1932

Abstract

Pulmonary granulomas are widely considered the epicenters of the immune response to (Mtb), the causative agent of tuberculosis (TB). Recent animal studies have revealed factors that either promote or restrict TB immunity within granulomas. These models, however, typically ignore the impact of preexisting immunity on cellular organization and function, an important consideration because most TB probably occurs through reinfection of previously exposed individuals. Human postmortem research from the pre-antibiotic era showed that infections in Mtb-naïve individuals (primary TB) versus those with prior Mtb exposure (postprimary TB) have distinct pathologic features. We review recent animal findings in TB granuloma biology, which largely reflect primary TB. We also discuss our current understanding of postprimary TB lesions, about which much less is known. Many knowledge gaps remain, particularly regarding how preexisting immunity shapes granuloma structure and local immune responses at Mtb infection sites.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-093019-125148
2022-04-26
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/immunol/40/1/annurev-immunol-093019-125148.html?itemId=/content/journals/10.1146/annurev-immunol-093019-125148&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Opie EL. 1927. Tubercle bacilli in latent tuberculous lesions and in the lung tissue without tuberculous lesions. Arch. Pathol. Lab. Med. 4:1–21
    [Google Scholar]
  2. 2. 
    Laennec RTH. 1979. 1821. A Treatise on the Diseases of the Chest: In Which They Are Described According to Their Anatomical Characters, and Their Diagnosis Established on a New Principle by Means of Acoustick Instruments, transl J Forbes Omaha, NE: Gryphon Class. Med. Libr From French )
    [Google Scholar]
  3. 3. 
    Virchow R. 1863. Cellular Pathology as Based Upon Physiological and Pathological Histology Philadelphia: Lippincott
  4. 4. 
    Rich AR. 1944. The Pathogenesis of Tuberculosis Springfield, IL: Thomas
  5. 5. 
    Osler W. 1920. The Principles and Practice of Medicine New York: Appleton
  6. 6. 
    Hunter RL. 2016. Tuberculosis as a three-act play: a new paradigm for the pathogenesis of pulmonary tuberculosis. Tuberculosis 97:8–17
    [Google Scholar]
  7. 7. 
    Hunter RL. 2011. Pathology of post primary tuberculosis of the lung: an illustrated critical review. Tuberculosis 91:497–509
    [Google Scholar]
  8. 8. 
    Hunter RL, Actor J. 2019. The pathogenesis of post-primary tuberculosis: a game changer for vaccine development. Tuberculosis 116: Suppl. S114–17
    [Google Scholar]
  9. 9. 
    Ravesloot-Chávez MM, Van Dis E, Stanley SA 2021. The innate immune response to Mycobacterium tuberculosis infection. Annu. Rev. Immunol. 39:611–37
    [Google Scholar]
  10. 10. 
    Khader SA, Divangahi M, Hanekom W, Hill PC, Maeurer M et al. 2019. Targeting innate immunity for tuberculosis vaccination. J. Clin. Investig. 129:3482–91
    [Google Scholar]
  11. 11. 
    Netea MG, Dominguez-Andres J, Barreiro LB, Chavakis T, Divangahi M et al. 2020. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 20:375–88
    [Google Scholar]
  12. 12. 
    Cohen SB, Gern BH, Delahaye JL, Adams KN, Plumlee CR et al. 2018. Alveolar macrophages provide an early Mycobacterium tuberculosis niche and initiate dissemination. Cell Host Microbe 24:439–46.e4
    [Google Scholar]
  13. 13. 
    Balasubramanian V, Wiegeshaus EH, Taylor BT, Smith DW 1994. Pathogenesis of tuberculosis: pathway to apical localization. Tuberc. Lung Dis 75:168–78
    [Google Scholar]
  14. 14. 
    Murray JF. 2003. Bill Dock and the location of pulmonary tuberculosis: how bed rest might have helped consumption. Am. J. Respir. Crit. Care Med. 168:1029–33
    [Google Scholar]
  15. 15. 
    Bucsan AN, Mehra S, Khader SA, Kaushal D. 2019. The current state of animal models and genomic approaches towards identifying and validating molecular determinants of Mycobacterium tuberculosis infection and tuberculosis disease. Pathog. Dis. 77:ftz037
    [Google Scholar]
  16. 16. 
    Tsai MC, Chakravarty S, Zhu G, Xu J, Tanaka K et al. 2006. Characterization of the tuberculous granuloma in murine and human lungs: cellular composition and relative tissue oxygen tension. Cell. Microbiol. 8:218–32
    [Google Scholar]
  17. 17. 
    Ulrichs T, Kosmiadi GA, Trusov V, Jörg S, Pradl L et al. 2004. Human tuberculous granulomas induce peripheral lymphoid follicle–like structures to orchestrate local host defence in the lung. J. Pathol. 204:217–28
    [Google Scholar]
  18. 18. 
    Orme IM, Ordway DJ. 2016. Mouse and guinea pig models of tuberculosis. Microbiol. Spectr. 4:4
    [Google Scholar]
  19. 19. 
    Dannenberg AM Jr. 2006. Pathogenesis of Human Pulmonary Tuberculosis: Insights from the Rabbit Model Washington, DC: ASM Press
  20. 20. 
    Ramakrishnan L. 2013. Looking within the zebrafish to understand the tuberculous granuloma. Adv. Exp. Med. Biol. 783:251–66
    [Google Scholar]
  21. 21. 
    Pan H, Yan B-S, Rojas M, Shebzukhov YV, Zhou H et al. 2005. Ipr1 gene mediates innate immunity to tuberculosis. Nature 434:767–72
    [Google Scholar]
  22. 22. 
    Verma S, Bhatt K, Lovey A, Ribeiro-Rodrigues R, Durbin J et al. 2019. Transmission phenotype of Mycobacterium tuberculosis strains is mechanistically linked to induction of distinct pulmonary pathology. PLOS Pathog 15:e1007613
    [Google Scholar]
  23. 23. 
    Ji DX, Witt KC, Kotov DI, Margolis SR et al. 2021. Role of the transcriptional regulator SP140 in resistance to bacterial infections via repression of type I interferons. eLife 10:e67290
    [Google Scholar]
  24. 24. 
    Choreno-Parra JA, Bobba S, Rangel-Moreno J, Ahmed M, Mehra S et al. 2020. Mycobacterium tuberculosis HN878 infection induces human-like B-cell follicles in mice. J. Infect. Dis. 221:1636–46
    [Google Scholar]
  25. 25. 
    Plumlee CR, Duffy FJ, Gern BH, Delahaye JL, Cohen SB et al. 2021. Ultra-low dose aerosol infection of mice with Mycobacterium tuberculosis more closely models human tuberculosis. Cell Host Microbe 29:68–82.e5
    [Google Scholar]
  26. 26. 
