1932

Abstract

For many infections and almost all vaccines, neutralizing-antibody-mediated immunity is the primary basis and best functional correlate of immunological protection. Durable long-term humoral immunity is mediated by antibodies secreted by plasma cells that preexist subsequent exposures and by memory B cells that rapidly respond to infections once they have occurred. In the midst of the current pandemic of coronavirus disease 2019, it is important to define our current understanding of the unique roles of memory B cells and plasma cells in immunity and the factors that control the formation and persistence of these cell types. This fundamental knowledge is the basis to interpret findings from natural infections and vaccines. Here, we review transcriptional and metabolic programs that promote and support B cell fates and functions, suggesting points at which these pathways do and do not intersect.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-093019-125603
2021-04-26
2024-04-21
Loading full text...

Full text loading...

/deliver/fulltext/immunol/39/1/annurev-immunol-093019-125603.html?itemId=/content/journals/10.1146/annurev-immunol-093019-125603&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Lam WY, Jash A, Yao C-H, D'Souza L, Wong R et al. 2018. Metabolic and transcriptional modules independently diversify plasma cell lifespan and function. Cell Rep 24:92479–92.e6
    [Google Scholar]
  2. 2. 
    Halliley JL, Tipton CM, Liesveld J, Rosenberg AF, Darce J et al. 2015. Long-lived plasma cells are contained within the CD19CD38hiCD138+ subset in human bone marrow. Immunity 43:1132–45
    [Google Scholar]
  3. 3. 
    Mei HE, Wirries I, Frölich D, Brisslert M, Giesecke C et al. 2015. A unique population of IgG-expressing plasma cells lacking CD19 is enriched in human bone marrow. Blood 125:111739–48
    [Google Scholar]
  4. 4. 
    Landsverk OJB, Snir O, Casado RB, Richter L, Mold JE et al. 2017. Antibody-secreting plasma cells persist for decades in human intestine. J. Exp. Med. 214:2309–17
    [Google Scholar]
  5. 5. 
    Amanna IJ, Carlson NE, Slifka MK. 2007. Duration of humoral immunity to common viral and vaccine antigens. N. Engl. J. Med. 357:191903–15
    [Google Scholar]
  6. 6. 
    Lam WY, Becker AM, Kennerly KM, Wong R, Curtis JD et al. 2016. Mitochondrial pyruvate import promotes long-term survival of antibody-secreting plasma cells. Immunity 45:160–73
    [Google Scholar]
  7. 7. 
    Shi W, Liao Y, Willis SN, Taubenheim N, Inouye M et al. 2015. Transcriptional profiling of mouse B cell terminal differentiation defines a signature for antibody-secreting plasma cells. Nat. Immunol. 16:6663–73
    [Google Scholar]
  8. 8. 
    Richard K, Pierce SK, Song W. 2008. The agonists of TLR4 and 9 are sufficient to activate memory B cells to differentiate into plasma cells in vitro but not in vivo. J. Immunol. 181:31746–52
    [Google Scholar]
  9. 9. 
    Hayakawa K, Hardy RR, Herzenberg LA, Herzenberg LA. 1985. Progenitors for Ly-1 B cells are distinct from progenitors for other B cells. J. Exp. Med. 161:61554–68
    [Google Scholar]
  10. 10. 
    Hardy RR, Carmack CE, Shinton SA, Kemp JD, Hayakawa K. 1991. Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow. J. Exp. Med. 173:51213–25
    [Google Scholar]
  11. 11. 
    Goodnow CC, Crosbie J, Adelstein S, Lavoie TB, Smith-Gill SJ et al. 1988. Altered immunoglobulin expression and functional silencing of self-reactive B lymphocytes in transgenic mice. Nature 334:6184676–82
    [Google Scholar]
  12. 12. 
    Tiegs SL, Russell DM, Nemazee D. 1993. Receptor editing in self-reactive bone marrow B cells. J. Exp. Med. 177:41009–20
    [Google Scholar]
  13. 13. 
    Martin F, Oliver AM, Kearney JF. 2001. Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity 14:5617–29
    [Google Scholar]
  14. 14. 
    Hapfelmeier S, Lawson MAE, Slack E, Kirundi JK, Stoel M et al. 2010. Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science 328:59861705–9
    [Google Scholar]
  15. 15. 
    Obukhanych TV, Nussenzweig MC. 2006. T-independent type II immune responses generate memory B cells. J. Exp. Med. 203:2305–10
    [Google Scholar]
  16. 16. 
    Bortnick A, Chernova I, Quinn WJ, Mugnier M, Cancro MP, Allman D. 2012. Long-lived bone marrow plasma cells are induced early in response to T cell-independent or T cell-dependent antigens. J. Immunol. 188:115389–96
    [Google Scholar]
  17. 17. 
    Pape KA, Catron DM, Itano AA, Jenkins MK. 2007. The humoral immune response is initiated in lymph nodes by B cells that acquire soluble antigen directly in the follicles. Immunity 26:4491–502
    [Google Scholar]
  18. 18. 
    Junt T, Moseman EA, Iannacone M, Massberg S, Lang PA et al. 2007. Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature 450:7166110–14
    [Google Scholar]
  19. 19. 
    Phan TG, Green JA, Gray EE, Xu Y, Cyster JG. 2009. Immune complex relay by subcapsular sinus macrophages and noncognate B cells drives antibody affinity maturation. Nat. Immunol. 10:7786–93
    [Google Scholar]
  20. 20. 
    Cinamon G, Zachariah MA, Lam OM, Foss FW, Cyster JG. 2008. Follicular shuttling of marginal zone B cells facilitates antigen transport. Nat. Immunol. 9:154–62
    [Google Scholar]
  21. 21. 
    Kwak K, Akkaya M, Pierce SK. 2019. B cell signaling in context. Nat. Immunol. 20:8963–69
    [Google Scholar]
  22. 22. 
    Nelson DL, Cox MM. 2017. Lehninger Principles of Biochemistry New York: W.H. Freeman. , 7th ed..
  23. 23. 
    Landon J, Fawcett JK, Wynn V. 1962. Blood pyruvate concentration measured by a specific method in control subjects. J. Clin. Pathol. 15:6579–84
    [Google Scholar]
  24. 24. 
    Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X et al. 2017. Glucose feeds the TCA cycle via circulating lactate. Nature 551:7678115–18
    [Google Scholar]
  25. 25. 
    Milasta S, Dillon CP, Sturm OE, Verbist KC, Brewer TL et al. 2016. Apoptosis-inducing-factor-dependent mitochondrial function is required for T cell but not B cell function. Immunity 44:188–102
    [Google Scholar]
  26. 26. 
