1932

Abstract

I have spent more than the last 40 years at the University of California, San Francisco (UCSF), studying T cell receptor (TCR) signaling. I was blessed with supportive mentors, an exceptionally talented group of trainees, and wonderful collaborators and colleagues during my journey who have enabled me to make significant contributions to our understanding of how the TCR initiates signaling. TCR signaling events contribute to T cell development as well as to mature T cell activation and differentiation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-090222-112028
2024-06-28
2024-10-03
Loading full text...

Full text loading...

/deliver/fulltext/immunol/42/1/annurev-immunol-090222-112028.html?itemId=/content/journals/10.1146/annurev-immunol-090222-112028&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Frye LD, Edidin M. 1970.. The rapid intermixing of cell surface antigens after formation of mouse-human heterokaryons. . J. Cell Sci. 7::31935
    [Crossref] [Google Scholar]
  2. 2.
    Singer SJ, Nicolson GL. 1972.. The fluid mosaic model of the structure of cell membranes. . Science 175:(4023):72031
    [Crossref] [Google Scholar]
  3. 3.
    Taylor RB, Duffus WP, Raff MC, de Petris S. 1971.. Redistribution and pinocytosis of lymphocyte surface immunoglobulin molecules induced by anti-immunoglobulin antibody. . Nat. New. Biol. 233::22529
    [Crossref] [Google Scholar]
  4. 4.
    Edidin M, Weiss A. 1972.. Antigen cap formation in cultured fibroblasts: a reflection of membrane fluidity and of cell motility. . PNAS 69::245659
    [Crossref] [Google Scholar]
  5. 5.
    McKearn TJ, Hamada Y, Stuart FP, Fitch FW. 1974.. Anti-receptor antibody and resistance to graft-versus-host disease. . Nature 251::64850
    [Crossref] [Google Scholar]
  6. 6.
    Weiss A. 1977.. Suppression of adult rat lymphoid proliferative responses by homologous neonatal serum. . J. Immunol. 118::112123
    [Crossref] [Google Scholar]
  7. 7.
    Stuart FP, McKearn TJ, Fitch FW. 1974.. Immunological enhancement of renal allografts. . Transplant. Proc. 6::5358
    [Google Scholar]
  8. 8.
    Fitch FW, Engers HD, MacDonald HR, Cerottini JC, Brunner KT. 1975.. Generation of cytotoxic T lymphocytes in vitro. VI. Effect of cell density on response in mixed leukocyte cultures. . J. Immunol. 115::168894
    [Crossref] [Google Scholar]
  9. 9.
    Weiss A, Fitch FW. 1977.. Macrophages suppress CTL generation in rat mixed leukocyte cultures. . J. Immunol. 119::51016
    [Crossref] [Google Scholar]
  10. 10.
    Weiss A, Fitch FW, McKearn TJ, Stuart FP. 1978.. Immunological memory is regulated in the enhanced rat renal allograft recipient. . Nature 273::66264
    [Crossref] [Google Scholar]
  11. 11.
    Weiss A, Brunner KT, MacDonald HR, Cerottini JC. 1980.. Antigenic specificity of the cytolytic T lymphocyte response to murine sarcoma virus-induced tumors. III. Characterization of cytolytic T lymphocyte clones specific for Moloney leukemia virus-associated cell surface antigens. . J. Exp. Med. 152::121025
    [Crossref] [Google Scholar]
  12. 12.
    Weiss A, MacDonald HR, Cerottini JC, Brunner KT. 1981.. Inhibition of cytolytic T lymphocyte clones reactive with Moloney leukemia virus-associated antigens by monoclonal antibodies: a direct approach to the study of H-2 restriction. . J. Immunol. 126::48285
    [Crossref] [Google Scholar]
  13. 13.
    Gillis S, Watson J. 1980.. Biochemical and biological characterization of lymphocyte regulatory molecules. V. Identification of an interleukin 2-producing human leukemia T cell line. . J. Exp. Med. 152::170919
    [Crossref] [Google Scholar]
  14. 14.
    Abraham RT, Weiss A. 2004.. Jurkat T cells and development of the T-cell receptor signalling paradigm. . Nat. Rev. Immunol. 4::3018
    [Crossref] [Google Scholar]
  15. 15.