    Gern BH, Adams KN, Plumlee CR, Stoltzfus CR, Shehata L et al. 2021. TGFβ restricts expansion, survival, and function of T cells within the tuberculous granuloma. Cell Host Microbe 29:594–606.e6
    [Google Scholar]
  27. 27. 
    Kauffman KD, Sallin MA, Sakai S, Kamenyeva O, Kabat J et al. 2018. Defective positioning in granulomas but not lung-homing limits CD4 T-cell interactions with Mycobacterium tuberculosis–infected macrophages in rhesus macaques. Mucosal Immunol 11:462–73
    [Google Scholar]
  28. 28. 
    Ramakrishnan L. 2012. Revisiting the role of the granuloma in tuberculosis. Nat. Rev. Immunol. 12:352–66
    [Google Scholar]
  29. 29. 
    Williams GT, Williams WJ. 1983. Granulomatous inflammation—a review. J. Clin. Pathol. 36:723–33
    [Google Scholar]
  30. 30. 
    Pagan AJ, Ramakrishnan L. 2018. The formation and function of granulomas. Annu. Rev. Immunol. 36:639–65
    [Google Scholar]
  31. 31. 
    Williams WJ, James EM, Erasmus DA, Davies T 1970. The fine structure of sarcoid and tuberculous granulomas. Postgrad. Med. J. 46:496–500
    [Google Scholar]
  32. 32. 
    Gideon HP, Phuah J, Junecko BA, Mattila JT. 2019. Neutrophils express pro- and anti-inflammatory cytokines in granulomas from Mycobacterium tuberculosis–infected cynomolgus macaques. Mucosal Immunol 12:1370–81
    [Google Scholar]
  33. 33. 
    Mattila JT, Ojo OO, Kepka-Lenhart D, Marino S, Kim JH et al. 2013. Microenvironments in tuberculous granulomas are delineated by distinct populations of macrophage subsets and expression of nitric oxide synthase and arginase isoforms. J. Immunol. 191:773–84
    [Google Scholar]
  34. 34. 
    Bouley DM, Ghori N, Mercer KL, Falkow S, Ramakrishnan L 2001. Dynamic nature of host-pathogen interactions in Mycobacterium marinum granulomas. Infect. Immun. 69:7820–31
    [Google Scholar]
  35. 35. 
    Cronan MR, Hughes EJ, Brewer WJ, Viswanathan G, Hunt EG et al. 2021. A non-canonical type 2 immune response coordinates tuberculous granuloma formation and epithelialization. Cell 184:1757–74.e14
    [Google Scholar]
  36. 36. 
    Cronan MR, Beerman RW, Rosenberg AF, Saelens JW, Johnson MG et al. 2016. Macrophage epithelial reprogramming underlies mycobacterial granuloma formation and promotes infection. Immunity 45:861–76
    [Google Scholar]
  37. 37. 
    Jankovic D, Kullberg MC, Noben-Trauth N, Caspar P, Ward JM et al. 1999. Schistosome-infected IL-4 receptor knockout (KO) mice, in contrast to IL-4 KO mice, fail to develop granulomatous pathology while maintaining the same lymphokine expression profile. J. Immunol. 163:337–42
    [Google Scholar]
  38. 38. 
    Van den Bossche J, Bogaert P, van Hengel J, Guerin CJ, Berx G et al. 2009. Alternatively activated macrophages engage in homotypic and heterotypic interactions through IL-4 and polyamine-induced E-cadherin/catenin complexes. Blood 114:4664–74
    [Google Scholar]
  39. 39. 
    Gautam US, Foreman TW, Bucsan AN, Veatch AV, Alvarez X et al. 2018. In vivo inhibition of tryptophan catabolism reorganizes the tuberculoma and augments immune-mediated control of Mycobacterium tuberculosis. PNAS 115:E62–71
    [Google Scholar]
  40. 40. 
    Cronan MR, Matty MA, Rosenberg AF, Blanc L, Pyle CJ et al. 2018. An explant technique for high-resolution imaging and manipulation of mycobacterial granulomas. Nat. Methods 15:1098–107
    [Google Scholar]
  41. 41. 
    Srinivas V, Arrieta-Ortiz ML, Peterson EJR, Baliga NS 2020. PerSort facilitates characterization and elimination of persister subpopulation in mycobacteria. mSystems 5:601127
    [Google Scholar]
  42. 42. 
    Laufer JM, Legler DF. 2018. Beyond migration—chemokines in lymphocyte priming, differentiation, and modulating effector functions. J. Leukoc. Biol. 104:301–12
    [Google Scholar]
  43. 43. 
    Hoft SG, Sallin MA, Kauffman KD, Sakai S, Ganusov VV, Barber DL. 2019. The rate of CD4 T cell entry into the lungs during Mycobacterium tuberculosis infection is determined by partial and opposing effects of multiple chemokine receptors. Infect. Immun. 87:e00841
    [Google Scholar]
  44. 44. 
    Potter EL, Gideon HP, Tkachev V, Fabozzi G, Chassiakos A et al. 2021. Measurement of leukocyte trafficking kinetics in macaques by serial intravascular staining. Sci. Transl. Med. 13:eabb4582
    [Google Scholar]
  45. 45. 
    Shanmugasundaram U, Bucsan AN, Ganatra SR, Ibegbu C, Quezada M et al. 2020. Pulmonary Mycobacterium tuberculosis control associates with CXCR3- and CCR6-expressing antigen-specific Th1 and Th17 cell recruitment. JCI Insight 5:e137858
    [Google Scholar]
  46. 46. 
    Kahnert A, Hopken UE, Stein M, Bandermann S, Lipp M, Kaufmann SH 2007. Mycobacterium tuberculosis triggers formation of lymphoid structure in murine lungs. J. Infect. Dis. 195:46–54
    [Google Scholar]
  47. 47. 
    Yin C, Mohanta S, Maffia P, Habenicht AJ. 2017. Tertiary lymphoid organs (TLOs): powerhouses of disease immunity. Front. Immunol. 8:228
    [Google Scholar]
  48. 48. 
    Monin L, Griffiths KL, Slight S, Lin Y, Rangel-Moreno J, Khader SA. 2015. Immune requirements for protective Th17 recall responses to Mycobacterium tuberculosis challenge. Mucosal Immunol 8:1099–109
    [Google Scholar]
  49. 49. 
    Khader SA, Guglani L, Rangel-Moreno J, Gopal R, Junecko BA et al. 2011. IL-23 is required for long-term control of Mycobacterium tuberculosis and B cell follicle formation in the infected lung. J. Immunol. 187:5402–7
    [Google Scholar]
  50. 50. 