    Doughty CA, Bleiman BF, Wagner DJ, Dufort FJ, Mataraza JM et al. 2006. Antigen receptor-mediated changes in glucose metabolism in B lymphocytes: role of phosphatidylinositol 3-kinase signaling in the glycolytic control of growth. Blood 107:114458–65
    [Google Scholar]
  27. 27. 
    Woodland RT, Fox CJ, Schmidt MR, Hammerman PS, Opferman JT et al. 2008. Multiple signaling pathways promote B lymphocyte stimulator-dependent B-cell growth and survival. Blood 111:2750–60
    [Google Scholar]
  28. 28. 
    Patke A, Mecklenbräuker I, Erdjument-Bromage H, Tempst P, Tarakhovsky A. 2006. BAFF controls B cell metabolic fitness through a PKCβ- and Akt-dependent mechanism. J. Exp. Med. 203:112551–62
    [Google Scholar]
  29. 29. 
    Haines RR, Barwick BG, Scharer CD, Majumder P, Randall TD, Boss JM. 2018. The histone demeth-ylase LSD1 regulates B cell proliferation and plasmablast differentiation. J. Immunol. 201:92799–811
    [Google Scholar]
  30. 30. 
    Hatzi K, Geng H, Doane AS, Meydan C, LaRiviere R et al. 2019. Histone demethylase LSD1 is required for germinal center formation and BCL6-driven lymphomagenesis. Nat. Immunol. 20:186–96
    [Google Scholar]
  31. 31. 
    Caro-Maldonado A, Wang R, Nichols AG, Kuraoka M, Milasta S et al. 2014. Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells. J. Immunol. 192:83626–36
    [Google Scholar]
  32. 32. 
    Caro-Maldonado A, Gerriets VA, Rathmell JC. 2012. Matched and mismatched metabolic fuels in lymphocyte function. Semin. Immunol. 24:6405–13
    [Google Scholar]
  33. 33. 
    Jones DD, Gaudette BT, Wilmore JR, Chernova I, Bortnick A et al. 2016. mTOR has distinct functions in generating versus sustaining humoral immunity. J Clin Investig 126:114250–61
    [Google Scholar]
  34. 34. 
    Stine ZE, Walton ZE, Altman BJ, Hsieh AL, Dang CV. 2015. MYC, metabolism, and cancer. Cancer Discov. 5:101024–39
    [Google Scholar]
  35. 35. 
    Raybuck AL, Cho SH, Li J, Rogers MC, Lee K et al. 2018. B cell–intrinsic mTORC1 promotes germinal center–defining transcription factor gene expression, somatic hypermutation, and memory B cell generation in humoral immunity. J. Immunol. 200:82627–39
    [Google Scholar]
  36. 36. 
    Berry CT, Liu X, Myles A, Nandi S, Chen YH et al. 2020. BCR-induced Ca2+ signals dynamically tune survival, metabolic reprogramming, and proliferation of naive B cells. Cell Rep 31:2107474
    [Google Scholar]
  37. 37. 
    Tsui C, Martinez-Martin N, Gaya M, Maldonado P, Llorian M et al. 2018. Protein kinase C-β dictates B cell fate by regulating mitochondrial remodeling, metabolic reprogramming, and heme biosynthesis. Immunity 48:61144–59.e5
    [Google Scholar]
  38. 38. 
    Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L et al. 2008. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J. Clin. Investig. 118:93065–74
    [Google Scholar]
  39. 39. 
    Tanaka K, Babic I, Nathanson D, Akhavan D, Guo D et al. 2011. Oncogenic EGFR signaling activates an mTORC2-NF-κB pathway that promotes chemotherapy resistance. Cancer Discov 1:6524–38
    [Google Scholar]
  40. 40. 
    Lunt SY, Vander Heiden MG 2011. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27:441–64
    [Google Scholar]
  41. 41. 
    Akkaya M, Traba J, Roesler AS, Miozzo P, Akkaya B et al. 2018. Second signals rescue B cells from activation-induced mitochondrial dysfunction and death. Nat. Immunol. 19:8871–84
    [Google Scholar]
  42. 42. 
    Dufort FJ, Bleiman BF, Gumina MR, Blair D, Wagner DJ et al. 2007. Cutting edge: IL-4-mediated protection of primary B lymphocytes from apoptosis via Stat6-dependent regulation of glycolytic metabolism. J. Immunol. 179:84953–57
    [Google Scholar]
  43. 43. 
    Kaji T, Ishige A, Hikida M, Taka J, Hijikata A et al. 2012. Distinct cellular pathways select germline-encoded and somatically mutated antibodies into immunological memory. J. Exp. Med. 209:112079–97
    [Google Scholar]
  44. 44. 
    Sze DM-Y, Toellner K-M, de Vinuesa CG, Taylor DR, MacLennan ICM. 2000. Intrinsic constraint on plasmablast growth and extrinsic limits of plasma cell survival. J. Exp. Med. 192:6813–22
    [Google Scholar]
  45. 45. 
    Taylor JJ, Pape KA, Jenkins MK. 2012. A germinal center-independent pathway generates unswitched memory B cells early in the primary response. J. Exp. Med. 209:3597–606
    [Google Scholar]
  46. 46. 
    Lau AWY, Turner VM, Bourne K, Hermes JR, Chan TD, Brink R. 2021. BAFFR controls early memory B cell responses but is dispensable for germinal center function. J. Exp. Med. 218:2e20191167
    [Google Scholar]
  47. 47. 
    Sciammas R, Shaffer AL, Schatz JH, Zhao H, Staudt LM, Singh H. 2006. Graded expression of interferon regulatory factor-4 coordinates isotype switching with plasma cell differentiation. Immunity 25:2225–36
    [Google Scholar]
  48. 48. 
    Klein U, Casola S, Cattoretti G, Shen Q, Lia M et al. 2006. Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nat. Immunol. 7:7773–82
    [Google Scholar]
  49. 49. 
    Sciammas R, Li Y, Warmflash A, Song Y, Dinner AR, Singh H. 2011. An incoherent regulatory network architecture that orchestrates B cell diversification in response to antigen signaling. Mol. Syst. Biol. 7:1495
    [Google Scholar]
  50. 50. 
    Taylor JJ, Pape KA, Steach HR, Jenkins MK. 2015. Apoptosis and antigen affinity limit effector cell differentiation of a single naïve B cell. Science 347:6223784–87
    [Google Scholar]
  51. 51. 
