
    [Crossref] [Google Scholar]
  52. 52.
    Petrovas C, Casazza JP, Brenchley JM, Price DA, Gostick E, et al. 2006.. PD-1 is a regulator of virus-specific CD8+ T cell survival in HIV infection. . J. Exp. Med. 203::228192
    [Crossref] [Google Scholar]
  53. 53.
    Trautmann L, Janbazian L, Chomont N, Said EA, Gimmig S, et al. 2006.. Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. . Nat. Med. 12::1198202
    [Crossref] [Google Scholar]
  54. 54.
    Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, et al. 2000.. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. . J. Exp. Med. 192::102734
    [Crossref] [Google Scholar]
  55. 55.
    Dong H, Zhu G, Tamada K, Chen L. 1999.. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. . Nat. Med. 5::136569
    [Crossref] [Google Scholar]
  56. 56.
    Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, et al. 2001.. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. . Nat. Immunol. 2::26168
    [Crossref] [Google Scholar]
  57. 57.
    Tseng SY, Otsuji M, Gorski K, Huang X, Slansky JE, et al. 2001.. B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells. . J. Exp. Med. 193::83946
    [Crossref] [Google Scholar]
  58. 58.
    LaFleur MW, Muroyama Y, Drake CG, Sharpe AH. 2018.. Inhibitors of the PD-1 pathway in tumor therapy. . J. Immunol. 200::37583
    [Crossref] [Google Scholar]
  59. 59.
    Park JS, Gazzaniga FS, Wu M, Luthens AK, Gillis J, et al. 2023.. Targeting PD-L2–RGMb overcomes microbiome-related immunotherapy resistance. . Nature 617::37785
    [Crossref] [Google Scholar]
  60. 60.
    Chemnitz JM, Parry RV, Nichols KE, June CH, Riley JL. 2004.. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. . J. Immunol. 173::94554
    [Crossref] [Google Scholar]
  61. 61.
    Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, et al. 2005.. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. . Mol. Cell. Biol. 25::954353
    [Crossref] [Google Scholar]
  62. 62.
    Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, Hashimoto-Tane A, Azuma M, Saito T. 2012.. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. . J. Exp. Med. 209::120117
    [Crossref] [Google Scholar]
  63. 63.
    Kamphorst AO, Wieland A, Nasti T, Yang S, Zhang R, et al. 2017.. Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. . Science 355::142327
    [Crossref] [Google Scholar]
  64. 64.
    Hui E, Cheung J, Zhu J, Su X, Taylor MJ, et al. 2017.. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. . Science 355::142833
    [Crossref] [Google Scholar]
  65. 65.
    Ruffo E, Wu RC, Bruno TC, Workman CJ, Vignali DAA. 2019.. Lymphocyte-activation gene 3 (LAG3): the next immune checkpoint receptor. . Semin. Immunol. 42::101305
    [Crossref] [Google Scholar]
  66. 66.
    Maruhashi T, Sugiura D, Okazaki I-M, Okazaki T. 2020.. LAG-3: from molecular functions to clinical applications. . J. ImmunoTher. Cancer 8::e001014
    [Crossref] [Google Scholar]
  67. 67.
    Triebel F, Jitsukawa S, Baixeras E, Roman-Roman S, Genevee C, et al. 1990.. LAG-3, a novel lymphocyte activation gene closely related to CD4. . J. Exp. Med. 171::1393405
    [Crossref] [Google Scholar]
  68. 68.
    Workman CJ, Rice DS, Dugger KJ, Kurschner C, Vignali DA. 2002.. Phenotypic analysis of the murine CD4-related glycoprotein, CD223 (LAG-3). . Eur. J. Immunol. 32::225563
    [Crossref] [Google Scholar]
  69. 69.
    Huang CT, Workman CJ, Flies D, Pan X, Marson AL, et al. 2004.. Role of LAG-3 in regulatory T cells. . Immunity 21::50313
    [Crossref] [Google Scholar]
  70. 70.
    Workman CJ, Wang Y, El Kasmi KC, Pardoll DM, Murray PJ, et al. 2009.. LAG-3 regulates plasmacytoid dendritic cell homeostasis. . J. Immunol. 182::188591
    [Crossref] [Google Scholar]
  71. 71.
    Zhang Q, Chikina M, Szymczak-Workman AL, Horne W, Kolls JK, et al. 2017.. LAG3 limits regulatory T cell proliferation and function in autoimmune diabetes. . Sci. Immunol. 2::eaah4569
    [Crossref] [Google Scholar]
  72. 72.
    Workman CJ, Dugger KJ, Vignali DA. 2002.. Cutting edge: molecular analysis of the negative regulatory function of lymphocyte activation gene-3. . J. Immunol. 169::539295
    [Crossref] [Google Scholar]
  73. 73.