    Gopal R, Rangel-Moreno J, Slight S, Lin Y, Nawar HF et al. 2013. Interleukin-17-dependent CXCL13 mediates mucosal vaccine-induced immunity against tuberculosis. Mucosal Immunol 6:972–84
    [Google Scholar]
  51. 51. 
    Jones GW, Hill DG, Jones SA. 2016. Understanding immune cells in tertiary lymphoid organ development: It is all starting to come together. Front. Immunol. 7:401
    [Google Scholar]
  52. 52. 
    Slight SR, Rangel-Moreno J, Gopal R, Lin Y, Fallert Junecko BA et al. 2013. CXCR5+ T helper cells mediate protective immunity against tuberculosis. J. Clin. Investig. 123:712–26
    [Google Scholar]
  53. 53. 
    Neyt K, Perros F, GeurtsvanKessel CH, Hammad H, Lambrecht BN 2012. Tertiary lymphoid organs in infection and autoimmunity. Trends Immunol 33:297–305
    [Google Scholar]
  54. 54. 
    Moyron-Quiroz JE, Rangel-Moreno J, Kusser K, Hartson L, Sprague F et al. 2004. Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Nat. Med. 10:927–34
    [Google Scholar]
  55. 55. 
    Day TA, Koch M, Nouailles G, Jacobsen M, Kosmiadi GA et al. 2010. Secondary lymphoid organs are dispensable for the development of T-cell-mediated immunity during tuberculosis. Eur. J. Immunol. 40:1663–73
    [Google Scholar]
  56. 56. 
    Lu LL, Chung AW, Rosebrock TR, Ghebremichael M, Yu WH et al. 2016. A functional role for antibodies in tuberculosis. Cell 167:433–43.e14
    [Google Scholar]
  57. 57. 
    Peske JD, Thompson ED, Gemta L, Baylis RA, Fu YX, Engelhard VH. 2015. Effector lymphocyte–induced lymph node-like vasculature enables naive T-cell entry into tumours and enhanced anti-tumour immunity. Nat. Commun. 6:7114
    [Google Scholar]
  58. 58. 
    Leonhardt RM, Lee SJ, Kavathas PB, Cresswell P. 2007. Severe tryptophan starvation blocks onset of conventional persistence and reduces reactivation of Chlamydia trachomatis. Infect. Immun. 75:5105–17
    [Google Scholar]
  59. 59. 
    Pfefferkorn ER, Eckel M, Rebhun S. 1986. Interferon-γ suppresses the growth of Toxoplasma gondii in human fibroblasts through starvation for tryptophan. Mol. Biochem. Parasitol. 20:215–24
    [Google Scholar]
  60. 60. 
    Almeida AS, Lago PM, Boechat N, Huard RC, Lazzarini LC et al. 2009. Tuberculosis is associated with a down-modulatory lung immune response that impairs Th1-type immunity. J. Immunol. 183:718–31
    [Google Scholar]
  61. 61. 
    Suzuki Y, Miwa S, Akamatsu T, Suzuki M, Fujie M et al. 2013. Indoleamine 2,3-dioxygenase in the pathogenesis of tuberculous pleurisy. Int. J. Tuberc. Lung Dis. 17:1501–6
    [Google Scholar]
  62. 62. 
    McCaffrey EF, Donato M, Keren L, Chen Z, Delmastro Aet al 2022. The immunoregulatory landscape of human tuberculosis granulomas. Nat. Immunol 2331829
  63. 63. 
    Zhang YJ, Reddy MC, Ioerger TR, Rothchild AC, Dartois V et al. 2013. Tryptophan biosynthesis protects mycobacteria from CD4 T-cell-mediated killing. Cell 155:1296–308
    [Google Scholar]
  64. 64. 
    Li Q, Li L, Liu Y, Fu X, Qiao D et al. 2011. Pleural fluid from tuberculous pleurisy inhibits the functions of T cells and the differentiation of Th1 cells via immunosuppressive factors. Cell Mol. Immunol. 8:172–80
    [Google Scholar]
  65. 65. 
    Mehra S, Alvarez X, Didier PJ, Doyle LA, Blanchard JL et al. 2013. Granuloma correlates of protection against tuberculosis and mechanisms of immune modulation by Mycobacterium tuberculosis. J. Infect. Dis. 207:1115–27
    [Google Scholar]
  66. 66. 
    Blumenthal A, Nagalingam G, Huch JH, Walker L, Guillemin GJ et al. 2012. M. tuberculosis induces potent activation of IDO-1, but this is not essential for the immunological control of infection. PLOS ONE 7:e37314
    [Google Scholar]
  67. 67. 
    Kramnik I, Dietrich WF, Demant P, Bloom BR 2000. Genetic control of resistance to experimental infection with virulent Mycobacterium tuberculosis. PNAS 97:8560–65
    [Google Scholar]
  68. 68. 
    Svenson KL, Gatti DM, Valdar W, Welsh CE, Cheng R et al. 2012. High-resolution genetic mapping using the mouse Diversity Outbred population. Genetics 190:437–47
    [Google Scholar]
  69. 69. 
    Sallin MA, Kauffman KD, Riou C, Du Bruyn E, Foreman TW et al. 2018. Host resistance to pulmonary Mycobacterium tuberculosis infection requires CD153 expression. Nat. Microbiol. 3:1198–205
    [Google Scholar]
  70. 70. 
    Jouanguy E, Altare F, Lamhamedi S, Revy P, Emile J-F et al. 1996. Interferon-γ-receptor deficiency in an infant with fatal Bacille Calmette–Guérin infection. N. Engl. J. Med. 335:1956–62
    [Google Scholar]
  71. 71. 
    Green AM, DiFazio R, Flynn JL. 2013. IFN-γ from CD4 T cells is essential for host survival and enhances CD8 T cell function during Mycobacterium tuberculosis infection. J. Immunol. 190:270–77
    [Google Scholar]
  72. 72. 
    Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR 1993. An essential role for interferon γ in resistance to Mycobacterium tuberculosis infection. J. Exp. Med. 178:2249–54
    [Google Scholar]
  73. 73. 
    Tait DR, Hatherill M, Van Der Meeren O, Ginsberg AM, Van Brakel E et al. 2019. Final analysis of a trial of M72/AS01E vaccine to prevent tuberculosis. N. Engl. J. Med. 381:2429–39
    [Google Scholar]
  74. 74. 
    Nemes E, Geldenhuys H, Rozot V, Rutkowski KT, Ratangee F et al. 2018. Prevention of M. tuberculosis infection with H4:IC31 vaccine or BCG revaccination. N. Engl. J. Med. 379:138–49
    [Google Scholar]
  75. 75. 
    Tameris MD, Hatherill M, Landry BS, Scriba TJ, Snowden MA et al. 2013. Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet 381:1021–28
    [Google Scholar]
  76. 76. 