    Chan TD, Gatto D, Wood K, Camidge T, Basten A, Brink R. 2009. Antigen affinity controls rapid T-dependent antibody production by driving the expansion rather than the differentiation or extrafollicular migration of early plasmablasts. J. Immunol. 183:53139–49
    [Google Scholar]
  52. 52. 
    Fukuda T, Yoshida T, Okada S, Hatano M, Miki T et al. 1997. Disruption of the Bcl6 gene results in an impaired germinal center formation. J. Exp. Med. 186:3439–48
    [Google Scholar]
  53. 53. 
    Ochiai K, Maienschein-Cline M, Simonetti G, Chen J, Rosenthal R et al. 2013. Transcriptional regulation of germinal center B and plasma cell fates by dynamical control of IRF4. Immunity 38:5918–29
    [Google Scholar]
  54. 54. 
    Phan RT, Dalla-Favera R. 2004. The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells. Nature 432:7017635–39
    [Google Scholar]
  55. 55. 
    Cattoretti G, Chang CC, Cechova K, Zhang J, Ye BH et al. 1995. BCL-6 protein is expressed in germinal-center B cells. Blood 86:145–53
    [Google Scholar]
  56. 56. 
    Muto A, Tashiro S, Nakajima O, Hoshino H, Takahashi S et al. 2004. The transcriptional programme of antibody class switching involves the repressor Bach2. Nature 429:6991566–71
    [Google Scholar]
  57. 57. 
    Wilker PR, Kohyama M, Sandau MM, Albring JC, Nakagawa O et al. 2008. Transcription factor Mef2c is required for B cell proliferation and survival after antigen receptor stimulation. Nat. Immunol. 9:6603–12
    [Google Scholar]
  58. 58. 
    De Silva NS, Klein U. 2015. Dynamics of B cells in germinal centres. Nat. Rev. Immunol. 15:3137–48
    [Google Scholar]
  59. 59. 
    Victora GD, Schwickert TA, Fooksman DR, Kamphorst AO, Meyer-Hermann M et al. 2010. Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 143:4592–605
    [Google Scholar]
  60. 60. 
    Victora GD, Dominguez-Sola D, Holmes AB, Deroubaix S, Dalla-Favera R, Nussenzweig MC. 2012. Identification of human germinal center light and dark zone cells and their relationship to human B-cell lymphomas. Blood 120:112240–48
    [Google Scholar]
  61. 61. 
    McHeyzer-Williams LJ, Milpied PJ, Okitsu SL, McHeyzer-Williams MG. 2015. Class-switched memory B cells remodel BCRs within secondary germinal centers. Nat. Immunol. 16:3296–305
    [Google Scholar]
  62. 62. 
    Coffey F, Alabyev B, Manser T. 2009. Initial clonal expansion of germinal center B cells takes place at the perimeter of follicles. Immunity 30:4599–609
    [Google Scholar]
  63. 63. 
    Roco JA, Mesin L, Binder SC, Nefzger C, Gonzalez-Figueroa P et al. 2019. Class-switch recombination occurs infrequently in germinal centers. Immunity 51:2337–50.e7
    [Google Scholar]
  64. 64. 
    Dengler HS, Baracho GV, Omori SA, Bruckner S, Arden KC et al. 2008. Distinct functions for the transcription factor Foxo1 at various stages of B cell differentiation. Nat. Immunol. 9:121388–98
    [Google Scholar]
  65. 65. 
    Dominguez-Sola D, Kung J, Holmes AB, Wells VA, Mo T et al. 2015. The FOXO1 transcription factor instructs the germinal center dark zone program. Immunity 43:61064–74
    [Google Scholar]
  66. 66. 
    Allen CDC, Okada T, Tang HL, Cyster JG. 2007. Imaging of germinal center selection events during affinity maturation. Science 315:5811528–31
    [Google Scholar]
  67. 67. 
    Heesters BA, Myers RC, Carroll MC. 2014. Follicular dendritic cells: dynamic antigen libraries. Nat. Rev. Immunol. 14:7495–504
    [Google Scholar]
  68. 68. 
    Mueller J, Matloubian M, Zikherman J. 2015. Cutting edge: An in vivo reporter reveals active B cell receptor signaling in the germinal center. J. Immunol. 194:72993–97
    [Google Scholar]
  69. 69. 
    Khalil AM, Cambier JC, Shlomchik MJ. 2012. B cell receptor signal transduction in the GC is short-circuited by high phosphatase activity. Science 336:60851178–81
    [Google Scholar]
  70. 70. 
    Nowosad CR, Spillane KM, Tolar P. 2016. Germinal center B cells recognize antigen through a specialized immune synapse architecture. Nat. Immunol. 17:7870–77
    [Google Scholar]
  71. 71. 
    Luo W, Hawse W, Conter L, Trivedi N, Weisel F et al. 2019. The AKT kinase signaling network is rewired by PTEN to control proximal BCR signaling in germinal center B cells. Nat. Immunol. 20:6736–46
    [Google Scholar]
  72. 72. 
    Kräutler NJ, Suan D, Butt D, Bourne K, Hermes JR et al. 2017. Differentiation of germinal center B cells into plasma cells is initiated by high-affinity antigen and completed by Tfh cells. J. Exp. Med. 214:51259–67
    [Google Scholar]
  73. 73. 
    Crotty S. 2011. Follicular helper CD4 T cells (TFH). Annu. Rev. Immunol. 29:621–63
    [Google Scholar]
  74. 74. 
    Liu D, Xu H, Shih C, Wan Z, Ma X et al. 2015. T-B-cell entanglement and ICOSL-driven feed-forward regulation of germinal centre reaction. Nature 517:7533214–18
    [Google Scholar]
  75. 75. 
    Han S, Hathcock K, Zheng B, Kepler TB, Hodes R, Kelsoe G. 1995. Cellular interaction in germinal centers: roles of CD40 ligand and B7–2 in established germinal centers. J. Immunol. 155:2556–67
    [Google Scholar]
  76. 76. 
    Crotty S. 2014. T follicular helper cell differentiation, function, and roles in disease. Immunity 41:4529–42
    [Google Scholar]
  77. 77. 
    Morita R, Schmitt N, Bentebibel S-E, Ranganathan R, Bourdery L et al. 2011. Human blood CXCR5+CD4+ T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity 34:1108–21
    [Google Scholar]
  78. 78. 
    Avery DT, Bryant VL, Ma CS, de Waal Malefyt R, Tangye SG. 2008. IL-21-induced isotype switching to IgG and IgA by human naive B cells is differentially regulated by IL-4. J. Immunol. 181:31767–79
    [Google Scholar]
  79. 79. 