    Allison JP, McIntyre BW, Bloch D. 1982.. Tumor-specific antigen of murine T-lymphoma defined with monoclonal antibody. . J. Immunol. 129::2293300
    [Crossref] [Google Scholar]
  16. 16.
    Meuer SC, Fitzgerald KA, Hussey RE, Hodgdon JC, Schlossman SF, Reinherz EL. 1983.. Clonotypic structures involved in antigen-specific human T cell function: relationship to the T3 molecular complex. . J. Exp. Med. 157::70519
    [Crossref] [Google Scholar]
  17. 17.
    Haskins K, Kubo R, White J, Pigeon M, Kappler J, Marrack P. 1983.. The major histocompatibility complex-restricted antigen receptor on T cells. I. Isolation with a monoclonal antibody. . J. Exp. Med. 157::114969
    [Crossref] [Google Scholar]
  18. 18.
    Hedrick SM, Nielsen EA, Kavaler J, Cohen DI, Davis MM. 1984.. Sequence relationships between putative T-cell receptor polypeptides and immunoglobulins. . Nature 308::15358
    [Crossref] [Google Scholar]
  19. 19.
    Yoshikai Y, Yanagi Y, Suciu-Foca N, Mak TW. 1984.. Presence of T-cell receptor mRNA in functionally distinct T cells and elevation during intrathymic differentiation. . Nature 310::5068
    [Crossref] [Google Scholar]
  20. 20.
    Van Wauwe JP, De Mey JR, Goossens JG. 1980.. OKT3: a monoclonal anti-human T lymphocyte antibody with potent mitogenic properties. . J. Immunol. 124::270813
    [Crossref] [Google Scholar]
  21. 21.
    Weiss A, Wiskocil RL, Stobo JD. 1984.. The role of T3 surface molecules in the activation of human T cells: a two-stimulus requirement for IL 2 production reflects events occurring at a pre-translational level. . J. Immunol. 133::12328
    [Crossref] [Google Scholar]
  22. 22.
    Weiss A, Stobo JD. 1984.. Requirement for the coexpression of T3 and the T cell antigen receptor on a malignant human T cell line. . J. Exp. Med. 160::128499
    [Crossref] [Google Scholar]
  23. 23.
    Weiss A, Imboden J, Shoback D, Stobo J. 1984.. Role of T3 surface molecules in human T-cell activation: T3-dependent activation results in an increase in cytoplasmic free calcium. . PNAS 81::416973
    [Crossref] [Google Scholar]
  24. 24.
    Tsien RY, Pozzan T, Rink TJ. 1982.. Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. . J. Cell Biol. 94::32534
    [Crossref] [Google Scholar]
  25. 25.
    Imboden JB, Stobo JD. 1985.. Transmembrane signalling by the T cell antigen receptor: Perturbation of the T3-antigen receptor complex generates inositol phosphates and releases calcium ions from intracellular stores. . J. Exp. Med. 161::44656
    [Crossref] [Google Scholar]
  26. 26.
    Lu W, Helou YA, Shrinivas K, Liou J, Au-Yeung BB, Weiss A. 2023.. The phosphatidylinositol-transfer protein Nir3 promotes PI(4,5)P2 replenishment in response to TCR signaling during T cell development and survival. . Nat. Immunol. 24::13647
    [Crossref] [Google Scholar]
  27. 27.
    Ohashi PS, Mak TW, Van den Elsen P, Yanagi Y, Yoshikai Y, et al. 1985.. Reconstitution of an active surface T3/T-cell antigen receptor by DNA transfer. . Nature 316::6069
    [Crossref] [Google Scholar]
  28. 28.
    Brenner MB, Trowbridge IS, Strominger JL. 1985.. Cross-linking of human T cell receptor proteins: association between the T cell idiotype beta subunit and the T3 glycoprotein heavy subunit. . Cell 40::18390
    [Crossref] [Google Scholar]
  29. 29.