    Barber DL, Sakai S, Kudchadkar RR, Fling SP, Day TA et al. 2019. Tuberculosis following PD-1 blockade for cancer immunotherapy. Sci. Transl. Med. 11:eaat2702
    [Google Scholar]
  77. 77. 
    Lazar-Molnar E, Chen B, Sweeney KA, Wang EJ, Liu W et al. 2010. Programmed death-1 (PD-1)-deficient mice are extraordinarily sensitive to tuberculosis. PNAS 107:13402–7
    [Google Scholar]
  78. 78. 
    Deleted in proof
  79. 79. 
    Wong EA, Joslyn L, Grant NL, Klein E, Lin PL et al. 2018. Low levels of T cell exhaustion in tuberculous lung granulomas. Infect. Immun. 86:00426
    [Google Scholar]
  80. 80. 
    Majumder S, McGeachy MJ. 2021. IL-17 in the pathogenesis of disease: good intentions gone awry. Annu. Rev. Immunol. 39:537–56
    [Google Scholar]
  81. 81. 
    Khader SA, Pearl JE, Sakamoto K, Gilmartin L, Bell GK et al. 2005. IL-23 compensates for the absence of IL-12p70 and is essential for the IL-17 response during tuberculosis but is dispensable for protection and antigen-specific IFN-γ responses if IL-12p70 is available. J. Immunol. 175:788–95
    [Google Scholar]
  82. 82. 
    Khader SA, Bell GK, Pearl JE, Fountain JJ, Rangel-Moreno J et al. 2007. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat. Immunol. 8:369–77
    [Google Scholar]
  83. 83. 
    Gopal R, Monin L, Slight S, Uche U, Blanchard E et al. 2014. Unexpected role for IL-17 in protective immunity against hypervirulent Mycobacterium tuberculosis HN878 infection. PLOS Pathog 10:e1004099
    [Google Scholar]
  84. 84. 
    Ogongo P, Tezera LB, Ardain A, Nhamoyebonde S, Ramsuran D et al. 2021. Tissue-resident-like CD4+ T cells secreting IL-17 control Mycobacterium tuberculosis in the human lung. J. Clin. Investig. 131:e142014
    [Google Scholar]
  85. 85. 
    Lockhart E, Green AM, Flynn JL. 2006. IL-17 production is dominated by γδ T cells rather than CD4 T cells during Mycobacterium tuberculosis infection. J. Immunol. 177:4662–69
    [Google Scholar]
  86. 86. 
    Ardain A, Domingo-Gonzalez R, Das S, Kazer SW, Howard NC et al. 2019. Group 3 innate lymphoid cells mediate early protective immunity against tuberculosis. Nature 570:528–32
    [Google Scholar]
  87. 87. 
    Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F et al. 2007. Phenotypic and functional features of human Th17 cells. J. Exp. Med. 204:1849–61
    [Google Scholar]
  88. 88. 
    Maggi L, Santarlasci V, Capone M, Rossi MC, Querci V et al. 2012. Distinctive features of classic and nonclassic (Th17 derived) human Th1 cells. Eur. J. Immunol. 42:3180–88
    [Google Scholar]
  89. 89. 
    Zenaro E, Donini M, Dusi S. 2009. Induction of Th1/Th17 immune response by Mycobacterium tuberculosis: role of dectin-1, mannose receptor, and DC-SIGN. J. Leukoc. Biol. 86:1393–401
    [Google Scholar]
  90. 90. 
    Nikitina IY, Panteleev AV, Kosmiadi GA, Serdyuk YV, Nenasheva TA et al. 2018. Th1, Th17, and Th1Th17 lymphocytes during tuberculosis: Th1 lymphocytes predominate and appear as low-differentiated CXCR3+CCR6+ cells in the blood and highly differentiated CXCR3+/−CCR6 cells in the lungs. J. Immunol. 200:2090–103
    [Google Scholar]
  91. 91. 
    Salgame P, Lindestam Arlehamn CS, Gerasimova A, Mele F, Henderson R et al. 2013. Memory T cells in latent Mycobacterium tuberculosis infection are directed against three antigenic islands and largely contained in a CXCR3+CCR6+ Th1 subset. PLOS Pathog 9:e1003130
    [Google Scholar]
  92. 92. 
    Sassetti CM, Scriba TJ, Penn-Nicholson A, Shankar S, Hraha T et al. 2017. Sequential inflammatory processes define human progression from M. tuberculosis infection to tuberculosis disease. PLOS Pathog 13:e1006687
    [Google Scholar]
  93. 93. 
    Estévez O, Anibarro L, Garet E, Martínez A, Pena A et al. 2020. Multi-parameter flow cytometry immunophenotyping distinguishes different stages of tuberculosis infection. J. Infect. 81:57–71
    [Google Scholar]
  94. 94. 
    Gideon HP, Hughes TK, Wadsworth MH, Tu AA, Gierahn TM et al. 2021. Multimodal profiling of lung granulomas reveals cellular correlates of tuberculosis control. bioRxiv 352492. https://doi.org/10.1101/2020.10.24.352492
    [Crossref]
  95. 95. 
    Keane J, Gershon S, Wise RP, Mirabile-Levens E, Kasznica J et al. 2001. Tuberculosis associated with infliximab, a tumor necrosis factor α–neutralizing agent. N. Engl. J. Med. 345:1098–104
    [Google Scholar]
  96. 96. 
    Flynn JL, Goldstein MM, Chan J, Triebold KJ, Pfeffer K et al. 1995. Tumor necrosis factor-α is required in the protective immune response against mycobacterium tuberculosis in mice. Immunity 2:561–72
    [Google Scholar]
  97. 97. 
    Clay H, Volkman HE, Ramakrishnan L. 2008. Tumor necrosis factor signaling mediates resistance to mycobacteria by inhibiting bacterial growth and macrophage death. Immunity 29:283–94
    [Google Scholar]
  98. 98. 
    Bhattacharya B, Xiao S, Chatterjee S, Urbanowski M, Ordonez A et al. 2021. The integrated stress response mediates necrosis in murine Mycobacterium tuberculosis granulomas. J. Clin. Investig. 131:e130319
    [Google Scholar]
  99. 99. 
    Keller C, Hoffmann R, Lang R, Brandau S, Hermann C, Ehlers S 2006. Genetically determined susceptibility to tuberculosis in mice causally involves accelerated and enhanced recruitment of granulocytes. Infect. Immun. 74:4295–309
    [Google Scholar]
  100. 100. 
    Roca FJ, Whitworth LJ, Redmond S, Jones AA, Ramakrishnan L 2019. TNF induces pathogenic programmed macrophage necrosis in tuberculosis through a mitochondrial–lysosomal–endoplasmic reticulum circuit. Cell 178:1344–61.e11
    [Google Scholar]
  101. 101. 