    Workman CJ, Cauley LS, Kim IJ, Blackman MA, Woodland DL, Vignali DA. 2004.. Lymphocyte activation gene-3 (CD223) regulates the size of the expanding T cell population following antigen activation in vivo. . J. Immunol. 172::545055
    [Crossref] [Google Scholar]
  74. 74.
    Workman CJ, Vignali DA. 2005.. Negative regulation of T cell homeostasis by lymphocyte activation gene-3 (CD223). . J. Immunol. 174::68895
    [Crossref] [Google Scholar]
  75. 75.
    Li N, Wang Y, Forbes K, Vignali KM, Heale BS, et al. 2007.. Metalloproteases regulate T-cell proliferation and effector function via LAG-3. . EMBO J. 26::494504
    [Crossref] [Google Scholar]
  76. 76.
    Andrews LP, Somasundaram A, Moskovitz JM, Szymczak-Workman AL, Liu C, et al. 2020.. Resistance to PD1 blockade in the absence of metalloprotease-mediated LAG3 shedding. . Sci. Immunol. 5::eabc2728
    [Crossref] [Google Scholar]
  77. 77.
    Miyazaki T, Dierich A, Benoist C, Mathis D. 1996.. Independent modes of natural killing distinguished in mice lacking Lag3. . Science 272::4058
    [Crossref] [Google Scholar]
  78. 78.
    Bettini M, Szymczak-Workman AL, Forbes K, Castellaw AH, Selby M, et al. 2011.. Cutting edge: accelerated autoimmune diabetes in the absence of LAG-3. . J. Immunol. 187::349398
    [Crossref] [Google Scholar]
  79. 79.
    Okazaki T, Okazaki IM, Wang J, Sugiura D, Nakaki F, et al. 2011.. PD-1 and LAG-3 inhibitory co-receptors act synergistically to prevent autoimmunity in mice. . J. Exp. Med. 208::395407
    [Crossref] [Google Scholar]
  80. 80.
    Kouo T, Huang L, Pucsek AB, Cao M, Solt S, et al. 2015.. Galectin-3 shapes antitumor immune responses by suppressing CD8+ T cells via LAG-3 and inhibiting expansion of plasmacytoid dendritic cells. . Cancer Immunol. Res. 3::41223
    [Crossref] [Google Scholar]
  81. 81.
    Xu F, Liu J, Liu D, Liu B, Wang M, et al. 2014.. LSECtin expressed on melanoma cells promotes tumor progression by inhibiting antitumor T-cell responses. . Cancer Res. 74::341828
    [Crossref] [Google Scholar]
  82. 82.
    Wang J, Sanmamed MF, Datar I, Su TT, Ji L, et al. 2019.. Fibrinogen-like protein 1 is a major immune inhibitory ligand of LAG-3. . Cell 176::33447.e12
    [Crossref] [Google Scholar]
  83. 83.
    Guy C, Mitrea DM, Chou PC, Temirov J, Vignali KM, et al. 2022.. LAG3 associates with TCR-CD3 complexes and suppresses signaling by driving co-receptor-Lck dissociation. . Nat. Immunol. 23::75767
    [Crossref] [Google Scholar]
  84. 84.
    Woo SR, Turnis ME, Goldberg MV, Bankoti J, Selby M, et al. 2012.. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. . Cancer Res. 72::91727
    [Crossref] [Google Scholar]
  85. 85.
    Qin S, Xu L, Yi M, Yu S, Wu K, Luo S. 2019.. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. . Mol. Cancer 18::155
    [Crossref] [Google Scholar]
  86. 86.
    Lee JB, Ha SJ, Kim HR. 2021.. Clinical insights into novel immune checkpoint inhibitors. . Front. Pharmacol. 12::681320
    [Crossref] [Google Scholar]
  87. 87.
    Marin-Acevedo JA, Kimbrough EO, Lou Y. 2021.. Next generation of immune checkpoint inhibitors and beyond. . J. Hematol. Oncol. 14::45
    [Crossref] [Google Scholar]
  88. 88.
    Monney L, Sabatos CA, Gaglia JL, Ryu A, Waldner H, et al. 2002.. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. . Nature 415::53641
    [Crossref] [Google Scholar]
  89. 89.
    Wolf Y, Anderson AC, Kuchroo VK. 2020.. TIM3 comes of age as an inhibitory receptor. . Nat. Rev. Immunol. 20::17385
    [Crossref] [Google Scholar]
  90. 90.