    Avery DT, Deenick EK, Ma CS, Suryani S, Simpson N et al. 2010. B cell-intrinsic signaling through IL-21 receptor and STAT3 is required for establishing long-lived antibody responses in humans. J. Exp. Med. 207:1155–71
    [Google Scholar]
  80. 80. 
    Linterman MA, Beaton L, Yu D, Ramiscal RR, Srivastava M et al. 2010. IL-21 acts directly on B cells to regulate Bcl-6 expression and germinal center responses. J. Exp. Med. 207:2353–63
    [Google Scholar]
  81. 81. 
    Zotos D, Coquet JM, Zhang Y, Light A, D'Costa K et al. 2010. IL-21 regulates germinal center B cell differentiation and proliferation through a B cell-intrinsic mechanism. J. Exp. Med. 207:2365–78
    [Google Scholar]
  82. 82. 
    Calado DP, Sasaki Y, Godinho SA, Pellerin A, Köchert K et al. 2012. The cell-cycle regulator c-Myc is essential for the formation and maintenance of germinal centers. Nat. Immunol. 13:111092–100
    [Google Scholar]
  83. 83. 
    Dominguez-Sola D, Victora GD, Ying CY, Phan RT, Saito M et al. 2012. The proto-oncogene MYC is required for selection in the germinal center and cyclic reentry. Nat. Immunol. 13:111083–91
    [Google Scholar]
  84. 84. 
    Chou C, Verbaro DJ, Tonc E, Holmgren M, Cella M et al. 2016. The transcription factor AP4 mediates resolution of chronic viral infection through amplification of germinal center B cell responses. Immunity 45:3570–82
    [Google Scholar]
  85. 85. 
    Toboso-Navasa A, Gunawan A, Morlino G, Nakagawa R, Taddei A et al. 2020. Restriction of memory B cell differentiation at the germinal center B cell positive selection stage. J. Exp. Med. 217:7e20191933
    [Google Scholar]
  86. 86. 
    Jellusova J, Cato MH, Apgar JR, Ramezani-Rad P, Leung CR et al. 2017. Gsk3 is a metabolic checkpoint regulator in B cells. Nat. Immunol. 18:3303–12
    [Google Scholar]
  87. 87. 
    Gitlin AD, Shulman Z, Nussenzweig MC. 2014. Clonal selection in the germinal centre by regulated proliferation and hypermutation. Nature 509:7502637–40
    [Google Scholar]
  88. 88. 
    Mayer CT, Gazumyan A, Kara EE, Gitlin AD, Golijanin J et al. 2017. The microanatomic segregation of selection by apoptosis in the germinal center. Science 358:6360eaao2602
    [Google Scholar]
  89. 89. 
    Cho SH, Raybuck AL, Stengel K, Wei M, Beck TC et al. 2016. Germinal centre hypoxia and regulation of antibody qualities by a hypoxia response system. Nature 537:7619234–38
    [Google Scholar]
  90. 90. 
    Ersching J, Efeyan A, Mesin L, Jacobsen JT, Pasqual G et al. 2017. Germinal center selection and affinity maturation require dynamic regulation of mTORC1 kinase. Immunity 46:61045–58.e6
    [Google Scholar]
  91. 91. 
    Weisel FJ, Mullett SJ, Elsner RA, Menk AV, Trivedi N et al. 2020. Germinal center B cells selectively oxidize fatty acids for energy while conducting minimal glycolysis. Nat. Immunol. 21:3331–42
    [Google Scholar]
  92. 92. 
    Stein WH, Moore S 1954. The free amino acids of human blood plasma. J. Biol. Chem. 211:2915–26
    [Google Scholar]
  93. 93. 
    Tao J, Diaz RK, Teixeira CRV, Hackmann TJ. 2016. Transport of a fluorescent analogue of glucose (2-NBDG) versus radiolabeled sugars by rumen bacteria and Escherichia coli. Biochemistry 55:182578–89
    [Google Scholar]
  94. 94. 
    de Almeida MJ, Luchsinger LL, Corrigan DJ, Williams LJ, Snoeck H-W. 2017. Dye-independent methods reveal elevated mitochondrial mass in hematopoietic stem cells. Cell Stem Cell 21:6725–29.e4
    [Google Scholar]
  95. 95. 
    Raud B, Roy DG, Divakaruni AS, Tarasenko TN, Franke R et al. 2018. Etomoxir actions on regulatory and memory T cells are independent of Cpt1a-mediated fatty acid oxidation. Cell Metab 28:3504–15.e7
    [Google Scholar]
  96. 96. 
    Yao C-H, Liu G-Y, Wang R, Moon SH, Gross RW, Patti GJ. 2018. Identifying off-target effects of etomoxir reveals that carnitine palmitoyltransferase I is essential for cancer cell proliferation independent of β-oxidation. PLOS Biol 16:3e2003782
    [Google Scholar]
  97. 97. 
    O'Connor RS, Guo L, Ghassemi S, Snyder NW, Worth AJ et al. 2018. The CPT1a inhibitor, etomoxir induces severe oxidative stress at commonly used concentrations. Sci. Rep. 8:16289
    [Google Scholar]
  98. 98. 
    Palmer A, Phapale P, Chernyavsky I, Lavigne R, Fay D et al. 2017. FDR-controlled metabolite annotation for high-resolution imaging mass spectrometry. Nat. Methods 14:157–60
    [Google Scholar]
  99. 99. 
    Suan D, Kräutler NJ, Maag JLV, Butt D, Bourne K et al. 2017. CCR6 defines memory B cell precursors in mouse and human germinal centers, revealing light-zone location and predominant low antigen affinity. Immunity 47:61142–53.e4
    [Google Scholar]
  100. 100. 
    Laidlaw BJ, Duan L, Xu Y, Vazquez SE, Cyster JG. 2020. The transcription factor Hhex cooperates with the corepressor Tle3 to promote memory B cell development. Nat. Immunol. 21:1082–93
    [Google Scholar]
  101. 101. 
    Ridderstad A, Tarlinton DM. 1998. Kinetics of establishing the memory B cell population as revealed by CD38 expression. J. Immunol. 160:104688–95
    [Google Scholar]
  102. 102. 
    Jash A, Wang Y, Weisel FJ, Scharer CD, Boss JM et al. 2016. ZBTB32 restricts the duration of memory B cell recall responses. J. Immunol. 197:41159–68
    [Google Scholar]
  103. 103. 
    Shinnakasu R, Inoue T, Kometani K, Moriyama S, Adachi Y et al. 2016. Regulated selection of germinal-center cells into the memory B cell compartment. Nat. Immunol. 17:7861–69
    [Google Scholar]
  104. 104. 