    Tobin DM, Roca FJ, Oh SF, McFarland R, Vickery TW et al. 2012. Host genotype–specific therapies can optimize the inflammatory response to mycobacterial infections. Cell 148:434–46
    [Google Scholar]
  102. 102. 
    Roca FJ, Ramakrishnan L. 2013. TNF dually mediates resistance and susceptibility to mycobacteria via mitochondrial reactive oxygen species. Cell 153:521–34
    [Google Scholar]
  103. 103. 
    Suliman AM, Bek SA, Elkhatim MS, Husain AA, Mismar AY et al. 2020. Tuberculosis following programmed cell death receptor 1 (PD-1) inhibitor in a patient with non-small cell lung cancer: case report and literature review. Cancer Immunol. Immunother. 70:935–44
    [Google Scholar]
  104. 104. 
    Rothchild AC, Stowell B, Goyal G, Nunes-Alves C, Yang Q et al. 2017. Role of granulocyte-macrophage colony-stimulating factor production by T cells during Mycobacterium tuberculosis infection. mBio 8:e01514
    [Google Scholar]
  105. 105. 
    Bergeron A, Bonay M, Kambouchner M, Lecossier D, Riquet M et al. 1997. Cytokine patterns in tuberculous and sarcoid granulomas: correlations with histopathologic features of the granulomatous response. J. Immunol. 159:3034–43
    [Google Scholar]
  106. 106. 
    Szeliga J, Daniel DS, Yang CH, Sever-Chroneos Z, Jagannath C, Chroneos ZC 2008. Granulocyte-macrophage colony stimulating factor-mediated innate responses in tuberculosis. Tuberculosis 88:7–20
    [Google Scholar]
  107. 107. 
    Gonzalez-Juarrero M, Hattle JM, Izzo A, Junqueira-Kipnis AP, Shim TS et al. 2005. Disruption of granulocyte macrophage-colony stimulating factor production in the lungs severely affects the ability of mice to control Mycobacterium tuberculosis infection. J. Leukoc. Biol. 77:914–22
    [Google Scholar]
  108. 108. 
    Rothchild AC, Jayaraman P, Nunes-Alves C, Behar SM. 2014. iNKT cell production of GM-CSF controls Mycobacterium tuberculosis. PLOS Pathog 10:e1003805
    [Google Scholar]
  109. 109. 
    Bermudez LE, Young LS. 1990. Recombinant granulocyte-macrophage colony-stimulating factor activates human macrophages to inhibit growth or kill Mycobacterium avium complex. J. Leukoc. Biol. 48:67–73
    [Google Scholar]
  110. 110. 
    Denis M, Ghadirian E 1990. Granulocyte-macrophage colony-stimulating factor restricts growth of tubercle bacilli in human macrophages. Immunol. Lett. 24:203–6
    [Google Scholar]
  111. 111. 
    Ji DX, Yamashiro LH, Chen KJ, Mukaida N, Kramnik I, Darwin KH, Vance RE 2019. Type I interferon–driven susceptibility to Mycobacterium tuberculosis is mediated by IL-1Ra. Nat. Microbiol. 4:2128–35
    [Google Scholar]
  112. 112. 
    Morikawa M, Derynck R, Miyazono K. 2016. TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology. Cold Spring Harb. Perspect. Biol. 8:a021873
    [Google Scholar]
  113. 113. 
    Dahl KE, Shiratsuchi H, Hamilton BD, Ellner JJ, Toossi Z. 1996. Selective induction of transforming growth factor β in human monocytes by lipoarabinomannan of Mycobacterium tuberculosis. Infect. Immun. 64:399–405
    [Google Scholar]
  114. 114. 
    Rook GA, Lowrie DB, Hernandez-Pando R. 2007. Immunotherapeutics for tuberculosis in experimental animals: Is there a common pathway activated by effective protocols?. J. Infect. Dis. 196:191–98
    [Google Scholar]
  115. 115. 
    DiFazio RM, Mattila JT, Klein EC, Cirrincione LR, Howard M et al. 2016. Active transforming growth factor-β is associated with phenotypic changes in granulomas after drug treatment in pulmonary tuberculosis. Fibrogenes. Tissue Repair 9:6
    [Google Scholar]
  116. 116. 
    Bonecini-Almeida MG, Ho JL, Boechat N, Huard RC, Chitale S et al. 2004. Down-modulation of lung immune responses by interleukin-10 and transforming growth factor β (TGF-β) and analysis of TGF-β receptors I and II in active tuberculosis. Infect. Immun. 72:2628–34
    [Google Scholar]
  117. 117. 
    Warsinske HC, Pienaar E, Linderman JJ, Mattila JT, Kirschner DE. 2017. Deletion of TGF-β1 increases bacterial clearance by cytotoxic T cells in a tuberculosis granuloma model. Front. Immunol. 8:1843
    [Google Scholar]
  118. 118. 
    Anastasopoulou A, Ziogas DC, Samarkos M, Kirkwood JM, Gogas H. 2019. Reactivation of tuberculosis in cancer patients following administration of immune checkpoint inhibitors: current evidence and clinical practice recommendations. J. Immunother. Cancer 7:239
    [Google Scholar]
  119. 119. 
    Cadranel J, Canellas A, Matton L, Darrason M, Parrot A et al. 2019. Pulmonary complications of immune checkpoint inhibitors in patients with nonsmall cell lung cancer. Eur. Respir. Rev. 28:190058
    [Google Scholar]
  120. 120. 
    Fujita K, Yamamoto Y, Kanai O, Okamura M, Hashimoto M et al. 2020. Incidence of active tuberculosis in lung cancer patients receiving immune checkpoint inhibitors. Open Forum Infect. Dis. 7:ofaa126
    [Google Scholar]
  121. 121. 
    Inthasot V, Bruyneel M, Muylle I, Ninane V 2020. Severe pulmonary infections complicating nivolumab treatment for lung cancer: a report of two cases. Acta Clin. Belg. 75:308–10
    [Google Scholar]
  122. 122. 
    Jensen KH, Persson G, Bondgaard AL, Pøhl M. 2018. Development of pulmonary tuberculosis following treatment with anti-PD-1 for non-small cell lung cancer. Acta Oncol 57:1127–28
    [Google Scholar]
  123. 123. 
    van Eeden R, Rapoport BL, Smit T, Anderson R. 2019. Tuberculosis infection in a patient treated with nivolumab for non-small cell lung cancer: case report and literature review. Front. Oncol. 9:659
    [Google Scholar]
  124. 124. 
    Jayaswal S, Kamal MA, Dua R, Gupta S, Majumdar T et al. 2010. Identification of host-dependent survival factors for intracellular Mycobacterium tuberculosis through an siRNA screen. PLOS Pathog 6:e1000839
    [Google Scholar]
  125. 125. 