    Das M, Zhu C, Kuchroo VK. 2017.. Tim-3 and its role in regulating anti-tumor immunity. . Immunol. Rev. 276::97111
    [Crossref] [Google Scholar]
  91. 91.
    Im SJ, Hashimoto M, Gerner MY, Lee J, Kissick HT, et al. 2016.. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. . Nature 537::41721
    [Crossref] [Google Scholar]
  92. 92.
    Hudson WH, Gensheimer J, Hashimoto M, Wieland A, Valanparambil RM, et al. 2019.. Proliferating transitory T cells with an effector-like transcriptional signature emerge from PD-1+ stem-like CD8+ T cells during chronic infection. . Immunity 51::104358.e4
    [Crossref] [Google Scholar]
  93. 93.
    Jin HT, Anderson AC, Tan WG, West EE, Ha SJ, et al. 2010.. Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. . PNAS 107::1473338
    [Crossref] [Google Scholar]
  94. 94.
    Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC. 2010.. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. . J. Exp. Med. 207::218794
    [Crossref] [Google Scholar]
  95. 95.
    Lee J, Su EW, Zhu C, Hainline S, Phuah J, et al. 2011.. Phosphotyrosine-dependent coupling of Tim-3 to T-cell receptor signaling pathways. . Mol. Cell. Biol. 31::396374
    [Crossref] [Google Scholar]
  96. 96.
    Avery L, Filderman J, Szymczak-Workman AL, Kane LP. 2018.. Tim-3 co-stimulation promotes short-lived effector T cells, restricts memory precursors, and is dispensable for T cell exhaustion. . PNAS 115::245560
    [Crossref] [Google Scholar]
  97. 97.
    Yu X, Harden K, Gonzalez LC, Francesco M, Chiang E, et al. 2009.. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. . Nat. Immunol. 10::4857
    [Crossref] [Google Scholar]
  98. 98.
    Chauvin J-M, Zarour HM. 2020.. TIGIT in cancer immunotherapy. . J. ImmunoTher. Cancer 8::e000957
    [Crossref] [Google Scholar]
  99. 99.
    Joller N, Hafler JP, Brynedal B, Kassam N, Spoerl S, et al. 2011.. Cutting edge: TIGIT has T cell–intrinsic inhibitory functions. . J. Immunol. 186::133842
    [Crossref] [Google Scholar]
  100. 100.
    Johnston RJ, Comps-Agrar L, Hackney J, Yu X, Huseni M, et al. 2014.. The immunoreceptor TIGIT regulates antitumor and antiviral CD8+ T cell effector function. . Cancer Cell 26::92337
    [Crossref] [Google Scholar]
  101. 101.
    Cho BC, Abreu DR, Hussein M, Cobo M, Patel AJ, et al. 2022.. Tiragolumab plus atezolizumab versus placebo plus atezolizumab as a first-line treatment for PD-L1-selected non-small-cell lung cancer (CITYSCAPE): primary and follow-up analyses of a randomised, double-blind, phase 2 study. . Lancet Oncol. 23::78192
    [Crossref] [Google Scholar]
  102. 102.
    Doering TA, Crawford A, Angelosanto JM, Paley MA, Ziegler CG, Wherry EJ. 2012.. Network analysis reveals centrally connected genes and pathways involved in CD8+ T cell exhaustion versus memory. . Immunity 37::113044
    [Crossref] [Google Scholar]
  103. 103.
    Crawford A, Angelosanto JM, Kao C, Doering TA, Odorizzi PM, et al. 2014.. Molecular and transcriptional basis of CD4+ T cell dysfunction during chronic infection. . Immunity 40::289302
    [Crossref] [Google Scholar]
  104. 104.
    Yao C, Sun HW, Lacey NE, Ji Y, Moseman EA, et al. 2019.. Single-cell RNA-seq reveals TOX as a key regulator of CD8+ T cell persistence in chronic infection. . Nat. Immunol. 20::890901
    [Crossref] [Google Scholar]
  105. 105.
    Scott-Browne JP, Lopez-Moyado IF, Trifari S, Wong V, Chavez L, et al. 2016.. Dynamic changes in chromatin accessibility occur in CD8+ T cells responding to viral infection. . Immunity 45::132740
    [Crossref] [Google Scholar]
  106. 106.
    Sen DR, Kaminski J, Barnitz RA, Kurachi M, Gerdemann U, et al. 2016.. The epigenetic landscape of T cell exhaustion. . Science 354::116569
    [Crossref] [Google Scholar]
  107. 107.
    Mognol GP, Spreafico R, Wong V, Scott-Browne JP, Togher S, et al. 2017.. Exhaustion-associated regulatory regions in CD8+ tumor-infiltrating T cells. . PNAS 114::E277685
    [Crossref] [Google Scholar]
  108. 108.