    Roose JP, Mollenauer M, Ho M, Kurosaki T, Weiss A. 2007.. Unusual interplay of two types of Ras activators, RasGRP and SOS, establishes sensitive and robust Ras activation in lymphocytes. . Mol. Cell. Biol. 27::273245
    [Crossref] [Google Scholar]
  30. 30.
    Ledbetter JA, Parsons M, Martin PJ, Hansen JA, Rabinovitch PS, June CH. 1986.. Antibody binding to CD5 (Tp67) and Tp44 T cell surface molecules: effects on cyclic nucleotides, cytoplasmic free calcium, and cAMP-mediated suppression. . J. Immunol. 137::3299305
    [Crossref] [Google Scholar]
  31. 31.
    Weiss A, Manger B, Imboden J. 1986.. Synergy between the T3/antigen receptor complex and Tp44 in the activation of human T cells. . J. Immunol. 137::81925
    [Crossref] [Google Scholar]
  32. 32.
    Fraser JD, Irving BA, Crabtree GR, Weiss A. 1991.. Regulation of interleukin-2 gene enhancer activity by the T cell accessory molecule CD28. . Science 251::31316
    [Crossref] [Google Scholar]
  33. 33.
    Shapiro VS, Truitt KE, Imboden JB, Weiss A. 1997.. CD28 mediates transcriptional upregulation of the interleukin-2 (IL-2) promoter through a composite element containing the CD28RE and NF-IL-2B AP-1 sites. . Mol. Cell. Biol. 17::405158
    [Crossref] [Google Scholar]
  34. 34.
    Esensten JH, Helou YA, Chopra G, Weiss A, Bluestone JA. 2016.. CD28 costimulation: from mechanism to therapy. . Immunity 44::97388
    [Crossref] [Google Scholar]
  35. 35.
    Andres PG, Howland KC, Nirula A, Kane LP, Barron L, et al. 2004.. Distinct regions in the CD28 cytoplasmic domain are required for T helper type 2 differentiation. . Nat. Immunol. 5::43542
    [Crossref] [Google Scholar]
  36. 36.
    Kane LP, Andres PG, Howland KC, Abbas AK, Weiss A. 2001.. Akt provides the CD28 costimulatory signal for up-regulation of IL-2 and IFN-gamma but not TH2 cytokines. . Nat. Immunol. 2::3744
    [Crossref] [Google Scholar]
  37. 37.
    Tian R, Wang H, Gish GD, Petsalaki E, Pasculescu A, et al. 2015.. Combinatorial proteomic analysis of intercellular signaling applied to the CD28 T-cell costimulatory receptor. . PNAS 112::E1594603
    [Google Scholar]
  38. 38.
    Tan L, Turner J, Weiss A. 1991.. Regions of the T cell receptor alpha and beta chains that are responsible for interactions with CD3. . J. Exp. Med. 173::124756
    [Crossref] [Google Scholar]
  39. 39.
    Mercep M, Bonifacino JS, Garcia-Morales P, Samelson LE, Klausner RD, Ashwell JD. 1988.. T cell CD3-ζη heterodimer expression and coupling to phosphoinositide hydrolysis. . Science 242::57174
    [Crossref] [Google Scholar]
  40. 40.
    Bauer A, McConkey DJ, Howard FD, Clayton LK, Novick D, et al. 1991.. Differential signal transduction via T-cell receptor CD3 zeta 2, CD3 zeta-eta, and CD3 eta 2 isoforms. . PNAS 88::384246
    [Crossref] [Google Scholar]
  41. 41.
    Irving BA, Weiss A. 1991.. The cytoplasmic domain of the T cell receptor zeta chain is sufficient to couple to receptor-associated signal transduction pathways. . Cell 64::891901
    [Crossref] [Google Scholar]
  42. 42.
    Wegener AM, Letourneur F, Hoeveler A, Brocker T, Luton F, Malissen B. 1992.. The T cell receptor/CD3 complex is composed of at least two autonomous transduction modules. . Cell 68::8395
    [Crossref] [Google Scholar]
  43. 43.
    Reth M. 1989.. Antigen receptor tail clue. . Nature 338::38384
    [Crossref] [Google Scholar]
  44. 44.