    North RJ. 1995. Mycobacterium tuberculosis is strikingly more virulent for mice when given via the respiratory than via the intravenous route. J. Infect. Dis. 172:1550–53
    [Google Scholar]
  126. 126. 
    Rosas-Taraco AG, Higgins DM, Sánchez-Campillo J, Lee EJ, Orme IM, González-Juarrero M. 2011. Local pulmonary immunotherapy with siRNA targeting TGFβ1 enhances antimicrobial capacity in Mycobacterium tuberculosis infected mice. Tuberculosis 91:98–106
    [Google Scholar]
  127. 127. 
    Akhurst RJ. 2017. Targeting TGF-β signaling for therapeutic gain. Cold Spring Harb. Perspect. Biol. 9:a022301
    [Google Scholar]
  128. 128. 
    de Gramont A, Faivre S, Raymond E 2017. Novel TGF-β inhibitors ready for prime time in onco-immunology. Oncoimmunology 6:e1257453
    [Google Scholar]
  129. 129. 
    Huynh L, Hipolito C, ten Dijke P. 2019. A perspective on the development of TGF-β inhibitors for cancer treatment. Biomolecules 9:743
    [Google Scholar]
  130. 130. 
    Gideon HP, Phuah J, Myers AJ, Bryson BD, Rodgers MA et al. 2015. Variability in tuberculosis granuloma T cell responses exists, but a balance of pro- and anti-inflammatory cytokines is associated with sterilization. PLOS Pathog 11:e1004603
    [Google Scholar]
  131. 131. 
    Moguche AO, Shafiani S, Clemons C, Larson RP, Dinh C et al. 2015. ICOS and Bcl6-dependent pathways maintain a CD4 T cell population with memory-like properties during tuberculosis. J. Exp. Med. 212:715–28
    [Google Scholar]
  132. 132. 
    Reiley WW, Shafiani S, Wittmer ST, Tucker-Heard G, Moon JJ et al. 2010. Distinct functions of antigen-specific CD4 T cells during murine Mycobacterium tuberculosis infection. PNAS 107:19408–13
    [Google Scholar]
  133. 133. 
    Sakai S, Kauffman KD, Schenkel JM, McBerry CC, Mayer-Barber KD et al. 2014. Control of Mycobacterium tuberculosis infection by a subset of lung parenchyma-homing CD4 T cells. J. Immunol. 192:2965–69
    [Google Scholar]
  134. 134. 
    Moguche AO, Musvosvi M, Penn-Nicholson A, Plumlee CP, Mearns H et al. 2017. Antigen availability shapes the differentiation and protective capacity of Mycobacterium tuberculosis–specific CD4 T cells. Cell Host Microbe 21:695–706.e5
    [Google Scholar]
  135. 135. 
    Wherry EJ, Kurachi M. 2015. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 15:486–99
    [Google Scholar]
  136. 136. 
    Jayaraman P, Jacques MK, Zhu C, Steblenko KM, Stowell BL et al. 2016. TIM3 mediates T cell exhaustion during Mycobacterium tuberculosis infection. PLOS Pathog 12:e1005490
    [Google Scholar]
  137. 137. 
    Phillips BL, Mehra S, Ahsan MH, Selman M, Khader SA, Kaushal D. 2015. LAG3 expression in active Mycobacterium tuberculosis infections. Am. J. Pathol. 185:820–33
    [Google Scholar]
  138. 138. 
    Nandakumar S, Kannanganat S, Posey JE, Amara RR, Sable SB 2014. Attrition of T-cell functions and simultaneous upregulation of inhibitory markers correspond with the waning of BCG-induced protection against tuberculosis in mice. PLOS ONE 9:e113951
    [Google Scholar]
  139. 139. 
    Kirman J, McCoy K, Hook S, Prout M, Delahunt B et al. 1999. CTLA-4 blockade enhances the immune response induced by mycobacterial infection but does not lead to increased protection. Infect. Immun. 67:3786–92
    [Google Scholar]
  140. 140. 
    Blackburn SD, Shin H, Haining WN, Zou T, Workman CJ et al. 2009. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat. Immunol. 10:29–37
    [Google Scholar]
  141. 141. 
    Day CL, Abrahams DA, Bunjun R, Stone L, de Kock M et al. 2018. PD-1 expression on Mycobacterium tuberculosis–specific CD4 T cells is associated with bacterial load in human tuberculosis. Front. Immunol. 9:1995
    [Google Scholar]
  142. 142. 
    Kubo T, Hirohashi Y, Tsukahara T, Kanaseki T, Murata K et al. 2021. Epithelioid granulomatous lesions express abundant programmed death ligand 1 (PD-L1): a discussion of adverse events in anti-PD-1 antibody-based cancer immunotherapy. Hum. Vaccines Immunother. 17:1940–42
    [Google Scholar]
  143. 143. 
    Barber DL, Mayer-Barber KD, Feng CG, Sharpe AH, Sher A. 2011. CD4 T cells promote rather than control tuberculosis in the absence of PD-1-mediated inhibition. J. Immunol. 186:1598–607
    [Google Scholar]
  144. 144. 
    Tousif S, Singh Y, Prasad DV, Sharma P, Van Kaer L, Das G. 2011. T cells from programmed death 1 deficient mice respond poorly to Mycobacterium tuberculosis infection. PLOS ONE 6:e19864
    [Google Scholar]
  145. 145. 
    Sakai S, Kauffman KD, Sallin MA, Sharpe AH, Young HA et al. 2016. CD4 T cell–derived IFN-γ plays a minimal role in control of pulmonary Mycobacterium tuberculosis infection and must be actively repressed by PD-1 to prevent lethal disease. PLOS Pathog 12:e1005667
    [Google Scholar]
  146. 146. 
    Tezera LB, Bielecka MK, Ogongo P, Walker NF, Ellis M et al. 2020. Anti-PD-1 immunotherapy leads to tuberculosis reactivation via dysregulation of TNF-α. eLife 9:e52668
    [Google Scholar]
  147. 147. 
    Kauffman KD, Sakai S, Lora NE, Namasivayam S, Baker PJ et al. 2021. PD-1 blockade exacerbates Mycobacterium tuberculosis infection in rhesus macaques. Sci. Immunol. 6:eabf3861
    [Google Scholar]
  148. 148. 
    Crotty S. 2011. Follicular helper CD4 T cells (TFH). Annu. Rev. Immunol. 29:621–63
    [Google Scholar]
  149. 149. 
    Yang Q, Zhang M, Chen Q, Chen W, Wei C et al. 2020. Characterization of human tissue-resident memory T cells at different infection sites in patients with tuberculosis. J. Immunol. 204:2331–36
    [Google Scholar]
  150. 150. 