    Philip M, Fairchild L, Sun L, Horste EL, Camara S, et al. 2017.. Chromatin states define tumour-specific T cell dysfunction and reprogramming. . Nature 545::45256
    [Crossref] [Google Scholar]
  109. 109.
    Ghoneim HE, Fan Y, Moustaki A, Abdelsamed HA, Dash P, et al. 2017.. De novo epigenetic programs inhibit PD-1 blockade–mediated T cell rejuvenation. . Cell 170::14257.e19
    [Crossref] [Google Scholar]
  110. 110.
    Pauken KE, Sammons MA, Odorizzi PM, Manne S, Godec J, et al. 2016.. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. . Science 354::116065
    [Crossref] [Google Scholar]
  111. 111.
    Abdel-Hakeem MS, Manne S, Beltra JC, Stelekati E, Chen Z, et al. 2021.. Epigenetic scarring of exhausted T cells hinders memory differentiation upon eliminating chronic antigenic stimulation. . Nat. Immunol. 22::100819
    [Crossref] [Google Scholar]
  112. 112.
    Scharping NE, Delgoffe GM. 2016.. Tumor microenvironment metabolism: a new checkpoint for anti-tumor immunity. . Vaccines 4::46
    [Crossref] [Google Scholar]
  113. 113.
    Scharping NE, Menk AV, Moreci RS, Whetstone RD, Dadey RE, et al. 2016.. The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. . Immunity 45::37488
    [Crossref] [Google Scholar]
  114. 114.
    Scharping NE, Rivadeneira DB, Menk AV, Vignali PDA, Ford BR, et al. 2021.. Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion. . Nat. Immunol. 22::20515
    [Crossref] [Google Scholar]
  115. 115.
    Staron MM, Gray SM, Marshall HD, Parish IA, Chen JH, et al. 2014.. The transcription factor FoxO1 sustains expression of the inhibitory receptor PD-1 and survival of antiviral CD8+ T cells during chronic infection. . Immunity 41::80214
    [Crossref] [Google Scholar]
  116. 116.
    Bengsch B, Johnson AL, Kurachi M, Odorizzi PM, Pauken KE, et al. 2016.. Bioenergetic insufficiencies due to metabolic alterations regulated by the inhibitory receptor PD-1 are an early driver of CD8+ T cell exhaustion. . Immunity 45::35873
    [Crossref] [Google Scholar]
  117. 117.
    Chang CH, Qiu J, O'Sullivan D, Buck MD, Noguchi T, et al. 2015.. Metabolic competition in the tumor microenvironment is a driver of cancer progression. . Cell 162::122941
    [Crossref] [Google Scholar]
  118. 118.
    DePeaux K, Delgoffe GM. 2021.. Metabolic barriers to cancer immunotherapy. . Nat. Rev. Immunol. 21::78597
    [Crossref] [Google Scholar]
  119. 119.
    Austin S, St-Pierre J. 2012.. PGC1α and mitochondrial metabolism—emerging concepts and relevance in ageing and neurodegenerative disorders. . J. Cell Sci. 125::496371
    [Crossref] [Google Scholar]
  120. 120.
    McKinney EF, Smith KG. 2016.. T cell exhaustion and immune-mediated disease—the potential for therapeutic exhaustion. . Curr. Opin. Immunol. 43::7480
    [Crossref] [Google Scholar]
  121. 121.
    Wiedeman AE, Muir VS, Rosasco MG, DeBerg HA, Presnell S, et al. 2020.. Autoreactive CD8+ T cell exhaustion distinguishes subjects with slow type 1 diabetes progression. . J. Clin. Investig. 130::48090
    [Crossref] [Google Scholar]
  122. 122.
    Utzschneider DT, Charmoy M, Chennupati V, Pousse L, Ferreira DP, et al. 2016.. T cell factor 1–expressing memory-like CD8+ T cells sustain the immune response to chronic viral infections. . Immunity 45::41527
    [Crossref] [Google Scholar]
  123. 123.
    Wu T, Ji Y, Moseman EA, Xu HC, Manglani M, et al. 2016.. The TCF1-Bcl6 axis counteracts type I interferon to repress exhaustion and maintain T cell stemness. . Sci. Immunol. 1::eaai8593
    [Crossref] [Google Scholar]
  124. 124.
    Schenkel JM, Herbst RH, Canner D, Li A, Hillman M, et al. 2021.. Conventional type I dendritic cells maintain a reservoir of proliferative tumor-antigen specific TCF-1+ CD8+ T cells in tumor-draining lymph nodes. . Immunity 54::233853.e6
    [Crossref] [Google Scholar]
  125. 125.