    Irving BA, Chan AC, Weiss A. 1993.. Functional characterization of a signal transducing motif present in the T cell antigen receptor zeta chain. . J. Exp. Med. 177::1093103
    [Crossref] [Google Scholar]
  45. 45.
    Capon DJ, Weiss A, Irving BA, Roberts MR, Zsebo K. 1994.. Chimeric chains for receptor-associated signal transduction pathways. US Patent 5:359,046
    [Google Scholar]
  46. 46.
    Capon DJ, Weiss A, Irving BA, Roberts MR, Zsebo K. 2001.. Chimeric chains for receptor-associated signal transduction pathways. US Patent 6,319,494
    [Google Scholar]
  47. 47.
    Capon DJ, Weiss A, Irving BA, Roberts MR, Zsebo K. 2002.. Chimeric chains for receptor-associated signal transduction pathways. US Patent 6,407,221
    [Google Scholar]
  48. 48.
    Roberts MR, Qin L, Zhang D, Smith DH, Tran AC, et al. 1994.. Targeting of human immunodeficiency virus-infected cells by CD8+ T lymphocytes armed with universal T-cell receptors. . Blood 84::287889
    [Crossref] [Google Scholar]
  49. 49.
    Hege KM, Bergsland EK, Fisher GA, Nemunaitis JJ, Warren RS, et al. 2017.. Safety, tumor trafficking and immunogenicity of chimeric antigen receptor (CAR)-T cells specific for TAG-72 in colorectal cancer. . J. Immunother. Cancer 5::22
    [Crossref] [Google Scholar]
  50. 50.
    June CH, O'Connor RS, Kawalekar OU, Ghassemi S, Milone MC. 2018.. CAR T cell immunotherapy for human cancer. . Science 359::136165
    [Crossref] [Google Scholar]
  51. 51.
    Goldsmith MA, Dazin PF, Weiss A. 1988.. At least two non-antigen-binding molecules are required for signal transduction by the T-cell antigen receptor. . PNAS 85::861317
    [Crossref] [Google Scholar]
  52. 52.
    Goldsmith MA, Desai DM, Schultz T, Weiss A. 1989.. Function of a heterologous muscarinic receptor in T cell antigen receptor signal transduction mutants. . J. Biol. Chem. 264::1719097
    [Crossref] [Google Scholar]
  53. 53.
    Goldsmith MA, Weiss A. 1987.. Isolation and characterization of a T-lymphocyte somatic mutant with altered signal transduction by the antigen receptor. . PNAS 84::687983
    [Crossref] [Google Scholar]
  54. 54.
    Straus DB, Weiss A. 1992.. Genetic evidence for the involvement of the lck tyrosine kinase in signal transduction through the T cell antigen receptor. . Cell 70::58593
    [Crossref] [Google Scholar]
  55. 55.
    Chan AC, Irving BA, Fraser JD, Weiss A. 1991.. The zeta chain is associated with a tyrosine kinase and upon T-cell antigen receptor stimulation associates with ZAP-70, a 70-kDa tyrosine phosphoprotein. . PNAS 88::916670
    [Crossref] [Google Scholar]
  56. 56.
    Chan AC, Iwashima M, Turck CW, Weiss A. 1992.. ZAP-70: a 70 kd protein-tyrosine kinase that associates with the TCR zeta chain. . Cell 71::64962
    [Crossref] [Google Scholar]
  57. 57.
    Taniguchi T, Kobayashi T, Kondo J, Takahashi K, Nakamura H, et al. 1991.. Molecular cloning of a porcine gene syk that encodes a 72-kDa protein-tyrosine kinase showing high susceptibility to proteolysis. . J. Biol. Chem. 266::1579096
    [Crossref] [Google Scholar]
  58. 58.
    Au-Yeung BB, Deindl S, Hsu LY, Palacios EH, Levin SE, et al. 2009.. The structure, regulation, and function of ZAP-70. . Immunol. Rev. 228::4157
    [Crossref] [Google Scholar]
  59. 59.
    Yan Q, Barros T, Visperas PR, Deindl S, Kadlecek TA, et al. 2013.. Structural basis for activation of ZAP-70 by phosphorylation of the SH2-kinase linker. . Mol. Cell. Biol. 33::2188201
    [Crossref] [Google Scholar]
  60. 60.