    Viant C, Weymar GHJ, Escolano A, Chen S, Hartweger H et al. 2020. Antibody affinity shapes the choice between memory and germinal center B cell fates. Cell 183:51298–311.e11
    [Google Scholar]
  105. 105. 
    Wong R et al. 2020. Affinity-restricted memory B cells dominate recall responses to heterologous flaviviruses. Immunity 53:51078–1094.e7
    [Google Scholar]
  106. 106. 
    Wang Y, Shi J, Yan J, Xiao Z, Hou X et al. 2017. Germinal-center development of memory B cells driven by IL-9 from follicular helper T cells. Nat. Immunol. 18:8921–30
    [Google Scholar]
  107. 107. 
    Weisel FJ, Zuccarino-Catania GV, Chikina M, Shlomchik MJ. 2016. A temporal switch in the germinal center determines differential output of memory B and plasma cells. Immunity 44:1116–30
    [Google Scholar]
  108. 108. 
    Weinstein JS, Herman EI, Lainez B, Licona-Limón P, Esplugues E et al. 2016. TFH cells progressively differentiate to regulate the germinal center response. Nat. Immunol. 17:101197–205
    [Google Scholar]
  109. 109. 
    Takatsuka S, Yamada H, Haniuda K, Saruwatari H, Ichihashi M et al. 2018. IL-9 receptor signaling in memory B cells regulates humoral recall responses. Nat. Immunol. 19:91025–34
    [Google Scholar]
  110. 110. 
    Inoue T, Shinnakasu R, Kawai C, Ise W, Kawakami E et al. 2021. Exit from germinal center to become quiescent memory B cells depends on metabolic reprogramming and provision of a survival signal. J. Exp. Med. 218:e20200866
    [Google Scholar]
  111. 111. 
    Ise W, Fujii K, Shiroguchi K, Ito A, Kometani K et al. 2018. T follicular helper cell-germinal center B cell interaction strength regulates entry into plasma cell or recycling germinal center cell fate. Immunity 48:4702–15.e4
    [Google Scholar]
  112. 112. 
    Ramiscal RR, Vinuesa CG. 2013. T-cell subsets in the germinal center. Immunol. Rev. 252:1146–55
    [Google Scholar]
  113. 113. 
    Wollenberg I, Agua-Doce A, Hernández A, Almeida C, Oliveira VG et al. 2011. Regulation of the germinal center reaction by Foxp3+ follicular regulatory T cells. J. Immunol. 187:94553–60
    [Google Scholar]
  114. 114. 
    Fagraeus A. 1947. Plasma cellular reaction and its relation to the formation of antibodies in vitro. Nature 159:499
    [Google Scholar]
  115. 115. 
    MacLennan ICM, Toellner K-M, Cunningham AF, Serre K, Sze DM-Y et al. 2003. Extrafollicular antibody responses. Immunol. Rev. 194:18–18
    [Google Scholar]
  116. 116. 
    Savage HP, Yenson VM, Sawhney SS, Mousseau BJ, Lund FE, Baumgarth N. 2017. Blimp-1-dependent and -independent natural antibody production by B-1 and B-1-derived plasma cells. J. Exp. Med. 214:92777–94
    [Google Scholar]
  117. 117. 
    van Anken E, Romijn EP, Maggioni C, Mezghrani A, Sitia R et al. 2003. Sequential waves of functionally related proteins are expressed when B cells prepare for antibody secretion. Immunity 18:2243–53
    [Google Scholar]
  118. 118. 
    Hibi T, Dosch H-M. 1986. Limiting dilution analysis of the B cell compartment in human bone marrow. Eur. J. Immunol. 16:2139–45
    [Google Scholar]
  119. 119. 
    Park KS, Bayles I, Szlachta-McGinn A, Paul J, Boiko J et al. 2014. Transcription elongation factor ELL2 drives Ig secretory-specific mRNA production and the unfolded protein response. J. Immunol. 193:94663–74
    [Google Scholar]
  120. 120. 
    Martincic K, Alkan SA, Cheatle A, Borghesi L, Milcarek C. 2009. Transcription elongation factor ELL2 directs immunoglobulin secretion in plasma cells by stimulating altered RNA processing. Nat. Immunol. 10:101102–9
    [Google Scholar]
  121. 121. 
    Takagaki Y, Seipelt RL, Peterson ML, Manley JL. 1996. The polyadenylation factor CstF-64 regulates alternative processing of IgM heavy chain pre-mRNA during B cell differentiation. Cell 87:5941–52
    [Google Scholar]
  122. 122. 
    Willis SN, Good-Jacobson KL, Curtis J, Light A, Tellier J et al. 2014. Transcription factor IRF4 regulates germinal center cell formation through a B cell-intrinsic mechanism. J. Immunol. 192:73200–6
    [Google Scholar]
  123. 123. 
    Matsuda S, Mikami Y, Ohtani M, Fujiwara M, Hirata Y et al. 2009. Critical role of class IA PI3K for c-Rel expression in B lymphocytes. Blood 113:51037–44
    [Google Scholar]
  124. 124. 
    Grumont RJ, Gerondakis S. 2000. Rel induces interferon regulatory factor 4 (IRF-4) expression in lymphocytes: modulation of interferon-regulated gene expression by Rel/nuclear factor κB. J. Exp. Med. 191:81281–92
    [Google Scholar]
  125. 125. 
    Tussiwand R, Lee W-L, Murphy TL, Mashayekhi M, Wumesh KC et al. 2012. Compensatory dendritic cell development mediated by BATF-IRF interactions. Nature 490:7421502–7
    [Google Scholar]
  126. 126. 
    Ciofani M, Madar A, Galan C, Sellars M, Mace K et al. 2012. A validated regulatory network for Th17 cell specification. Cell 151:2289–303
    [Google Scholar]
  127. 127. 
    Glasmacher E, Agrawal S, Chang AB, Murphy TL, Zeng W et al. 2012. A genomic regulatory element that directs assembly and function of immune-specific AP-1-IRF complexes. Science 338:6109975–80
    [Google Scholar]
  128. 128. 
    Rengarajan J, Mowen KA, McBride KD, Smith ED, Singh H, Glimcher LH. 2002. Interferon regulatory factor 4 (IRF4) interacts with NFATc2 to modulate interleukin 4 gene expression. J. Exp. Med. 195:81003–12
    [Google Scholar]
  129. 129. 