    Rahim MK, Okholm TLH, Jones KB, McCarthy EE, Liu CC, et al. 2023.. Dynamic CD8+ T cell responses to cancer immunotherapy in human regional lymph nodes are disrupted in metastatic lymph nodes. . Cell 186::112743.e18
    [Crossref] [Google Scholar]
  126. 126.
    Beltra JC, Manne S, Abdel-Hakeem MS, Kurachi M, Giles JR, et al. 2020.. Developmental relationships of four exhausted CD8+ T cell subsets reveals underlying transcriptional and epigenetic landscape control mechanisms. . Immunity 52::82541.e8
    [Crossref] [Google Scholar]
  127. 127.
    Kallies A, Zehn D, Utzschneider DT. 2020.. Precursor exhausted T cells: key to successful immunotherapy?. Nat. Rev. Immunol. 20::12836
    [Crossref] [Google Scholar]
  128. 128.
    Kim C, Jin J, Weyand CM, Goronzy JJ. 2020.. The transcription factor TCF1 in T cell differentiation and aging. . Int. J. Mol. Sci. 21::6497
    [Crossref] [Google Scholar]
  129. 129.
    Chen Z, Ji Z, Ngiow SF, Manne S, Cai Z, et al. 2019.. TCF-1-centered transcriptional network drives an effector versus exhausted CD8 T cell–fate decision. . Immunity 51::84055.e5
    [Crossref] [Google Scholar]
  130. 130.
    Hess Michelini R, Doedens AL, Goldrath AW, Hedrick SM. 2013.. Differentiation of CD8 memory T cells depends on Foxo1. . J. Exp. Med. 210::1189200
    [Crossref] [Google Scholar]
  131. 131.
    Utzschneider DT, Delpoux A, Wieland D, Huang X, Lai CY, et al. 2018.. Active maintenance of T cell memory in acute and chronic viral infection depends on continuous expression of FOXO1. . Cell Rep. 22::345467
    [Crossref] [Google Scholar]
  132. 132.
    Hedrick SM, Michelini RH, Doedens AL, Goldrath AW, Stone EL. 2012.. FOXO transcription factors throughout T cell biology. . Nat. Rev. Immunol. 12::64961
    [Crossref] [Google Scholar]
  133. 133.
    Aliahmad P, Seksenyan A, Kaye J. 2012.. The many roles of TOX in the immune system. . Curr. Opin. Immunol. 24::17377
    [Crossref] [Google Scholar]
  134. 134.
    Khan O, Giles JR, McDonald S, Manne S, Ngiow SF, et al. 2019.. TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. . Nature 571::21118
    [Crossref] [Google Scholar]
  135. 135.
    Alfei F, Kanev K, Hofmann M, Wu M, Ghoneim HE, et al. 2019.. TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. . Nature 571::26569
    [Crossref] [Google Scholar]
  136. 136.
    Seo H, Chen J, Gonzalez-Avalos E, Samaniego-Castruita D, Das A, et al. 2019.. TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8+ T cell exhaustion. . PNAS 116::1241015
    [Crossref] [Google Scholar]
  137. 137.
    Scott AC, Dundar F, Zumbo P, Chandran SS, Klebanoff CA, et al. 2019.. TOX is a critical regulator of tumour-specific T cell differentiation. . Nature 571::27074
    [Crossref] [Google Scholar]
  138. 138.
    Soerens AG, Kunzli M, Quarnstrom CF, Scott MC, Swanson L, et al. 2023.. Functional T cells are capable of supernumerary cell division and longevity. . Nature 614::76266
    [Crossref] [Google Scholar]
  139. 139.
    Brooks DG, Trifilo MJ, Edelmann KH, Teyton L, McGavern DB, Oldstone MB. 2006.. Interleukin-10 determines viral clearance or persistence in vivo. . Nat. Med. 12::13019
    [Crossref] [Google Scholar]
  140. 140.
    Ejrnaes M, Filippi CM, Martinic MM, Ling EM, Togher LM, et al. 2006.. Resolution of a chronic viral infection after interleukin-10 receptor blockade. . J. Exp. Med. 203::246172
    [Crossref] [Google Scholar]
  141. 141.
    Brooks DG, Ha SJ, Elsaesser H, Sharpe AH, Freeman GJ, Oldstone MB. 2008.. IL-10 and PD-L1 operate through distinct pathways to suppress T-cell activity during persistent viral infection. . PNAS 105::2042833
    [Crossref] [Google Scholar]
  142. 142.
    Sun Q, Zhao X, Li R, Liu D, Pan B, et al. 2023.. STAT3 regulates CD8+ T cell differentiation and functions in cancer and acute infection. . J. Exp. Med. 220::e20220686
    [Crossref] [Google Scholar]
  143. 143.
