1932

Abstract

The immune system of the central nervous system (CNS) consists primarily of innate immune cells. These are highly specialized macrophages found either in the parenchyma, called microglia, or at the CNS interfaces, such as leptomeningeal, perivascular, and choroid plexus macrophages. While they were primarily thought of as phagocytes, their function extends well beyond simple removal of cell debris during development and diseases. Brain-resident innate immune cells were found to be plastic, long-lived, and host to an outstanding number of risk genes for multiple pathologies. As a result, they are now considered the most suitable targets for modulating CNS diseases. Additionally, recent single-cell technologies enhanced our molecular understanding of their origins, fates, interactomes, and functional cell statesduring health and perturbation. Here, we review the current state of our understanding and challenges of the myeloid cell biology in the CNS and treatment options for related diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-093019-110159
2021-04-26
2024-04-14
Loading full text...

Full text loading...

/deliver/fulltext/immunol/39/1/annurev-immunol-093019-110159.html?itemId=/content/journals/10.1146/annurev-immunol-093019-110159&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Colonna M, Butovsky O. 2017. Microglia function in the central nervous system during health and neurodegeneration. Annu. Rev. Immunol. 35:441–68
    [Google Scholar]
  2. 2. 
    Ginhoux F, Guilliams M. 2016. Tissue-resident macrophage ontogeny and homeostasis. Immunity 44:3439–49
    [Google Scholar]
  3. 3. 
    Herz J, Filiano AJ, Smith A, Yogev N, Kipnis J. 2017. Myeloid cells in the central nervous system. Immunity 46:6943–56
    [Google Scholar]
  4. 4. 
    Kierdorf K, Masuda T, Jordao MJC, Prinz M. 2019. Macrophages at CNS interfaces: ontogeny and function in health and disease. Nat. Rev. Neurosci. 20:9547–62
    [Google Scholar]
  5. 5. 
    Prinz M, Erny D, Hagemeyer N. 2017. Ontogeny and homeostasis of CNS myeloid cells. Nat. Immunol. 18:4385–92
    [Google Scholar]
  6. 6. 
    Prinz M, Jung S, Priller J. 2019. Microglia biology: one century of evolving concepts. Cell 179:2292–311
    [Google Scholar]
  7. 7. 
    Ransohoff RM, Cardona AE. 2010. The myeloid cells of the central nervous system parenchyma. Nature 468:7321253–62
    [Google Scholar]
  8. 8. 
    Prinz M, Priller J. 2017. The role of peripheral immune cells in the CNS in steady state and disease. Nat. Neurosci. 20:2136–44
    [Google Scholar]
  9. 9. 
    Geirsdottir L, David E, Keren-Shaul H, Weiner A, Bohlen SC et al. 2019. Cross-species single-cell analysis reveals divergence of the primate microglia program. Cell 179:71609–22.e16
    [Google Scholar]
  10. 10. 
    Dos Santos SE, Medeiros M, Porfirio J, Tavares W, Pessoa L et al. 2020. Similar microglial cell densities across brain structures and mammalian species: implications for brain tissue function. J. Neurosci. 40:244622–43
    [Google Scholar]
  11. 11. 
    Erny D, Jakobsdóttir KB, Prinz M. 2020. Neuropathological evaluation of a vertebrate brain aged ∼245 years. Acta Neuropathol 141:133–36 https://doi.org/10.1007/s00401-020-02237-4
    [Crossref] [Google Scholar]
  12. 12. 
    Fleischhauer K. 1964. [On fluorescence of perivascular cells in the cat brain]. Z. Zellforsch. Mikrosk. Anat. 64:140–52 In German )
    [Google Scholar]
  13. 13. 
    Soulas C, Donahue RE, Dunbar CE, Persons DA, Alvarez X, Williams KC. 2009. Genetically modified CD34+ hematopoietic stem cells contribute to turnover of brain perivascular macrophages in long-term repopulated primates. Am. J. Pathol. 174:51808–17
    [Google Scholar]
  14. 14. 
    Goldmann T, Wieghofer P, Jordao MJ, Prutek F, Hagemeyer N et al. 2016. Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat. Immunol. 17:7797–805
    [Google Scholar]
  15. 15. 
    van Furth R, Cohn ZA, Hirsch JG, Humphrey JH, Spector WG, Langevoort HL. 1972. The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull. World Health Organ. 46:6845–52
    [Google Scholar]
  16. 16. 
    Cartier N, Hacein-Bey-Abina S, Bartholomae CC, Veres G, Schmidt M et al. 2009. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 326:5954818–23
    [Google Scholar]
  17. 17. 
    Hickey WF, Kimura H. 1988. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 239:4837290–92
    [Google Scholar]
  18. 18. 
    Hickey WF, Vass K, Lassmann H. 1992. Bone marrow-derived elements in the central nervous system: an immunohistochemical and ultrastructural survey of rat chimeras. J. Neuropathol. Exp. Neurol. 51:3246–56
    [Google Scholar]
  19. 19. 
    Priller J, Flugel A, Wehner T, Boentert M, Haas CA et al. 2001. Targeting gene-modified hematopoietic cells to the central nervous system: Use of green fluorescent protein uncovers microglial engraftment. Nat. Med. 7:121356–61
    [Google Scholar]
  20. 20. 
    Mildner A, Schlevogt B, Kierdorf K, Bottcher C, Erny D et al. 2011. Distinct and non-redundant roles of microglia and myeloid subsets in mouse models of Alzheimer's disease. J. Neurosci. 31:3111159–71
    [Google Scholar]
  21. 21. 
    Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK et al. 2007. Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat. Neurosci. 10:121544–53
    [Google Scholar]
  22. 22. 
    Bennett FC, Bennett ML, Yaqoob F, Mulinyawe SB, Grant GA et al. 2018. A combination of ontogeny and CNS environment establishes microglial identity. Neuron 98:61170–83.e8
    [Google Scholar]
  23. 23. 
    Cronk JC, Filiano AJ, Louveau A, Marin I, Marsh R et al. 2018. Peripherally derived macrophages can engraft the brain independent of irradiation and maintain an identity distinct from microglia. J. Exp. Med. 215:61627–47
    [Google Scholar]
  24. 24. 
    Shemer A, Grozovski J, Tay TL, Tao J, Volaski A et al. 2018. Engrafted parenchymal brain macrophages differ from microglia in transcriptome, chromatin landscape and response to challenge. Nat. Commun. 9:15206
    [Google Scholar]
  25. 25. 
    Varol D, Mildner A, Blank T, Shemer A, Barashi N et al. 2017. Dicer deficiency differentially impacts microglia of the developing and adult brain. Immunity 46:61030–44.e8
    [Google Scholar]
  26. 26. 
    Ensan S, Li A, Besla R, Degousee N, Cosme J et al. 2016. Self-renewing resident arterial macrophages arise from embryonic CX3CR1+ precursors and circulating monocytes immediately after birth. Nat. Immunol. 17:2159–68
    [Google Scholar]
  27. 27. 
    Epelman S, Lavine KJ, Beaudin AE, Sojka DK, Carrero JA et al. 2014. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40:191–104
    [Google Scholar]
  28. 28. 
    Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E et al. 2015. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518:7540547–51
    [Google Scholar]
  29. 29. 
    Hagemeyer N, Kierdorf K, Frenzel K, Xue J, Ringelhan M et al. 2016. Transcriptome-based profiling of yolk sac-derived macrophages reveals a role for Irf8 in macrophage maturation. EMBO J 35:161730–44
    [Google Scholar]
  30. 30. 
    Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C et al. 2013. Microglia emerge from erythro-myeloid precursors via Pu.1- and Irf8-dependent pathways. Nat. Neurosci. 16:3273–80
    [Google Scholar]
  31. 31. 
    Molawi K, Wolf Y, Kandalla PK, Favret J, Hagemeyer N et al. 2014. Progressive replacement of embryo-derived cardiac macrophages with age. J. Exp. Med. 211:112151–58
    [Google Scholar]
  32. 32. 
    Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N et al. 2012. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336:607786–90
    [Google Scholar]
  33. 33. 
    Ginhoux F, Greter M, Leboeuf M, Nandi S, See P et al. 2010. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:6005841–45
    [Google Scholar]
  34. 34. 
    Alliot F, Godin I, Pessac B. 1999. Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res. Dev. Brain Res. 117:2145–52
    [Google Scholar]
  35. 35. 
    Cuadros MA, Martin C, Coltey P, Almendros A, Navascues J. 1993. First appearance, distribution, and origin of macrophages in the early development of the avian central nervous system. J. Comp. Neurol. 330:1113–29
    [Google Scholar]
  36. 36. 
    Herbomel P, Thisse B, Thisse C. 2001. Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process. Dev. Biol. 238:2274–88
    [Google Scholar]
  37. 37. 
    Stremmel C, Schuchert R, Wagner F, Thaler R, Weinberger T et al. 2018. Yolk sac macrophage progenitors traffic to the embryo during defined stages of development. Nat. Commun. 9:175
    [Google Scholar]
  38. 38. 
    Hoeffel G, Chen J, Lavin Y, Low D, Almeida FF et al. 2015. c-Myb+ erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 42:4665–78
    [Google Scholar]
  39. 39. 
    Mrdjen D, Pavlovic A, Hartmann FJ, Schreiner B, Utz SG et al. 2018. High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 48:2380–95.e6
    [Google Scholar]
  40. 40. 
    Van Hove H, Martens L, Scheyltjens I, De Vlaminck K, Pombo Antunes AR et al. 2019. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat. Neurosci. 22:61021–35
    [Google Scholar]
  41. 41. 
    Utz SG, See P, Mildenberger W, Thion MS, Silvin A et al. 2020. Early fate defines microglia and non-parenchymal brain macrophage development. Cell 181:3557–73.e18
    [Google Scholar]
  42. 42. 
    O'Koren EG, Yu C, Klingeborn M, Wong AYW, Prigge CL et al. 2019. Microglial function is distinct in different anatomical locations during retinal homeostasis and degeneration. Immunity 50:3723–37.e7
    [Google Scholar]
  43. 43. 
    Wieghofer P, Hagemeyer N, Sankowski R, Schlecht A, Staszewski O et al. 2020. Mapping the origin and fate of myeloid cells in distinct compartments of the eye by single-cell profiling. EMBO J In press. https://doi.org/10.15252/embj.2020105123
    [Crossref] [Google Scholar]
  44. 44. 
    Ydens E, Amann L, Asselbergh B, Scott CL, Martens L et al. 2020. Profiling peripheral nerve macrophages reveals two macrophage subsets with distinct localization, transcriptome and response to injury. Nat. Neurosci. 23:5676–89
    [Google Scholar]
  45. 45. 
    Guilliams M, Scott CL. 2017. Does niche competition determine the origin of tissue-resident macrophages?. Nat. Rev. Immunol. 17:7451–60
    [Google Scholar]
  46. 46. 