    Decker T, Pasca di Magliano M, McManus S, Sun Q, Bonifer C et al. 2009. Stepwise activation of enhancer and promoter regions of the B cell commitment gene Pax5 in early lymphopoiesis. Immunity 30:4508–20
    [Google Scholar]
  130. 130. 
    O'Connor BP, Raman VS, Erickson LD, Cook WJ, Weaver LK et al. 2004. BCMA is essential for the survival of long-lived bone marrow plasma cells. J. Exp. Med. 199:191–98
    [Google Scholar]
  131. 131. 
    Wang Y, Bhattacharya D. 2014. Adjuvant-specific regulation of long-term antibody responses by ZBTB20. J. Exp. Med. 211:5841–56
    [Google Scholar]
  132. 132. 
    Minnich M, Tagoh H, Bönelt P, Axelsson E, Fischer M et al. 2016. Multifunctional role of the transcription factor Blimp-1 in coordinating plasma cell differentiation. Nat. Immunol. 17:3331–43
    [Google Scholar]
  133. 133. 
    Tellier J, Shi W, Minnich M, Liao Y, Crawford S et al. 2016. Blimp-1 controls plasma cell function through the regulation of immunoglobulin secretion and the unfolded protein response. Nat. Immunol. 17:3323–30
    [Google Scholar]
  134. 134. 
    Chevrier S, Emslie D, Shi W, Kratina T, Wellard C et al. 2014. The BTB-ZF transcription factor Zbtb20 is driven by Irf4 to promote plasma cell differentiation and longevity. J. Exp. Med. 211:5827–40
    [Google Scholar]
  135. 135. 
    Nutt SL, Fairfax KA, Kallies A. 2007. BLIMP1 guides the fate of effector B and T cells. Nat. Rev. Immunol. 7:12923–27
    [Google Scholar]
  136. 136. 
    Kallies A, Hasbold J, Tarlinton DM, Dietrich W, Corcoran LM et al. 2004. Plasma cell ontogeny defined by quantitative changes in Blimp-1 expression. J. Exp. Med. 200:8967–77
    [Google Scholar]
  137. 137. 
    Angelin-Duclos C, Cattoretti G, Lin K-I, Calame K. 2000. Commitment of B lymphocytes to a plasma cell fate is associated with Blimp-1 expression in vivo. J. Immunol. 165:105462–71
    [Google Scholar]
  138. 138. 
    Soro PG, Morales AP, Martínez-M JA, Morales AS, Copín SG et al. 1999. Differential involvement of the transcription factor Blimp-1 in T cell-independent and -dependent B cell differentiation to plasma cells. J. Immunol. 163:2611–17
    [Google Scholar]
  139. 139. 
    Shaffer AL, Lin K-I, Kuo TC, Yu X, Hurt EM et al. 2002. Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity 17:151–62
    [Google Scholar]
  140. 140. 
    Lin K-I, Angelin-Duclos C, Kuo TC, Calame K. 2002. Blimp-1-dependent repression of Pax-5 is required for differentiation of B cells to immunoglobulin M-secreting plasma cells. Mol. Cell. Biol. 22:134771–80
    [Google Scholar]
  141. 141. 
    Lin K-I, Lin Y, Calame K 2000. Repression of c-myc is necessary but not sufficient for terminal differentiation of B lymphocytes in vitro. Mol. Cell. Biol. 20:238684–95
    [Google Scholar]
  142. 142. 
    Zhang S, Pruitt M, Tran D, Du Bois W, Zhang K et al. 2013. B cell-specific deficiencies in mTOR limit humoral immune responses. J. Immunol. 191:41692–703
    [Google Scholar]
  143. 143. 
    Benhamron S, Pattanayak SP, Berger M, Tirosh B. 2015. mTOR activation promotes plasma cell differentiation and bypasses XBP-1 for immunoglobulin secretion. Mol. Cell. Biol. 35:1153–66
    [Google Scholar]
  144. 144. 
    Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K. 2001. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107:7881–91
    [Google Scholar]
  145. 145. 
    Taubenheim N, Tarlinton DM, Crawford S, Corcoran LM, Hodgkin PD, Nutt SL. 2012. High rate of antibody secretion is not integral to plasma cell differentiation as revealed by XBP-1 deficiency. J. Immunol. 189:73328–38
    [Google Scholar]
  146. 146. 
    Lee A-H, Iwakoshi NN, Glimcher LH. 2003. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol. Cell. Biol. 23:217448–59
    [Google Scholar]
  147. 147. 
    Todd DJ, McHeyzer-Williams LJ, Kowal C, Lee A-H, Volpe BT et al. 2009. XBP1 governs late events in plasma cell differentiation and is not required for antigen-specific memory B cell development. J. Exp. Med. 206:102151–59
    [Google Scholar]
  148. 148. 
    Tellier J, Nutt SL. 2019. Plasma cells: the programming of an antibody-secreting machine. Eur. J. Immunol. 49:130–37
    [Google Scholar]
  149. 149. 
    Benner R, Hijmans W, Haaijman JJ. 1981. The bone marrow: the major source of serum immunoglobulins, but still a neglected site of antibody formation. Clin. Exp. Immunol. 46:11–8
    [Google Scholar]
  150. 150. 
    Kabashima K, Haynes NM, Xu Y, Nutt SL, Allende ML et al. 2006. Plasma cell S1P1 expression determines secondary lymphoid organ retention versus bone marrow tropism. J. Exp. Med. 203:122683–90
    [Google Scholar]
  151. 151. 
    Winkelmann R, Sandrock L, Porstner M, Roth E, Mathews M et al. 2011. B cell homeostasis and plasma cell homing controlled by Krüppel-like factor 2. PNAS 108:2710–15
    [Google Scholar]
  152. 152. 
    Good-Jacobson KL, O'Donnell K, Belz GT, Nutt SL, Tarlinton DM 2015. c-Myb is required for plasma cell migration to bone marrow after immunization or infection. J. Exp. Med. 212:71001–9
    [Google Scholar]
  153. 153. 
    Cortés M, Georgopoulos K. 2004. Aiolos is required for the generation of high affinity bone marrow plasma cells responsible for long-term immunity. J. Exp. Med. 199:2209–19
    [Google Scholar]
  154. 154. 
    Tooze RM. 2013. A replicative self-renewal model for long-lived plasma cells: questioning irreversible cell cycle exit. Front. Immunol. 4:460
    [Google Scholar]
  155. 155. 
    Belnoue E, Pihlgren M, McGaha TL, Tougne C, Rochat A-F et al. 2008. APRIL is critical for plasmablast survival in the bone marrow and poorly expressed by early-life bone marrow stromal cells. Blood 111:52755–64
    [Google Scholar]
  156. 156. 