    Deindl S, Kadlecek TA, Brdicka T, Cao X, Weiss A, Kuriyan J. 2007.. Structural basis for the inhibition of tyrosine kinase activity of ZAP-70. . Cell 129::73546
    [Crossref] [Google Scholar]
  61. 61.
    Arpaia E, Shahar M, Dadi H, Cohen A, Roifman CM. 1994.. Defective T cell receptor signaling and CD8+ thymic selection in humans lacking Zap-70 kinase. . Cell 76::94758
    [Crossref] [Google Scholar]
  62. 62.
    Chan AC, Kadlecek TA, Elder ME, Filipovich AH, Kuo WL, et al. 1994.. ZAP-70 deficiency in an autosomal recessive form of severe combined immunodeficiency. . Science 264::1599601
    [Crossref] [Google Scholar]
  63. 63.
    Elder ME, Lin D, Clever J, Chan AC, Hope TJ, et al. 1994.. Human severe combined immunodeficiency due to a defect in ZAP-70, a T cell tyrosine kinase. . Science 264::159699
    [Crossref] [Google Scholar]
  64. 64.
    Iwashima M, Irving BA, van Oers NS, Chan AC, Weiss A. 1994.. Sequential interactions of the TCR with two distinct cytoplasmic tyrosine kinases. . Science 263::113639
    [Crossref] [Google Scholar]
  65. 65.
    Weiss A. 1993.. T cell antigen receptor signal transduction: a tale of tails and cytoplasmic protein-tyrosine kinases. . Cell 73::20912
    [Crossref] [Google Scholar]
  66. 66.
    Wang H, Kadlecek TA, Au-Yeung BB, Goodfellow HE, Hsu LY, et al. 2010.. ZAP-70: an essential kinase in T-cell signaling. . Cold Spring Harb. Perspect. Biol. 2::a002279
    [Crossref] [Google Scholar]
  67. 67.
    Thill PA, Weiss A, Chakraborty AK. 2016.. Phosphorylation of a tyrosine residue on Zap70 by Lck and its subsequent binding via an SH2 domain may be a key gatekeeper of T cell receptor signaling in vivo. . Mol. Cell. Biol. 36::2396402
    [Crossref] [Google Scholar]
  68. 68.
    Lo WL, Shah NH, Ahsan N, Horkova V, Stepanek O, et al. 2018.. Lck promotes Zap70-dependent LAT phosphorylation by bridging Zap70 to LAT. . Nat. Immunol. 19::73341
    [Crossref] [Google Scholar]
  69. 69.
    Weiss A, Koretzky G, Schatzman RC, Kadlecek T. 1991.. Functional activation of the T-cell antigen receptor induces tyrosine phosphorylation of phospholipase C-γ1. . PNAS 88::548488
    [Crossref] [Google Scholar]
  70. 70.
    Park DJ, Rho HW, Rhee SG. 1991.. CD3 stimulation causes phosphorylation of phospholipase C-γ1 on serine and tyrosine residues in a human T-cell line. . PNAS 88::545356
    [Crossref] [Google Scholar]
  71. 71.
    Das J, Ho M, Zikherman J, Govern C, Yang M, et al. 2009.. Digital signaling and hysteresis characterize Ras activation in lymphoid cells. . Cell 136::33751
    [Crossref] [Google Scholar]
  72. 72.
    Zhang W, Sloan-Lancaster J, Kitchen J, Trible RP, Samelson LE. 1998.. LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. . Cell 92::8392
    [Crossref] [Google Scholar]
  73. 73.
    Jackman JK, Motto DG, Sun Q, Tanemoto M, Turck CW, et al. 1995.. Molecular cloning of SLP-76, a 76-kDa tyrosine phosphoprotein associated with Grb2 in T cells. . J. Biol. Chem. 270::702932
    [Crossref] [Google Scholar]
  74. 74.
    Finco TS, Kadlecek T, Zhang W, Samelson LE, Weiss A. 1998.. LAT is required for TCR-mediated activation of PLCγ1 and the Ras pathway. . Immunity 9::61726
    [Crossref] [Google Scholar]
  75. 75.