    Reu P, Khosravi A, Bernard S, Mold JE, Salehpour M et al. 2017. The lifespan and turnover of microglia in the human brain. Cell Rep 20:4779–84
    [Google Scholar]
  47. 47. 
    Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM. 2007. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat. Neurosci. 10:121538–43
    [Google Scholar]
  48. 48. 
    Fuger P, Hefendehl JK, Veeraraghavalu K, Wendeln AC, Schlosser C et al. 2017. Microglia turnover with aging and in an Alzheimer's model via long-term in vivo single-cell imaging. Nat. Neurosci. 20:101371–76
    [Google Scholar]
  49. 49. 
    Tay TL, Mai D, Dautzenberg J, Fernandez-Klett F, Lin G et al. 2017. A new fate mapping system reveals context-dependent random or clonal expansion of microglia. Nat. Neurosci. 20:6793–803
    [Google Scholar]
  50. 50. 
    Checchin D, Sennlaub F, Levavasseur E, Leduc M, Chemtob S. 2006. Potential role of microglia in retinal blood vessel formation. Investig. Ophthalmol. Vis. Sci. 47:83595–602
    [Google Scholar]
  51. 51. 
    Fantin A, Vieira JM, Gestri G, Denti L, Schwarz Q et al. 2010. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116:5829–40
    [Google Scholar]
  52. 52. 
    Matcovitch-Natan O, Winter DR, Giladi A, Vargas Aguilar S, Spinrad A et al. 2016. Microglia development follows a stepwise program to regulate brain homeostasis. Science 353:6301aad8670
    [Google Scholar]
  53. 53. 
    Kracht L, Borggrrewe M, Eskandar S, Brouwer N, de Sousa Chuva, Lopes SM et al. 2020. Human fetal microglia acquire homeostatic immune-sensing properties early in development. Science 369:6503aba5906
    [Google Scholar]
  54. 54. 
    Pasciuto E, Burton OT, Roca CP, Lagou V, Rajan WD et al. 2020. Microglia require CD4 T cells to complete the fetal-to-adult transition. Cell 182:3625–40.e24
    [Google Scholar]
  55. 55. 
    Peri F, Nusslein-Volhard C. 2008. Live imaging of neuronal degradation by microglia reveals a role for v0-ATPase a1 in phagosomal fusion in vivo. Cell 133:5916–27
    [Google Scholar]
  56. 56. 
    Marin-Teva JL, Dusart I, Colin C, Gervais A, van Rooijen N, Mallat M. 2004. Microglia promote the death of developing Purkinje cells. Neuron 41:4535–47
    [Google Scholar]
  57. 57. 
    Sedel F, Bechade C, Vyas S, Triller A. 2004. Macrophage-derived tumor necrosis factor alpha, an early developmental signal for motoneuron death. J. Neurosci. 24:92236–46
    [Google Scholar]
  58. 58. 
    Squarzoni P, Oller G, Hoeffel G, Pont-Lezica L, Rostaing P et al. 2014. Microglia modulate wiring of the embryonic forebrain. Cell Rep 8:51271–79
    [Google Scholar]
  59. 59. 
    Sierra A, Encinas JM, Deudero JJ, Chancey JH, Enikolopov G et al. 2010. Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 7:4483–95
    [Google Scholar]
  60. 60. 
    Ueno M, Fujita Y, Tanaka T, Nakamura Y, Kikuta J et al. 2013. Layer V cortical neurons require microglial support for survival during postnatal development. Nat. Neurosci. 16:5543–51
    [Google Scholar]
  61. 61. 
    Hagemeyer N, Hanft KM, Akriditou MA, Unger N, Park ES et al. 2017. Microglia contribute to normal myelinogenesis and to oligodendrocyte progenitor maintenance during adulthood. Acta Neuropathol 134:3441–58
    [Google Scholar]
  62. 62. 
    Wlodarczyk A, Holtman IR, Krueger M, Yogev N, Bruttger J et al. 2017. A novel microglial subset plays a key role in myelinogenesis in developing brain. EMBO J 36:223292–308
    [Google Scholar]
  63. 63. 
    Safaiyan S, Kannaiyan N, Snaidero N, Brioschi S, Biber K et al. 2016. Age-related myelin degradation burdens the clearance function of microglia during aging. Nat. Neurosci. 19:8995–98
    [Google Scholar]
  64. 64. 
    Hughes AN, Appel B. 2020. Microglia phagocytose myelin sheaths to modify developmental myelination. Nat. Neurosci. 23:91055–66
    [Google Scholar]
  65. 65. 
    Rojo R, Raper A, Ozdemir DD, Lefevre L, Grabert K et al. 2019. Deletion of a Csf1r enhancer selectively impacts CSF1R expression and development of tissue macrophage populations. Nat. Commun. 10:13215
    [Google Scholar]
  66. 66. 
    Nimmerjahn A, Kirchhoff F, Helmchen F. 2005. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:57261314–18
    [Google Scholar]
  67. 67. 
    Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M et al. 2011. Synaptic pruning by microglia is necessary for normal brain development. Science 333:60481456–58
    [Google Scholar]
  68. 68. 
    Wake H, Moorhouse AJ, Miyamoto A, Nabekura J. 2013. Microglia: actively surveying and shaping neuronal circuit structure and function. Trends Neurosci 36:4209–17
    [Google Scholar]
  69. 69. 
    Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS et al. 2007. The classical complement cascade mediates CNS synapse elimination. Cell 131:61164–78
    [Google Scholar]
  70. 70. 