    Cassese G, Arce S, Hauser AE, Lehnert K, Moewes B et al. 2003. Plasma cell survival is mediated by synergistic effects of cytokines and adhesion-dependent signals. J. Immunol. 171:41684–90
    [Google Scholar]
  157. 157. 
    Peperzak V, Vikström I, Walker J, Glaser SP, LePage M et al. 2013. Mcl-1 is essential for the survival of plasma cells. Nat. Immunol. 14:3290–97
    [Google Scholar]
  158. 158. 
    Bortnick A, He Z, Aubrey M, Chandra V, Denholtz M et al. 2020. Plasma cell fate is orchestrated by elaborate changes in genome compartmentalization and inter-chromosomal hubs. Cell Rep 31:1107470
    [Google Scholar]
  159. 159. 
    McBrayer SK, Cheng JC, Singhal S, Krett NL, Rosen ST, Shanmugam M. 2012. Multiple myeloma exhibits novel dependence on GLUT4, GLUT8, and GLUT11: implications for glucose transporter-directed therapy. Blood 119:204686–97
    [Google Scholar]
  160. 160. 
    Choi SW, Gerencser AA, Nicholls DG. 2009. Bioenergetic analysis of isolated cerebrocortical nerve terminals on a microgram scale: spare respiratory capacity and stochastic mitochondrial failure. J. Neurochem. 109:41179–91
    [Google Scholar]
  161. 161. 
    van der Windt GJW, Everts B, Chang C-H, Curtis JD, Freitas TC et al. 2012. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36:168–78
    [Google Scholar]
  162. 162. 
    Kanai Y, Segawa H, Miyamoto K, Uchino H, Takeda E, Endou H. 1998. Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J. Biol. Chem. 273:3723629–32
    [Google Scholar]
  163. 163. 
    Cantor J, Browne CD, Ruppert R, Féral CC, Fässler R et al. 2009. CD98hc facilitates B cell proliferation and adaptive humoral immunity. Nat. Immunol. 10:4412–19
    [Google Scholar]
  164. 164. 
    Kelly AP, Finlay DK, Hinton HJ, Clarke RG, Fiorini E et al. 2007. Notch-induced T cell development requires phosphoinositide-dependent kinase 1. EMBO J 26:143441–50
    [Google Scholar]
  165. 165. 
    Garcia-Manteiga JM, Mari S, Godejohann M, Spraul M, Napoli C et al. 2011. Metabolomics of B to plasma cell differentiation. J. Proteome Res. 10:94165–76
    [Google Scholar]
  166. 166. 
    Thompson RM, Dytfeld D, Reyes L, Robinson RM, Smith B et al. 2017. Glutaminase inhibitor CB-839 synergizes with carfilzomib in resistant multiple myeloma cells. Oncotarget 8:2235863–76
    [Google Scholar]
  167. 167. 
    Vijay R, Guthmiller JJ, Sturtz AJ, Surette FA, Rogers KJ et al. 2020. Infection-induced plasmablasts are a nutrient sink that impairs humoral immunity to malaria. Nat. Immunol. 21:7790–801
    [Google Scholar]
  168. 168. 
    Bajpai R, Matulis SM, Wei C, Nooka AK, Von Hollen HE et al. 2016. Targeting glutamine metabolism in multiple myeloma enhances BIM binding to BCL-2 eliciting synthetic lethality to venetoclax. Oncogene 35:303955–64
    [Google Scholar]
  169. 169. 
    Kirk SJ, Cliff JM, Thomas JA, Ward TH. 2010. Biogenesis of secretory organelles during B cell differentiation. J. Leukoc. Biol. 87:2245–55
    [Google Scholar]
  170. 170. 
    Pengo N, Scolari M, Oliva L, Milan E, Mainoldi F et al. 2013. Plasma cells require autophagy for sustainable immunoglobulin production. Nat. Immunol. 14:3298–305
    [Google Scholar]
  171. 171. 
    Aragon IV, Barrington RA, Jackowski S, Mori K, Brewer JW. 2012. The specialized unfolded protein response of B lymphocytes: ATF6α-independent development of antibody-secreting B cells. Mol. Immunol. 51:3347–55
    [Google Scholar]
  172. 172. 
    Gass JN, Jiang H-Y, Wek RC, Brewer JW. 2008. The unfolded protein response of B-lymphocytes: PERK-independent development of antibody-secreting cells. Mol. Immunol. 45:41035–43
    [Google Scholar]
  173. 173. 
    Hetz C. 2012. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol. 13:289–102
    [Google Scholar]
  174. 174. 
    Oyadomari S, Mori M. 2004. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11:4381–89
    [Google Scholar]
  175. 175. 
    Ma Y, Shimizu Y, Mann MJ, Jin Y, Hendershot LM 2010. Plasma cell differentiation initiates a limited ER stress response by specifically suppressing the PERK-dependent branch of the unfolded protein response. Cell Stress Chaperones 15:3281–93
    [Google Scholar]
  176. 176. 
    Auner HW, Beham-Schmid C, Dillon N, Sabbattini P 2010. The life span of short-lived plasma cells is partly determined by a block on activation of apoptotic caspases acting in combination with endoplasmic reticulum stress. Blood 116:183445–55
    [Google Scholar]
  177. 177. 
    Slifka MK, Antia R, Whitmire JK, Ahmed R 1998. Humoral immunity due to long-lived plasma cells. Immunity 8:3363–72
    [Google Scholar]
  178. 178. 
    Manz RA, Löhning M, Cassese G, Thiel A, Radbruch A. 1998. Survival of long-lived plasma cells is independent of antigen. Int. Immunol. 10:111703–11
    [Google Scholar]
  179. 179. 
    Allie SR, Bradley JE, Mudunuru U, Schultz MD, Graf BA et al. 2019. The establishment of resident memory B cells in the lung requires local antigen encounter. Nat. Immunol. 20:197–108
    [Google Scholar]
  180. 180. 
    Purtha WE, Tedder TF, Johnson S, Bhattacharya D, Diamond MS. 2011. Memory B cells, but not long-lived plasma cells, possess antigen specificities for viral escape mutants. J. Exp. Med. 208:132599–606
    [Google Scholar]
  181. 181. 
    Lavinder JJ, Wine Y, Giesecke C, Ippolito GC, Horton AP et al. 2014. Identification and characterization of the constituent human serum antibodies elicited by vaccination. PNAS 111:62259–64
    [Google Scholar]
  182. 182. 