    Ye C, Yano H, Workman CJ, Vignali DAA. 2021.. Interleukin-35: structure, function and its impact on immune-related diseases. . J. Interferon Cytokine Res. 41::391406
    [Crossref] [Google Scholar]
  144. 144.
    Turnis ME, Sawant DV, Szymczak-Workman AL, Andrews LP, Delgoffe GM, et al. 2016.. Interleukin-35 limits anti-tumor immunity. . Immunity 44::31629
    [Crossref] [Google Scholar]
  145. 145.
    Sawant DV, Yano H, Chikina M, Zhang Q, Liao M, et al. 2019.. Adaptive plasticity of IL-10+ and IL-35+ Treg cells cooperatively promotes tumor T cell exhaustion. . Nat. Immunol. 20::72435
    [Crossref] [Google Scholar]
  146. 146.
    Abbas AK, Trotta E, Simeonov DR, Marson A, Bluestone JA. 2018.. Revisiting IL-2: biology and therapeutic prospects. . Sci. Immunol. 3::eaat1482
    [Crossref] [Google Scholar]
  147. 147.
    Pol JG, Caudana P, Paillet J, Piaggio E, Kroemer G. 2020.. Effects of interleukin-2 in immunostimulation and immunosuppression. . J. Exp. Med. 217::e20191247
    [Crossref] [Google Scholar]
  148. 148.
    Liu Y, Zhou N, Zhou L, Wang J, Zhou Y, et al. 2021.. IL-2 regulates tumor-reactive CD8+ T cell exhaustion by activating the aryl hydrocarbon receptor. . Nat. Immunol. 22::35869
    [Crossref] [Google Scholar]
  149. 149.
    Kumari N, Dwarakanath BS, Das A, Bhatt AN. 2016.. Role of interleukin-6 in cancer progression and therapeutic resistance. . Tumour Biol. 37::1155372
    [Crossref] [Google Scholar]
  150. 150.
    Farren MR, Mace TA, Geyer S, Mikhail S, Wu C, et al. 2016.. Systemic immune activity predicts overall survival in treatment-naive patients with metastatic pancreatic cancer. . Clin. Cancer Res. 22::256574
    [Crossref] [Google Scholar]
  151. 151.
    Somasundaram A, Cillo AR, Lampenfeld C, Workman CJ, Kunning S, et al. 2022.. Systemic immune dysfunction in cancer patients driven by IL6 induction of LAG3 in peripheral CD8+ T cells. . Cancer Immunol. Res. 10::88599
    [Crossref] [Google Scholar]
  152. 152.
    Matsuzaki J, Gnjatic S, Mhawech-Fauceglia P, Beck A, Miller A, et al. 2010.. Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. . PNAS 107::787580
    [Crossref] [Google Scholar]
  153. 153.
    Vignali DA, Kuchroo VK. 2012.. IL-12 family cytokines: immunological playmakers. . Nat. Immunol. 13::72228
    [Crossref] [Google Scholar]
  154. 154.
    Fitzgerald DC, Zhang GX, El-Behi M, Fonseca-Kelly Z, Li H, et al. 2007.. Suppression of autoimmune inflammation of the central nervous system by interleukin 10 secreted by interleukin 27–stimulated T cells. . Nat. Immunol. 8::137279
    [Crossref] [Google Scholar]
  155. 155.
    Hirahara K, Ghoreschi K, Yang XP, Takahashi H, Laurence A, et al. 2012.. Interleukin-27 priming of T cells controls IL-17 production in trans via induction of the ligand PD-L1. . Immunity 36::101730
    [Crossref] [Google Scholar]
  156. 156.
    Chihara N, Madi A, Kondo T, Zhang H, Acharya N, et al. 2018.. Induction and transcriptional regulation of the co-inhibitory gene module in T cells. . Nature 558::45459
    [Crossref] [Google Scholar]
  157. 157.
    Vardhana SA, Hwee MA, Berisa M, Wells DK, Yost KE, et al. 2020.. Impaired mitochondrial oxidative phosphorylation limits the self-renewal of T cells exposed to persistent antigen. . Nat. Immunol. 21::102233
    [Crossref] [Google Scholar]
  158. 158.
    Yu YR, Imrichova H, Wang H, Chao T, Xiao Z, et al. 2020.. Disturbed mitochondrial dynamics in CD8+ TILs reinforce T cell exhaustion. . Nat. Immunol. 21::154051
    [Crossref] [Google Scholar]
  159. 159.