    Honda T, Egen JG, Lammermann T, Kastenmuller W, Torabi-Parizi P, Germain RN. 2014. Tuning of antigen sensitivity by T cell receptor–dependent negative feedback controls T cell effector function in inflamed tissues. Immunity 40:235–47
    [Google Scholar]
  151. 151. 
    Kamboj D, Gupta P, Basil MV, Mohan A, Guleria R et al. 2020. Improved Mycobacterium tuberculosis clearance after the restoration of IFN-γ+ TNF-α+ CD4+ T cells: impact of PD-1 inhibition in active tuberculosis patients. Eur. J. Immunol. 50:736–47
    [Google Scholar]
  152. 152. 
    Ankley L, Thomas S, Olive AJ 2020. Fighting persistence: how chronic infections with Mycobacterium tuberculosis evade T cell–mediated clearance and new strategies to defeat them. Infect. Immun. 88:e00916
    [Google Scholar]
  153. 153. 
    Goldberg MF, Saini NK, Porcelli SA. 2021. Evasion of innate and adaptive immunity by Mycobacterium tuberculosis. Microbiol. Spectr. 2: https://doi.org/10.1128/microbiolspec.MGM2-0005-2013
    [Crossref] [Google Scholar]
  154. 154. 
    Srivastava S, Ernst JD. 2013. Direct recognition of infected cells by CD4 T cells is required for control of intracellular Mycobacterium tuberculosis in vivo. J. Immunol. 191:1016–20
    [Google Scholar]
  155. 155. 
    Grace PS, Ernst JD. 2016. Suboptimal antigen presentation contributes to virulence of Mycobacterium tuberculosis in vivo. J. Immunol. 196:357–64
    [Google Scholar]
  156. 156. 
    Egen JG, Rothfuchs AG, Feng CG, Horwitz MA, Sher A, Germain RN 2011. Intravital imaging reveals limited antigen presentation and T cell effector function in mycobacterial granulomas. Immunity 34:807–19
    [Google Scholar]
  157. 157. 
    Srivastava S, Grace PS, Ernst JD 2016. Antigen export reduces antigen presentation and limits T cell control of M. tuberculosis. Cell Host Microbe 19:44–54
    [Google Scholar]
  158. 158. 
    Delahaye JL, Gern BH, Cohen SB, Plumlee CR, Shafiani S et al. 2019. Bacillus Calmette-Guérin-induced T cells shape Mycobacterium tuberculosis infection before reducing the bacterial burden. J. Immunol. 203:807–12
    [Google Scholar]
  159. 159. 
    Wilburn KM, Fieweger RA, VanderVen BC. 2018. Cholesterol and fatty acids grease the wheels of Mycobacterium tuberculosis pathogenesis. Pathog. Dis. 76:fty021
    [Google Scholar]
  160. 160. 
    Daniel J, Maamar H, Deb C, Sirakova TD, Kolattukudy PE 2011. Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. Plos Pathog 7:e1002093
    [Google Scholar]
  161. 161. 
    Peyron P, Vaubourgeix J, Poquet Y, Levillain F, Botanch C et al. 2008. Foamy macrophages from tuberculous patients’ granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence. PLOS Pathog 4:e1000204
    [Google Scholar]
  162. 162. 
    Sarathy JP, Via LE, Weiner D, Blanc L, Boshoff H et al. 2018. Extreme drug tolerance of Mycobacterium tuberculosis in caseum. Antimicrob. Agents Chemother. 62:e02266
    [Google Scholar]
  163. 163. 
    Carow B, Hauling T, Qian X, Kramnik I, Nilsson M, Rottenberg ME. 2019. Spatial and temporal localization of immune transcripts defines hallmarks and diversity in the tuberculosis granuloma. Nat. Commun. 10:1823
    [Google Scholar]
  164. 164. 
    Meylan PR, Richman DD, Kornbluth RS. 1992. Reduced intracellular growth of mycobacteria in human macrophages cultivated at physiologic oxygen pressure. Am. Rev. Respir. Dis. 145:947–53
    [Google Scholar]
  165. 165. 
    Nickel D, Busch M, Mayer D, Hagemann B, Knoll V, Stenger S. 2012. Hypoxia triggers the expression of human β defensin 2 and antimicrobial activity against Mycobacterium tuberculosis in human macrophages. J. Immunol. 188:4001–7
    [Google Scholar]
  166. 166. 
    Wayne LG, Hayes LG. 1996. An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect. Immun. 64:2062–69
    [Google Scholar]
  167. 167. 
    Canetti G. 1965. Present aspects of bacterial resistance in tuberculosis. Am. Rev. Respir. Dis. 92:687–703
    [Google Scholar]
  168. 168. 
    Marakalala MJ, Raju RM, Sharma K, Zhang YJ, Eugenin EA et al. 2016. Inflammatory signaling in human tuberculosis granulomas is spatially organized. Nat. Med. 22:531–38
    [Google Scholar]
  169. 169. 
    Zenk SF, Vollmer M, Schercher E, Kallert S, Kubis J, Stenger S 2016. Hypoxia promotes Mycobacterium tuberculosis–specific up-regulation of granulysin in human T cells. Med. Microbiol. Immunol. 205:219–29
    [Google Scholar]
  170. 170. 
    O'Neill LA, Pearce EJ 2016. Immunometabolism governs dendritic cell and macrophage function. J. Exp. Med. 213:15–23
    [Google Scholar]
  171. 171. 
    Simon LM, Axline SG, Horn BR, Robin ED. 1973. Adaptations of energy metabolism in the cultivated macrophage. J. Exp. Med. 138:1413–25
    [Google Scholar]
  172. 172. 
    Shi L, Salamon H, Eugenin EA, Pine R, Cooper A, Gennaro ML 2015. Infection with Mycobacterium tuberculosis induces the Warburg effect in mouse lungs. Sci. Rep. 5:18176
    [Google Scholar]
  173. 173. 
    Huang L, Nazarova EV, Tan S, Liu Y, Russell DG. 2018. Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny. J. Exp. Med. 215:1135–52
    [Google Scholar]
  174. 174. 
    Cardoso MS, Silva TM, Resende M, Appelberg R, Borges M 2015. Lack of the transcription factor hypoxia-inducible factor 1α (HIF-1α) in macrophages accelerates the necrosis of Mycobacterium avium–induced granulomas. Infect. Immun. 83:3534–44
    [Google Scholar]
  175. 175. 
    Braverman J, Sogi KM, Benjamin D, Nomura DK, Stanley SA. 2016. HIF-1α is an essential mediator of IFN-γ-dependent immunity to Mycobacterium tuberculosis. J. Immunol. 197:1287–97
    [Google Scholar]
  176. 176. 