    Yablonski D, Kuhne MR, Kadlecek T, Weiss A. 1998.. Uncoupling of nonreceptor tyrosine kinases from PLC-γ1 in an SLP-76-deficient T cell. . Science 281::41316
    [Crossref] [Google Scholar]
  76. 76.
    Shah NH, Wang Q, Yan Q, Karandur D, Kadlecek TA, et al. 2016.. An electrostatic selection mechanism controls sequential kinase signaling downstream of the T cell receptor. . eLife 5::e20105
    [Crossref] [Google Scholar]
  77. 77.
    Lin J, Weiss A. 2001.. Identification of the minimal tyrosine residues required for linker for activation of T cell function. . J. Biol. Chem. 276::2958895
    [Crossref] [Google Scholar]
  78. 78.
    McAffee DB, O'Dair MK, Lin JJ, Low-Nam ST, Wilhelm KB, et al. 2022.. Discrete LAT condensates encode antigen information from single pMHC:TCR binding events. . Nat. Commun. 13::7446
    [Crossref] [Google Scholar]
  79. 79.
    Balagopalan L, Kortum RL, Coussens NP, Barr VA, Samelson LE. 2015.. The linker for activation of T cells (LAT) signaling hub: from signaling complexes to microclusters. . J. Biol. Chem. 290::2642229
    [Crossref] [Google Scholar]
  80. 80.
    Yablonski D. 2019.. Bridging the gap: modulatory roles of the Grb2-family adaptor, Gads, in cellular and allergic immune responses. . Front. Immunol. 10::1704
    [Crossref] [Google Scholar]
  81. 81.
    Hallumi E, Shalah R, Lo WL, Corso J, Oz I, et al. 2021.. Itk promotes the integration of TCR and CD28 costimulation through its direct substrates SLP-76 and Gads. . J. Immunol. 206::232237
    [Crossref] [Google Scholar]
  82. 82.
    Levin SE, Zhang C, Kadlecek TA, Shokat KM, Weiss A. 2008.. Inhibition of ZAP-70 kinase activity via an analog-sensitive allele blocks T cell receptor and CD28 superagonist signaling. . J. Biol. Chem. 283::1541930
    [Crossref] [Google Scholar]
  83. 83.
    Au-Yeung BB, Levin SE, Zhang C, Hsu LY, Cheng DA, et al. 2010.. A genetically selective inhibitor demonstrates a function for the kinase Zap70 in regulatory T cells independent of its catalytic activity. . Nat. Immunol. 11::108592
    [Crossref] [Google Scholar]
  84. 84.
    Au-Yeung BB, Melichar HJ, Ross JO, Cheng DA, Zikherman J, et al. 2014.. Quantitative and temporal requirements revealed for Zap70 catalytic activity during T cell development. . Nat. Immunol. 15::68794
    [Crossref] [Google Scholar]
  85. 85.
    Au-Yeung BB, Shah NH, Shen L, Weiss A. 2018.. ZAP-70 in signaling, biology, and disease. . Annu. Rev. Immunol. 36::12756
    [Crossref] [Google Scholar]
  86. 86.
    Jenkins MR, Stinchcombe JC, Au-Yeung BB, Asano Y, Ritter AT, et al. 2014.. Distinct structural and catalytic roles for Zap70 in formation of the immunological synapse in CTL. . eLife 3::e01310
    [Crossref] [Google Scholar]
  87. 87.
    Au-Yeung BB, Zikherman J, Mueller JL, Ashouri JF, Matloubian M, et al. 2014.. A sharp T-cell antigen receptor signaling threshold for T-cell proliferation. . PNAS 111::E367988
    [Crossref] [Google Scholar]
  88. 88.
    Lo WL, Shah NH, Rubin SA, Zhang W, Horkova V, et al. 2019.. Slow phosphorylation of a tyrosine residue in LAT optimizes T cell ligand discrimination. . Nat. Immunol. 20::148193
    [Crossref] [Google Scholar]
  89. 89.
    Lo WL, Kuhlmann M, Rizzuto G, Ekiz HA, Kolawole EM, et al. 2023.. A single-amino acid substitution in the adaptor LAT accelerates TCR proofreading kinetics and alters T-cell selection, maintenance and function. . Nat. Immunol. 24::67689
    [Crossref] [Google Scholar]
  90. 90.