    Miyamoto A, Wake H, Ishikawa AW, Eto K, Shibata K et al. 2016. Microglia contact induces synapse formation in developing somatosensory cortex. Nat. Commun. 7:12540
    [Google Scholar]
  71. 71. 
    Weinhard L, di Bartolomei G, Bolasco G, Machado P, Schieber NL et al. 2018. Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction. Nat. Commun. 9:11228
    [Google Scholar]
  72. 72. 
    Vainchtein ID, Chin G, Cho FS, Kelley KW, Miller JG et al. 2018. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science 359:63811269–73
    [Google Scholar]
  73. 73. 
    Cserep C, Posfai B, Lenart N, Fekete R, Laszlo ZI et al. 2020. Microglia monitor and protect neuronal function through specialized somatic purinergic junctions. Science 367:6477528–37
    [Google Scholar]
  74. 74. 
    Liu C, Wu C, Yang Q, Gao J, Li L et al. 2016. Macrophages mediate the repair of brain vascular rupture through direct physical adhesion and mechanical traction. Immunity 44:51162–76
    [Google Scholar]
  75. 75. 
    Prinz M, Priller J. 2014. Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat. Rev. Neurosci. 15:5300–12
    [Google Scholar]
  76. 76. 
    Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W et al. 2014. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40:2274–88
    [Google Scholar]
  77. 77. 
    Ransohoff RM. 2016. A polarizing question: Do M1 and M2 microglia exist?. Nat. Neurosci. 19:8987–91
    [Google Scholar]
  78. 78. 
    Rademakers R, Baker M, Nicholson AM, Rutherford NJ, Finch N et al. 2011. Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nat. Genet. 44:2200–5
    [Google Scholar]
  79. 79. 
    Guo L, Bertola DR, Takanohashi A, Saito A, Segawa Y et al. 2019. Bi-allelic CSF1R mutations cause skeletal dysplasia of dysosteosclerosis-Pyle disease spectrum and degenerative encephalopathy with brain malformation. Am. J. Hum. Genet. 104:5925–35
    [Google Scholar]
  80. 80. 
    Oosterhof N, Chang IJ, Karimiani EG, Kuil LE, Jensen DM et al. 2019. Homozygous mutations in CSF1R cause a pediatric-onset leukoencephalopathy and can result in congenital absence of microglia. Am. J. Hum. Genet. 104:5936–47
    [Google Scholar]
  81. 81. 
    Paloneva J, Manninen T, Christman G, Hovanes K, Mandelin J et al. 2002. Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. Am. J. Hum. Genet. 71:3656–62
    [Google Scholar]
  82. 82. 
    Goldmann T, Zeller N, Raasch J, Kierdorf K, Frenzel K et al. 2015. USP18 lack in microglia causes destructive interferonopathy of the mouse brain. EMBO J 34:121612–29
    [Google Scholar]
  83. 83. 
    Schwabenland M, Mossad O, Peres AG, Kessler F, Maron FJM et al. 2019. Loss of USP18 in microglia induces white matter pathology. Acta Neuropathol. Commun. 7:1106
    [Google Scholar]
  84. 84. 
    Meuwissen ME, Schot R, Buta S, Oudesluijs G, Tinschert S et al. 2016. Human USP18 deficiency underlies type 1 interferonopathy leading to severe pseudo-TORCH syndrome. J. Exp. Med. 213:71163–74
    [Google Scholar]
  85. 85. 
    Mass E, Jacome-Galarza CE, Blank T, Lazarov T, Durham BH et al. 2017. A somatic mutation in erythro-myeloid progenitors causes neurodegenerative disease. Nature 549:7672389–93
    [Google Scholar]
  86. 86. 
    Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E et al. 2013. TREM2 variants in Alzheimer's disease. N. Engl. J. Med. 368:2117–27
    [Google Scholar]
  87. 87. 
    Hollingworth P, Harold D, Sims R, Gerrish A, Lambert JC et al. 2011. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nat. Genet. 43:5429–35
    [Google Scholar]
  88. 88. 
    Sims R, van der Lee SJ, Naj AC, Bellenguez C, Badarinarayan N et al. 2017. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nat. Genet. 49:91373–84
    [Google Scholar]
  89. 89. 
    Sekar A, Bialas AR, de Rivera H, Davis A, Hammond TR et al. 2016. Schizophrenia risk from complex variation of complement component 4. Nature 530:7589177–83
    [Google Scholar]
  90. 90. 
    De Jager PL, Jia X, Wang J, de Bakker PI, Ottoboni L et al. 2009. Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci. Nat. Genet. 41:7776–82
    [Google Scholar]
  91. 91. 
    Reich DS, Lucchinetti CF, Calabresi PA. 2018. Multiple sclerosis. N. Engl. J. Med. 378:2169–80
    [Google Scholar]
  92. 92. 
    Korn T, Bettelli E, Oukka M, Kuchroo VK. 2009. IL-17 and Th17 cells. Annu. Rev. Immunol. 27:485–517
    [Google Scholar]
  93. 93. 
    Spath S, Komuczki J, Hermann M, Pelczar P, Mair F et al. 2017. Dysregulation of the cytokine GM-CSF induces spontaneous phagocyte invasion and immunopathology in the central nervous system. Immunity 46:2245–60
    [Google Scholar]
  94. 94. 
    Mildner A, Mack M, Schmidt H, Bruck W, Djukic M et al. 2009. CCR2+Ly-6Chi monocytes are crucial for the effector phase of autoimmunity in the central nervous system. Brain 132:Part 92487–500
    [Google Scholar]
  95. 95. 
    Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA et al. 2011. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol. 69:2292–302
    [Google Scholar]
  96. 96. 
    Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FM. 2011. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat. Neurosci. 14:91142–49
    [Google Scholar]
  97. 97. 
    Kim RY, Hoffman AS, Itoh N, Ao Y, Spence R et al. 2014. Astrocyte CCL2 sustains immune cell infiltration in chronic experimental autoimmune encephalomyelitis. J. Neuroimmunol. 274:1–253–61
    [Google Scholar]
  98. 98. 
    Locatelli G, Theodorou D, Kendirli A, Jordao MJC, Staszewski O et al. 2018. Mononuclear phagocytes locally specify and adapt their phenotype in a multiple sclerosis model. Nat. Neurosci. 21:91196–208
    [Google Scholar]
  99. 99. 
    Wheeler MA, Jaronen M, Covacu R, Zandee SEJ, Scalisi G et al. 2019. Environmental control of astrocyte pathogenic activities in CNS inflammation. Cell 176:3581–96.e18
    [Google Scholar]
  100. 100. 
    Fontana A, Fierz W, Wekerle H. 1984. Astrocytes present myelin basic protein to encephalitogenic T-cell lines. Nature 307:5948273–76
    [Google Scholar]
  101. 101. 
    Gold R, Schmied M, Tontsch U, Hartung HP, Wekerle H et al. 1996. Antigen presentation by astrocytes primes rat T lymphocytes for apoptotic cell death: a model for T-cell apoptosis in vivo. Brain 119:Part 2651–59
    [Google Scholar]
  102. 102. 
    Sun D, Wekerle H. 1986. Ia-restricted encephalitogenic T lymphocytes mediating EAE lyse autoantigen-presenting astrocytes. Nature 320:605770–72
    [Google Scholar]
  103. 103. 
    Jordao MJC, Sankowski R, Brendecke SM, Sagar Locatelli G et al. 2019. Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. Science 363:6425eaat7554
    [Google Scholar]
  104. 104. 
    Mundt S, Mrdjen D, Utz SG, Greter M, Schreiner B, Becher B. 2019. Conventional DCs sample and present myelin antigens in the healthy CNS and allow parenchymal T cell entry to initiate neuroinflammation. Sci. Immunol. 4:31eaau8380
    [Google Scholar]
  105. 105. 
    Greter M, Heppner FL, Lemos MP, Odermatt BM, Goebels N et al. 2005. Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat. Med. 11:3328–34
    [Google Scholar]
  106. 106. 
    Comabella M, Montalban X, Munz C, Lunemann JD. 2010. Targeting dendritic cells to treat multiple sclerosis. Nat. Rev. Neurol. 6:9499–507
    [Google Scholar]
  107. 107. 
    Becher B, Tugues S, Greter M. 2016. GM-CSF: from growth factor to central mediator of tissue inflammation. Immunity 45:5963–73
    [Google Scholar]
  108. 108. 
    Lee SC, Liu W, Brosnan CF, Dickson DW. 1994. GM-CSF promotes proliferation of human fetal and adult microglia in primary cultures. Glia 12:4309–18
    [Google Scholar]
  109. 109. 
    McQualter JL, Darwiche R, Ewing C, Onuki M, Kay TW et al. 2001. Granulocyte macrophage colony-stimulating factor: a new putative therapeutic target in multiple sclerosis. J. Exp. Med. 194:7873–82
    [Google Scholar]
  110. 110. 
    Ponomarev ED, Shriver LP, Maresz K, Pedras-Vasconcelos J, Verthelyi D, Dittel BN. 2007. GM-CSF production by autoreactive T cells is required for the activation of microglial cells and the onset of experimental autoimmune encephalomyelitis. J. Immunol. 178:139–48
    [Google Scholar]
  111. 111. 
    Al-Saffar N, Khwaja HA, Kadoya Y, Revell PA. 1996. Assessment of the role of GM-CSF in the cellular transformation and the development of erosive lesions around orthopaedic implants. Am. J. Clin. Pathol. 105:5628–39
    [Google Scholar]
  112. 112. 
    Carrieri PB, Provitera V, De Rosa T, Tartaglia G, Gorga F, Perrella O. 1998. Profile of cerebrospinal fluid and serum cytokines in patients with relapsing-remitting multiple sclerosis: a correlation with clinical activity. Immunopharmacol. Immunotoxicol. 20:3373–82
    [Google Scholar]
  113. 113. 
    Filippi M, Bar-Or A, Piehl F, Preziosa P, Solari A et al. 2018. Multiple sclerosis. Nat. Rev. Dis. Primers 4:143
    [Google Scholar]
  114. 114. 
    Miron VE, Boyd A, Zhao J, Yuen TJ, Ruckh JM et al. 2013. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat. Neurosci. 16:91211–18
    [Google Scholar]
  115. 115. 
    Falcao AM, van Bruggen D, Marques S, Meijer M, Jaekel S et al. 2018. Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis. Nat. Med. 24:121837–44
    [Google Scholar]
  116. 116. 
    Jaekel S, Agirre E, Falcao AM, van Bruggen D, Lee KW et al. 2019. Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature 566:7745543–47
    [Google Scholar]
  117. 117. 
    Masuda T, Sankowski R, Staszewski O, Bottcher C, Amann L et al. 2019. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 566:7744388–92
    [Google Scholar]
  118. 118. 