    Oehlers SH, Cronan MR, Beerman RW, Johnson MG, Huang J et al. 2017. Infection-induced vascular permeability aids mycobacterial growth. J. Infect. Dis. 215:813–17
    [Google Scholar]
  177. 177. 
    Oehlers SH, Cronan MR, Scott NR, Thomas MI, Okuda KS et al. 2015. Interception of host angiogenic signalling limits mycobacterial growth. Nature 517:612–15
    [Google Scholar]
  178. 178. 
    Polena H, Boudou F, Tilleul S, Dubois-Colas N, Lecointe C et al. 2016. Mycobacterium tuberculosis exploits the formation of new blood vessels for its dissemination. Sci. Rep. 6:33162
    [Google Scholar]
  179. 179. 
    Ulrichs T, Kosmiadi GA, Jörg S, Pradl L, Titukhina M et al. 2005. Differential organization of the local immune response in patients with active cavitary tuberculosis or with nonprogressive tuberculoma. J. Infect. Dis. 192:89–97
    [Google Scholar]
  180. 180. 
    Borrel A. 1920. Pneumonie et tuberculose chez les troupes noires. Ann. Inst. Pasteur 34:105–48
    [Google Scholar]
  181. 181. 
    Koch R. 1882. Die Atiologie der Tuberculose. Berl. Klin. Wochenschr. 19:15228–31
    [Google Scholar]
  182. 182. 
    Sweany HC, Cook CE, Kegerreis R. 1931. A study of the position of primary cavities in pulmonary tuberculosis. Am. Rev. Tuberc. 24:558–82
    [Google Scholar]
  183. 183. 
    Levine ER 1949. Classification of reinfection pulmonary tuberculosis. The Fundamentals of Pulmonary Tuberculosis and Its Implications for Students, Teachers and Practicing Physicians E Hayes 97–113 Springfield, IL: Thomas
    [Google Scholar]
  184. 184. 
    Hunter RL, Jagannath C, Actor JK 2007. Pathology of postprimary tuberculosis in humans and mice: contradiction of long-held beliefs. Tuberculosis 87:267–78
    [Google Scholar]
  185. 185. 
    Andrews JR, Noubary F, Walensky RP, Cerda R, Losina E, Horsburgh CR 2012. Risk of progression to active tuberculosis following reinfection with Mycobacterium tuberculosis. Clin. Infect. Dis. 54:784–91
    [Google Scholar]
  186. 186. 
    Medlar EM, Sasano KT. 1936. A study of the pathology of experimental pulmonary tuberculosis in the rabbit. Am. Rev. Tuberc. 34:456–76
    [Google Scholar]
  187. 187. 
    Dock W. 1954. Effect of posture on alveolar gas tension in tuberculosis. Am. Med. Assoc. Arch. Intern. Med. 94:700–8
    [Google Scholar]
  188. 188. 
    Rothlin E, Undritz E. 1952. Beitrag zur Lokalisationsregel der Tuberkulose. Schweiz. Z. allg. Pathol. Bakteriol. 15:6690–700
    [Google Scholar]
  189. 189. 
    Goodwin RA, Des Prez RM. 1983. Apical localization of pulmonary tuberculosis, chronic pulmonary histoplasmosis, and progressive massive fibrosis of the lung. Chest 83:801–5
    [Google Scholar]
  190. 190. 
    Canetti G, Sutherland I, Svandova E 1972. Endogenous reactivation and exogenous reinfection: their relative importance with regard to the development of non-primary tuberculosis. Bull. Int. Union Tuberc. 47:116–34
    [Google Scholar]
  191. 191. 
    Stead WW. 1967. Pathogenesis of a first episode of chronic pulmonary tuberculosis in man: recrudescence of residuals of the primary infection or exogenous reinfection?. Am. Rev. Respir. Dis. 95:729–45
    [Google Scholar]
  192. 192. 
    Nardell E, McInnis B, Thomas B, Weidhaas S 1986. Exogenous reinfection with tuberculosis in a shelter for the homeless. N. Engl. J. Med. 315:1570–75
    [Google Scholar]
  193. 193. 
    Fine PE, Small PM. 1999. Exogenous reinfection in tuberculosis. N. Engl. J. Med. 341:1226–27
    [Google Scholar]
  194. 194. 
    Lillebaek T, Dirksen A, Baess I, Strunge B, Thomsen VO, Andersen AB. 2002. Molecular evidence of endogenous reactivation of Mycobacterium tuberculosis after 33 years of latent infection. J. Infect. Dis. 185:401–4
    [Google Scholar]
  195. 195. 
    Behr MA, Edelstein PH, Ramakrishnan L. 2018. Revisiting the timetable of tuberculosis. BMJ 362:k2738
    [Google Scholar]
  196. 196. 
    Seidler A, Nienhaus A, Diel R. 2004. The transmission of tuberculosis in the light of new molecular biological approaches. Occup. Environ. Med. 61:96–102
    [Google Scholar]
  197. 197. 
    Chen RY, Yu X, Smith B, Liu X, Gao J et al. 2021. Radiological and functional evidence of the bronchial spread of tuberculosis: an observational analysis. Lancet Microbe 2:e518–26
    [Google Scholar]
  198. 198. 
    Skoura E, Zumla A, Bomanji J. 2015. Imaging in tuberculosis. Int. J. Infect. Dis. 32:87–93
    [Google Scholar]
  199. 199. 
    Medlar EM. 1948. The pathogenesis of minimal pulmonary tuberculosis: a study of 1,225 necropsies in cases of sudden and unexpected death. Am. Rev. Tuberc. 58:583–611
    [Google Scholar]
  200. 200. 
    Ma F, Hughes TK, Teles RMB, Andrade PR, de Andrade Silva BJ et al. 2021. The cellular architecture of the antimicrobial response network in human leprosy granulomas. Nat. Immunol. 22:839–50
    [Google Scholar]
  201. 201. 
    Nemeth J, Olson GS, Rothchild AC, Jahn AN, Mai D et al. 2020. Contained Mycobacterium tuberculosis infection induces concomitant and heterologous protection. PLOS Pathog 16:e1008655
    [Google Scholar]
  202. 202. 
    Harding GE, Smith DW. 1977. Host–parasite relationships in experimental airborne tuberculosis. VI. Influence of vaccination with Bacille Calmette-Guérin on the onset and/or extent of hematogenous dissemination of virulent Mycobacterium tuberculosis to the lungs. J. Infect. Dis. 136:439–43
    [Google Scholar]
  203. 203. 
    Ly LH, Russell MI, McMurray DN. 2008. Cytokine profiles in primary and secondary pulmonary granulomas of guinea pigs with tuberculosis. Am. J. Respir. Cell Mol. Biol. 38:455–62
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-093019-125148
Loading
/content/journals/10.1146/annurev-immunol-093019-125148
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error