    Smith KGC, Light A, Nossal GJV, Tarlinton DM. 1997. The extent of affinity maturation differs between the memory and antibody-forming cell compartments in the primary immune response. EMBO J 16:112996–3006
    [Google Scholar]
  183. 183. 
    Zuccarino-Catania GV, Sadanand S, Weisel FJ, Tomayko MM, Meng H et al. 2014. CD80 and PD-L2 define functionally distinct memory B cell subsets that are independent of antibody isotype. Nat. Immunol. 15:7631–37
    [Google Scholar]
  184. 184. 
    Dogan I, Bertocci B, Vilmont V, Delbos F, Mégret J et al. 2009. Multiple layers of B cell memory with different effector functions. Nat. Immunol. 10:121292–99
    [Google Scholar]
  185. 185. 
    Pape KA, Taylor JJ, Maul RW, Gearhart PJ, Jenkins MK. 2011. Different B cell populations mediate early and late memory during an endogenous immune response. Science 331:60211203–7
    [Google Scholar]
  186. 186. 
    Seifert M, Przekopowitz M, Taudien S, Lollies A, Ronge V et al. 2015. Functional capacities of human IgM memory B cells in early inflammatory responses and secondary germinal center reactions. PNAS 112:6E546–55
    [Google Scholar]
  187. 187. 
    Knox JJ, Myles A, Cancro MP. 2019. T-bet+ memory B cells: generation, function, and fate. Immunol. Rev. 288:1149–60
    [Google Scholar]
  188. 188. 
    Klein U, Rajewsky K, Küppers R. 1998. Human immunoglobulin (Ig)M+IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. J. Exp. Med. 188:91679–89
    [Google Scholar]
  189. 189. 
    Tangye SG, Liu YJ, Aversa G, Phillips JH, de Vries JE. 1998. Identification of functional human splenic memory B cells by expression of CD148 and CD27. J. Exp. Med. 188:91691–703
    [Google Scholar]
  190. 190. 
    Kometani K, Nakagawa R, Shinnakasu R, Kaji T, Rybouchkin A et al. 2013. Repression of the transcription factor Bach2 contributes to predisposition of IgG1 memory B cells toward plasma cell differentiation. Immunity 39:1136–47
    [Google Scholar]
  191. 191. 
    Andrews SF, Chambers MJ, Schramm CA, Plyler J, Raab JE et al. 2019. Activation dynamics and immunoglobulin evolution of pre-existing and newly generated human memory B cell responses to influenza hemagglutinin. Immunity 51:2398–410.e5
    [Google Scholar]
  192. 192. 
    Mesin L, Schiepers A, Ersching J, Barbulescu A, Cavazzoni CB et al. 2020. Restricted clonality and limited germinal center reentry characterize memory B cell reactivation by boosting. Cell 180:192–106.e11
    [Google Scholar]
  193. 193. 
    Leach S, Shinnakasu R, Adachi Y, Momota M, Makino-Okamura C et al. 2019. Requirement for memory B-cell activation in protection from heterologous influenza virus reinfection. Int. Immunol. 31:12771–79
    [Google Scholar]
  194. 194. 
    Liao H-X, Lynch R, Zhou T, Gao F, Alam SM et al. 2013. Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature 496:7446469–76
    [Google Scholar]
  195. 195. 
    Turner JS, Zhou JQ, Han J, Schmitz AJ, Rizk AA et al. 2020. Human germinal centres engage memory and naïve B cells after influenza vaccination. Nature 586:7827127–32
    [Google Scholar]
  196. 196. 
    Jones DD, Wilmore JR, Allman D. 2015. Cellular dynamics of memory B cell populations: IgM+ and IgG+ memory B cells persist indefinitely as quiescent cells. J. Immunol. 195:104753–59
    [Google Scholar]
  197. 197. 
    Pape KA, Maul RW, Dileepan T, Paustian AS, Gearhart PJ, Jenkins MK. 2018. Naive B cells with high-avidity germline-encoded antigen receptors produce persistent IgM+ and transient IgG+ memory B cells. Immunity 48:61135–43.e4
    [Google Scholar]
  198. 198. 
    Wec AZ, Haslwanter D, Abdiche YN, Shehata L, Pedreño-Lopez N et al. 2020. Longitudinal dynamics of the human B cell response to the yellow fever 17D vaccine. PNAS 117:126675–85
    [Google Scholar]
  199. 199. 
    Jash A, Zhou YW, Gerardo DK, Ripperger TJ, Parikh BA et al. 2019. ZBTB32 restrains antibody responses to murine cytomegalovirus infections, but not other repetitive challenges. Sci. Rep. 9:115257
    [Google Scholar]
  200. 200. 
    Davis CW, Jackson KJL, McCauslan MM, Darce J, Chang C et al. 2020. Influenza vaccine-induced human bone marrow plasma cells decline within a year after vaccination. Science 370:6513237–41
    [Google Scholar]
  201. 201. 
    Lebman DA, Nomura DY, Coffman RL, Lee FD 1990. Molecular characterization of germ-line immunoglobulin A transcripts produced during transforming growth factor type β-induced isotype switching. PNAS 87:103962–66
    [Google Scholar]
  202. 202. 
    Cazac BB, Roes J. 2000. TGF-β receptor controls B cell responsiveness and induction of IgA in vivo. Immunity 13:4443–51
    [Google Scholar]
  203. 203. 
    Stavnezer J, Guikema JEJ, Schrader CE. 2008. Mechanism and regulation of class switch recombination. Annu. Rev. Immunol. 26:261–92
    [Google Scholar]
  204. 204. 
    Wang NS, McHeyzer-Williams LJ, Okitsu SL, Burris TP, Reiner SL, McHeyzer-Williams MG. 2012. Divergent transcriptional programming of class-specific B cell memory by T-bet and RORα. Nat. Immunol. 13:6604–11
    [Google Scholar]
  205. 205. 
    Chen M, Kodali S, Jang A, Kuai L, Wang J. 2015. Requirement for autophagy in the long-term persistence but not initial formation of memory B cells. J. Immunol. 194:62607–15
    [Google Scholar]
  206. 206. 
    Chen M, Hong MJ, Sun H, Wang L, Shi X et al. 2014. Essential role for autophagy in the maintenance of immunological memory against influenza infection. Nat. Med. 20:5503–10
    [Google Scholar]
  207. 207. 
    Torigoe M, Iwata S, Nakayamada S, Sakata K, Zhang M et al. 2017. Metabolic reprogramming commits differentiation of human CD27+IgD+ B cells to plasmablasts or CD27IgD cells. J. Immunol. 199:2425–34
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-093019-125603
Loading
/content/journals/10.1146/annurev-immunol-093019-125603
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error