    Aubert RD, Kamphorst AO, Sarkar S, Vezys V, Ha SJ, et al. 2011.. Antigen-specific CD4 T-cell help rescues exhausted CD8 T cells during chronic viral infection. . PNAS 108::2118287
    [Crossref] [Google Scholar]
  160. 160.
    Ruffin AT, Li H, Vujanovic L, Zandberg DP, Ferris RL, Bruno TC. 2023.. Improving head and neck cancer therapies by immunomodulation of the tumour microenvironment. . Nat. Rev. Cancer 23::17388
    [Crossref] [Google Scholar]
  161. 161.
    Alspach E, Lussier DM, Miceli AP, Kizhvatov I, DuPage M, et al. 2019.. MHC-II neoantigens shape tumour immunity and response to immunotherapy. . Nature 574::696701
    [Crossref] [Google Scholar]
  162. 162.
    Quezada SA, Simpson TR, Peggs KS, Merghoub T, Vider J, et al. 2010.. Tumor-reactive CD4+ T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. . J. Exp. Med. 207::63750
    [Crossref] [Google Scholar]
  163. 163.
    Oh DY, Kwek SS, Raju SS, Li T, McCarthy E, et al. 2020.. Intratumoral CD4+ T cells mediate anti-tumor cytotoxicity in human bladder cancer. . Cell 181::161225.e13
    [Crossref] [Google Scholar]
  164. 164.
    Tay RE, Richardson EK, Toh HC. 2021.. Revisiting the role of CD4+ T cells in cancer immunotherapy—new insights into old paradigms. . Cancer Gene Ther. 28::517
    [Crossref] [Google Scholar]
  165. 165.
    Cachot A, Bilous M, Liu YC, Li X, Saillard M, et al. 2021.. Tumor-specific cytolytic CD4 T cells mediate immunity against human cancer. . Sci. Adv. 7::eabe3348
    [Crossref] [Google Scholar]
  166. 166.
    Porichis F, Kwon DS, Zupkosky J, Tighe DP, McMullen A, et al. 2011.. Responsiveness of HIV-specific CD4 T cells to PD-1 blockade. . Blood 118::96574
    [Crossref] [Google Scholar]
  167. 167.
    Raziorrouh B, Ulsenheimer A, Schraut W, Heeg M, Kurktschiev P, et al. 2011.. Inhibitory molecules that regulate expansion and restoration of HCV-specific CD4+ T cells in patients with chronic infection. . Gastroenterology 141::142231.e6
    [Crossref] [Google Scholar]
  168. 168.
    Schulze Zur Wiesch J, Ciuffreda D, Lewis-Ximenez L, Kasprowicz V, Nolan BE, et al. 2012.. Broadly directed virus-specific CD4+ T cell responses are primed during acute hepatitis C infection, but rapidly disappear from human blood with viral persistence. . J. Exp. Med. 209::6175
    [Crossref] [Google Scholar]
  169. 169.
    Brooks DG, Teyton L, Oldstone MB, McGavern DB. 2005.. Intrinsic functional dysregulation of CD4 T cells occurs rapidly following persistent viral infection. . J. Virol. 79::1051427
    [Crossref] [Google Scholar]
  170. 170.
    Fuller MJ, Khanolkar A, Tebo AE, Zajac AJ. 2004.. Maintenance, loss, and resurgence of T cell responses during acute, protracted, and chronic viral infections. . J. Immunol. 172::420414
    [Crossref] [Google Scholar]
  171. 171.
    Han S, Asoyan A, Rabenstein H, Nakano N, Obst R. 2010.. Role of antigen persistence and dose for CD4+ T-cell exhaustion and recovery. . PNAS 107::2045358
    [Crossref] [Google Scholar]
  172. 172.
    Hwang S, Cobb DA, Bhadra R, Youngblood B, Khan IA. 2016.. Blimp-1-mediated CD4 T cell exhaustion causes CD8 T cell dysfunction during chronic toxoplasmosis. . J. Exp. Med. 213::1799818
    [Crossref] [Google Scholar]
  173. 173.
    Malandro N, Budhu S, Kuhn NF, Liu C, Murphy JT, et al. 2016.. Clonal abundance of tumor-specific CD4+ T cells potentiates efficacy and alters susceptibility to exhaustion. . Immunity 44::17993
    [Crossref] [Google Scholar]
  174. 174.
    Fu J, Yu A, Xiao X, Tang J, Zu X, et al. 2020.. CD4+ T cell exhaustion leads to adoptive transfer therapy failure which can be prevented by immune checkpoint blockade. . Am. J. Cancer Res. 10::423450
    [Google Scholar]
  175. 175.