    Ganti RS, Lo WL, McAffee DB, Groves JT, Weiss A, Chakraborty AK. 2020.. How the T cell signaling network processes information to discriminate between self and agonist ligands. . PNAS 117::2602030
    [Crossref] [Google Scholar]
  91. 91.
    Koretzky GA, Picus J, Schultz T, Weiss A. 1991.. Tyrosine phosphatase CD45 is required for T-cell antigen receptor and CD2-mediated activation of a protein tyrosine kinase and interleukin 2 production. . PNAS 88::203741
    [Crossref] [Google Scholar]
  92. 92.
    Koretzky GA, Picus J, Thomas ML, Weiss A. 1990.. Tyrosine phosphatase CD45 is essential for coupling T-cell antigen receptor to the phosphatidyl inositol pathway. . Nature 346::6668
    [Crossref] [Google Scholar]
  93. 93.
    Sieh M, Bolen JB, Weiss A. 1993.. CD45 specifically modulates binding of Lck to a phosphopeptide encompassing the negative regulatory tyrosine of Lck. . EMBO J. 12::31521
    [Crossref] [Google Scholar]
  94. 94.
    Zikherman J, Jenne C, Watson S, Doan K, Raschke W, et al. 2010.. CD45-Csk phosphatase-kinase titration uncouples basal and inducible T cell receptor signaling during thymic development. . Immunity 32::34254
    [Crossref] [Google Scholar]
  95. 95.
    Zikherman J, Doan K, Parameswaran R, Raschke W, Weiss A. 2012.. Quantitative differences in CD45 expression unmask functions for CD45 in B-cell development, tolerance, and survival. . PNAS 109::E312
    [Crossref] [Google Scholar]
  96. 96.
    Zhu JW, Brdicka T, Katsumoto TR, Lin J, Weiss A. 2008.. Structurally distinct phosphatases CD45 and CD148 both regulate B cell and macrophage immunoreceptor signaling. . Immunity 28::18396
    [Crossref] [Google Scholar]
  97. 97.
    Zhu JW, Doan K, Park J, Chau AH, Zhang H, et al. 2011.. Receptor-like tyrosine phosphatases CD45 and CD148 have distinct functions in chemoattractant-mediated neutrophil migration and response to S. aureus. . Immunity 35::75769
    [Crossref] [Google Scholar]
  98. 98.
    Schoenborn JR, Tan YX, Zhang C, Shokat KM, Weiss A. 2011.. Feedback circuits monitor and adjust basal Lck-dependent events in T cell receptor signaling. . Sci. Signal. 4::ra59
    [Crossref] [Google Scholar]
  99. 99.
    Freedman TS, Tan YX, Skrzypczynska KM, Manz BN, Sjaastad FV, et al. 2015.. LynA regulates an inflammation-sensitive signaling checkpoint in macrophages. . eLife 4::e09183
    [Crossref] [Google Scholar]
  100. 100.
    Manz BN, Tan YX, Courtney AH, Rutaganira F, Palmer E, et al. 2015.. Small molecule inhibition of Csk alters affinity recognition by T cells. . eLife 4::e08088
    [Crossref] [Google Scholar]
  101. 101.
    Tan YX, Manz BN, Freedman TS, Zhang C, Shokat KM, Weiss A. 2014.. Inhibition of the kinase Csk in thymocytes reveals a requirement for actin remodeling in the initiation of full TCR signaling. . Nat. Immunol. 15::18694
    [Crossref] [Google Scholar]
  102. 102.
    Davis SJ, van der Merwe PA. 2006.. The kinetic-segregation model: TCR triggering and beyond. . Nat. Immunol. 7::8039
    [Crossref] [Google Scholar]
  103. 103.
    Courtney AH, Shvets AA, Lu W, Griffante G, Mollenauer M, et al. 2019.. CD45 functions as a signaling gatekeeper in T cells. . Sci. Signal. 12::eaaw8151
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-immunol-090222-112028
Loading
/content/journals/10.1146/annurev-immunol-090222-112028
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error