    Komuczki J, Tuzlak S, Friebel E, Hartwig T, Spath S et al. 2019. Fate-mapping of GM-CSF expression identifies a discrete subset of inflammation-driving T helper cells regulated by cytokines IL-23 and IL-1β. Immunity 50:51289–304.e6
    [Google Scholar]
  119. 119. 
    Mayo L, Trauger SA, Blain M, Nadeau M, Patel B et al. 2014. Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation. Nat. Med. 20:101147–56
    [Google Scholar]
  120. 120. 
    Wheeler MA, Clark IC, Tjon EC, Li Z, Zandee SEJ et al. 2020. MAFG-driven astrocytes promote CNS inflammation. Nature 578:7796593–99
    [Google Scholar]
  121. 121. 
    Prakadan SM, Shalek AK, Weitz DA. 2017. Scaling by shrinking: empowering single-cell ‘omics’ with microfluidic devices. Nat. Rev. Genet. 18:6345–61
    [Google Scholar]
  122. 122. 
    Eng CL, Lawson M, Zhu Q, Dries R, Koulena N et al. 2019. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature 568:7751235–39
    [Google Scholar]
  123. 123. 
    Moffitt JR, Bambah-Mukku D, Eichhorn SW, Vaughn E, Shekhar K et al. 2018. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 362:6416eaau5324
    [Google Scholar]
  124. 124. 
    Rodriques SG, Stickels RR, Goeva A, Martin CA, Murray E et al. 2019. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363:64341463–67
    [Google Scholar]
  125. 125. 
    Wang X, Allen WE, Wright MA, Sylwestrak EL, Samusik N et al. 2018. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361:6400eaat5691
    [Google Scholar]
  126. 126. 
    Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R. 2020. CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. Nat. Protoc. 15:41484–506
    [Google Scholar]
  127. 127. 
    Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M et al. 2018. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature 563:7731347–53
    [Google Scholar]
  128. 128. 
    Habib N, McCabe C, Medina S, Varshavsky M, Kitsberg D et al. 2020. Disease-associated astrocytes in Alzheimer's disease and aging. Nat. Neurosci. 23:6701–6
    [Google Scholar]
  129. 129. 
    Di Giorgio FP, Carrasco MA, Siao MC, Maniatis T, Eggan K. 2007. Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. Nat. Neurosci. 10:5608–14
    [Google Scholar]
  130. 130. 
    Nagai M, Re DB, Nagata T, Chalazonitis A, Jessell TM et al. 2007. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat. Neurosci. 10:5615–22
    [Google Scholar]
  131. 131. 
    Khakh BS, Beaumont V, Cachope R, Munoz-Sanjuan I, Goldman SA, Grantyn R. 2017. Unravelling and exploiting astrocyte dysfunction in Huntington's disease. Trends Neurosci 40:7422–37
    [Google Scholar]
  132. 132. 
    Tong X, Ao Y, Faas GC, Nwaobi SE, Xu J et al. 2014. Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington's disease model mice. Nat. Neurosci. 17:5694–703
    [Google Scholar]
  133. 132a. 
    Sanmarco LM, Wheeler MA, Gutiérrez-Vázquez C, Polonio CM, Linnerbauer Met al 2021. Gut-licensed IFNγ+ NK cells drive LAMP1+TRAIL+ anti-inflammatory astrocytes. Nature 590:7846473–79
    [Google Scholar]
  134. 133. 
    Chao CC, Gutierrez-Vazquez C, Rothhammer V, Mayo L, Wheeler MA et al. 2019. Metabolic control of astrocyte pathogenic activity via cPLA2-MAVS. Cell 179:71483–98.e22
    [Google Scholar]
  135. 134. 
    Rothhammer V, Borucki DM, Tjon EC, Takenaka MC, Chao CC et al. 2018. Microglial control of astrocytes in response to microbial metabolites. Nature 557:7707724–28
    [Google Scholar]
  136. 135. 
    Rothhammer V, Mascanfroni ID, Bunse L, Takenaka MC, Kenison JE et al. 2016. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat. Med. 22:6586–97
    [Google Scholar]
  137. 136. 
    Wheeler MA, Quintana FJ. 2019. Regulation of astrocyte functions in multiple sclerosis. Cold Spring Harb. Perspect. Med. 9:1a029009
    [Google Scholar]
  138. 137. 
    Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L et al. 2012. Genomic analysis of reactive astrogliosis. J. Neurosci. 32:186391–410
    [Google Scholar]
  139. 138. 
    Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ et al. 2017. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:7638481–87
    [Google Scholar]
  140. 139. 
    Fernandez-Pol JA, Klos DJ, Hamilton PD. 1989. Modulation of transforming growth factor alpha-dependent expression of epidermal growth factor receptor gene by transforming growth factor beta, triiodothyronine, and retinoic acid. J. Cell. Biochem. 41:3159–70
    [Google Scholar]
  141. 140. 
    Raja RH, Paterson AJ, Shin TH, Kedlow JE. 1991. Transcriptional regulation of the human transforming growth factor-α gene. Mol. Endocrinol. 5:4514–20
    [Google Scholar]
  142. 141. 
    Abdel-Haq R, Schlachetzki JCM, Glass CK, Mazmanian SK. 2019. Microbiome-microglia connections via the gut-brain axis. J. Exp. Med. 216:141–59
    [Google Scholar]
  143. 142. 
    Glebov K, Löchner M, Jabs R, Lau T, Merkel O et al. 2015. Serotonin stimulates secretion of exosomes from microglia cells. Glia 63:4626–34
    [Google Scholar]
  144. 143. 