    Balanca CC, Salvioni A, Scarlata CM, Michelas M, Martinez-Gomez C, et al. 2021.. PD-1 blockade restores helper activity of tumor-infiltrating, exhausted PD-1hiCD39+ CD4 T cells. . JCI Insight 6::e142513
    [Crossref] [Google Scholar]
  176. 176.
    Khan SM, Desai R, Coxon A, Livingstone A, Dunn GP, et al. 2022.. Impact of CD4 T cells on intratumoral CD8 T-cell exhaustion and responsiveness to PD-1 blockade therapy in mouse brain tumors. . J. ImmunoTher. Cancer 10::e005293
    [Crossref] [Google Scholar]
  177. 177.
    Sterner RC, Sterner RM. 2021.. CAR-T cell therapy: current limitations and potential strategies. . Blood Cancer J. 11::69
    [Crossref] [Google Scholar]
  178. 178.
    Feins S, Kong W, Williams EF, Milone MC, Fraietta JA. 2019.. An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human cancer. . Am. J. Hematol. 94::S39
    [Crossref] [Google Scholar]
  179. 179.
    Bagchi S, Yuan R, Engleman EG. 2021.. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. . Annu. Rev. Pathol. Mech. Dis. 16::22349
    [Crossref] [Google Scholar]
  180. 180.
    Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, et al. 2013.. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. . N. Engl. J. Med. 369::13444
    [Crossref] [Google Scholar]
  181. 181.
    Pauken KE, Dougan M, Rose NR, Lichtman AH, Sharpe AH. 2019.. Adverse events following cancer immunotherapy: obstacles and opportunities. . Trends Immunol. 40::51123
    [Crossref] [Google Scholar]
  182. 182.
    Burke KP, Grebinoski S, Sharpe AH, Vignali DAA. 2021.. Understanding adverse events of immunotherapy: a mechanistic perspective. . J. Exp. Med. 218::e20192179
    [Crossref] [Google Scholar]
  183. 183.
    Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, et al. 2013.. Nivolumab plus ipilimumab in advanced melanoma. . N. Engl. J. Med. 369::12233
    [Crossref] [Google Scholar]
  184. 184.
    Amaria RN, Postow M, Burton EM, Tetzlaff MT, Ross MI, et al. 2022.. Neoadjuvant relatlimab and nivolumab in resectable melanoma. . Nature 611::15560
    [Crossref] [Google Scholar]
  185. 185.
    Tawbi HA, Schadendorf D, Lipson EJ, Ascierto PA, Matamala L, et al. 2022.. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. . N. Engl. J. Med. 386::2434
    [Crossref] [Google Scholar]
  186. 186.
    Gumber D, Wang LD. 2022.. Improving CAR-T immunotherapy: overcoming the challenges of T cell exhaustion. . EBioMedicine 77::103941
    [Crossref] [Google Scholar]
  187. 187.
    Poorebrahim M, Melief J, Pico de Coaña Y, Wickström SL, Cid-Arregui A, Kiessling R. 2021.. Counteracting CAR T cell dysfunction. . Oncogene 40::42135
    [Crossref] [Google Scholar]
  188. 188.
    Zebley CC, Brown C, Mi T, Fan Y, Alli S, et al. 2021.. CD19-CAR T cells undergo exhaustion DNA methylation programming in patients with acute lymphoblastic leukemia. . Cell Rep. 37::110079
    [Crossref] [Google Scholar]
  189. 189.
    Rodriguez-Garcia A, Palazon A, Noguera-Ortega E, Powell DJ Jr., Guedan S. 2020.. CAR-T cells hit the tumor microenvironment: strategies to overcome tumor escape. . Front. Immunol. 11::1109
    [Crossref] [Google Scholar]
  190. 190.
    Cherkassky L, Morello A, Villena-Vargas J, Feng Y, Dimitrov DS, et al. 2016.. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. . J. Clin. Investig. 126::313044
    [Crossref] [Google Scholar]
  191. 191.
    Prinzing B, Zebley CC, Petersen CT, Fan Y, Anido AA, et al. 2021.. Deleting DNMT3A in CAR T cells prevents exhaustion and enhances antitumor activity. . Sci. Transl. Med. 13::eabh0272
    [Crossref] [Google Scholar]
  192. 192.
    Zebley CC, Youngblood B. 2022.. Mechanisms of T cell exhaustion guiding next-generation immunotherapy. . Trends Cancer 8::72634
    [Crossref] [Google Scholar]
  193. 193.
    Weber EW, Parker KR, Sotillo E, Lynn RC, Anbunathan H, et al. 2021.. Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. . Science 372::eaba1786
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-immunol-090222-110914
Loading
/content/journals/10.1146/annurev-immunol-090222-110914
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error