    Erny D, Hrab de Angelis AL, Jaitin D, Wieghofer P, Staszewski O et al. 2015. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18:7965–77
    [Google Scholar]
  145. 144. 
    Morais LH, Schreiber HL 4th, Mazmanian SK 2020. The gut microbiota–brain axis in behavior and brain disorders. Nat. Rev. Microbiol In press. https://doi.org/10.1038/s41579-020-00460-0
    [Crossref] [Google Scholar]
  146. 145. 
    Needham BD, Kaddurah-Daouk R, Mazmanian SK. 2020. Gut microbial molecules in behavioural and neurodegenerative conditions. Nat. Rev. Neurosci. 21:717–31
    [Google Scholar]
  147. 146. 
    Dalile B, van Oudenhove L, Vervliet B, Verbeke K. 2019. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat. Rev. Gastroenterol. Hepatol. 16:8461–78
    [Google Scholar]
  148. 147. 
    Rothhammer V, Quintana FJ. 2019. The aryl hydrocarbon receptor: an environmental sensor integrating immune responses in health and disease. Nat. Rev. Immunol. 19:3184–97
    [Google Scholar]
  149. 148. 
    Johnson KVA, Foster KR. 2018. Why does the microbiome affect behaviour?. Nat. Rev. Microbiol. 16:10647–55
    [Google Scholar]
  150. 149. 
    Linnerbauer M, Wheeler MA, Quintana FJ. 2020. Astrocyte crosstalk in CNS inflammation. Neuron 108:4608–22
    [Google Scholar]
  151. 150. 
    De Biase LM, Schuebel KE, Fusfeld ZH, Jair K, Hawes IA et al. 2017. Local cues establish and maintain region-specific phenotypes of basal ganglia microglia. Neuron 95:2341–56.e6
    [Google Scholar]
  152. 151. 
    Lawson LJ, Perry VH, Dri P, Gordon S. 1990. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39:1151–70
    [Google Scholar]
  153. 152. 
    Grabert K, Michoel T, Karavolos MH, Clohisey S, Baillie JK et al. 2016. Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat. Neurosci. 19:3504–16
    [Google Scholar]
  154. 153. 
    Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R et al. 2017. A unique microglia type associated with restricting development of Alzheimer's disease. Cell 169:71276–90.e17
    [Google Scholar]
  155. 154. 
    Krasemann S, Madore C, Cialic R, Baufeld C, Calcagno N et al. 2017. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47:3566–81.e9
    [Google Scholar]
  156. 155. 
    Mathys H, Adaikkan C, Gao F, Young JZ, Manet E et al. 2017. Temporal tracking of microglia activation in neurodegeneration at single-cell resolution. Cell Rep 21:2366–80
    [Google Scholar]
  157. 156. 
    Masuda T, Sankowski R, Staszewski O, Prinz M. 2020. Microglia heterogeneity in the single-cell era. Cell Rep 30:51271–81
    [Google Scholar]
  158. 157. 
    Marschallinger J, Iram T, Zardeneta M, Lee SE, Lehallier B et al. 2020. Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain. Nat. Neurosci. 23:2194–208
    [Google Scholar]
  159. 158. 
    Ajami B, Samusik N, Wieghofer P, Ho PP, Crotti A et al. 2018. Single-cell mass cytometry reveals distinct populations of brain myeloid cells in mouse neuroinflammation and neurodegeneration models. Nat. Neurosci. 21:4541–51
    [Google Scholar]
  160. 159. 
    Hammond TR, Dufort C, Dissing-Olesen L, Giera S, Young A et al. 2019. Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50:1253–71.e6
    [Google Scholar]
  161. 160. 
    Li Q, Cheng Z, Zhou L, Darmanis S, Neff NF et al. 2019. Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single-cell RNA sequencing. Neuron 101:2207–23.e10
    [Google Scholar]
  162. 161. 
    Ayata P, Badimon A, Strasburger HJ, Duff MK, Montgomery SE et al. 2018. Epigenetic regulation of brain region-specific microglia clearance activity. Nat. Neurosci. 21:81049–60
    [Google Scholar]
  163. 162. 
    Deczkowska A, Matcovitch-Natan O, Tsitsou-Kampeli A, Ben-Hamo S, Dvir-Szternfeld R et al. 2017. Mef2C restrains microglial inflammatory response and is lost in brain ageing in an IFN-I-dependent manner. Nat. Commun. 8:1717
    [Google Scholar]
  164. 163. 
    Mathys H, Davila-Velderrain J, Peng Z, Gao F, Mohammadi S et al. 2019. Single-cell transcriptomic analysis of Alzheimer's disease. Nature 570:7761332–37
    [Google Scholar]
  165. 164. 
    Sankowski R, Bottcher C, Masuda T, Geirsdottir L, Sagar et al. 2019. Mapping microglia states in the human brain through the integration of high-dimensional techniques. Nat. Neurosci. 22:122098–110
    [Google Scholar]
  166. 165. 
    Bottcher C, Schlickeiser S, Sneeboer MAM, Kunkel D, Knop A et al. 2019. Human microglia regional heterogeneity and phenotypes determined by multiplexed single-cell mass cytometry. Nat. Neurosci. 22:178–90
    [Google Scholar]
  167. 166. 
    Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW et al. 2000. Analysis of fractalkine receptor CX3CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell. Biol. 20:114106–14
    [Google Scholar]
  168. 167. 
    Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y et al. 2005. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8:6752–58
    [Google Scholar]
  169. 168. 
    Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR 3rd et al. 2013. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155:71596–609
    [Google Scholar]
  170. 169. 
    Yona S, Kim KW, Wolf Y, Mildner A, Varol D et al. 2013. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38:179–91
    [Google Scholar]
  171. 170. 
    Goldmann T, Wieghofer P, Muller PF, Wolf Y, Varol D et al. 2013. A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nat. Neurosci. 16:111618–26
    [Google Scholar]
  172. 171. 
    Masuda T, Amann L, Sankowski R, Staszewski O, Lenz M et al. 2020. Novel Hexb-based tools for studying microglia in the CNS. Nat. Immunol. 21:7802–15
    [Google Scholar]
  173. 172. 
    Bennett ML, Bennett FC, Liddelow SA, Ajami B, Zamanian JL et al. 2016. New tools for studying microglia in the mouse and human CNS. PNAS 113:12E1738–46
    [Google Scholar]
  174. 173. 
    Kaiser T, Feng G. 2019. Tmem119-EGFP and Tmem119-CreERT2 transgenic mice for labeling and manipulating microglia. eNeuro 6:4 https://doi.org/10.1523/ENEURO.0448-18.2019
    [Crossref] [Google Scholar]
  175. 174. 
    Ruan C, Sun L, Kroshilina A, Beckers L, De Jager P et al. 2020. A novel Tmem119-tdTomato reporter mouse model for studying microglia in the central nervous system. Brain Behav. Immun. 83:180–91
    [Google Scholar]
  176. 175. 
    McKinsey GL, Lizama CO, Keown-Lang AE, Niu A, Santander N et al. 2020. A new genetic strategy for targeting microglia in development and disease. eLife 9:e54590
    [Google Scholar]
  177. 176. 
    Buttgereit A, Lelios I, Yu X, Vrohlings M, Krakoski NR et al. 2016. Sall1 is a transcriptional regulator defining microglia identity and function. Nat. Immunol. 17:121397–406 Erratum. 2017. Nat. Immunol. 18(2):246
    [Google Scholar]
  178. 177. 
    Chappell-Maor L, Kolesnikov M, Kim JS, Shemer A, Haimon Z et al. 2020. Comparative analysis of CreER transgenic mice for the study of brain macrophages: a case study. Eur. J. Immunol. 50:3353–62
    [Google Scholar]
  179. 178. 
    Darmanis S, Sloan SA, Croote D, Mignardi M, Chernikova S et al. 2017. Single-cell RNA-seq analysis of infiltrating neoplastic cells at the migrating front of human glioblastoma. Cell Rep 21:51399–410
    [Google Scholar]
  180. 179. 
    Venteicher AS, Tirosh I, Hebert C, Yizhak K, Neftel C et al. 2017. Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science 355:6332eaai8478
    [Google Scholar]
  181. 180. 
    Zhong S, Zhang S, Fan X, Wu Q, Yan L et al. 2018. A single-cell RNA-seq survey of the developmental landscape of the human prefrontal cortex. Nature 555:7697524–28
    [Google Scholar]
  182. 181. 
    Abud EM, Ramirez RN, Martinez ES, Healy LM, Nguyen CHH et al. 2017. iPSC-derived human microglia-like cells to study neurological diseases. Neuron 94:2278–93.e9
    [Google Scholar]
  183. 182. 
    Beutner C, Roy K, Linnartz B, Napoli I, Neumann H. 2010. Generation of microglial cells from mouse embryonic stem cells. Nat. Protoc. 5:91481–94
    [Google Scholar]
  184. 183. 
    Muffat J, Li Y, Yuan B, Mitalipova M, Omer A et al. 2016. Efficient derivation of microglia-like cells from human pluripotent stem cells. Nat. Med. 22:111358–67
    [Google Scholar]
  185. 184. 
    Pandya H, Shen MJ, Ichikawa DM, Sedlock AB, Choi Y et al. 2017. Differentiation of human and murine induced pluripotent stem cells to microglia-like cells. Nat. Neurosci. 20:5753–59
    [Google Scholar]
  186. 185. 
    Ormel PR, Vieira de Sá R, van Bodegraven EJ, Karst H, Harschnitz O et al. 2018. Microglia innately develop within cerebral organoids. Nat. Commun. 9:14167
    [Google Scholar]
  187. 186. 
    Xu R, Li X, Boreland AJ, Posyton A, Kwan K et al. 2020. Human iPSC-derived mature microglia retain their identity and functionally integrate in the chimeric mouse brain. Nat. Commun. 11:11577
    [Google Scholar]
  188. 187. 
    Priller J, Prinz M. 2019. Targeting microglia in brain disorders. Science 365:644832–33
    [Google Scholar]
  189. 188. 
    Mezo C, Dokalis N, Mossad O, Staszewski O, Neuber J et al. 2020. Different effects of constitutive and induced microbiota modulation on microglia in a mouse model of Alzheimer's disease. Acta Neuropathol. Commun. 8:1119
    [Google Scholar]
  190. 189. 
    Pluvinage JV, Haney MS, Smith BAH, Sun J, Iram T et al. 2019. CD22 blockade restores homeostatic microglial phagocytosis in ageing brains. Nature 568:7751187–92
    [Google Scholar]
  191. 190. 
    Inoue S, Inoue M, Fujimura S, Nishinakamura R. 2010. A mouse line expressing Sall1-driven inducible Cre recombinase in the kidney mesenchyme. Genesis 48:3207–12
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-093019-110159
Loading
/content/journals/10.1146/annurev-immunol-093019-110159
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error