1932

Abstract

The enigmatic eosinophil has emerged as an exciting component of the immune system, involved in a plethora of homeostatic and inflammatory responses. Substantial progress has been achieved through experimental systems manipulating eosinophils in vivo, initially in mice and more recently in humans. Researchers using eosinophil knockout mice have identified a contributory role for eosinophils in basal and inflammatory processes and protective immunity. Primarily fueled by the purported proinflammatory role of eosinophils in eosinophil-associated diseases, a series of anti-eosinophil therapeutics have emerged as a new class of drugs. These agents, which dramatically deplete eosinophils, provide a valuable opportunity to characterize the consequences of eosinophil knockout humans. Herein, we comparatively describe mouse and human eosinophil knockouts. We put forth the view that human eosinophils negatively contribute to a variety of diseases and, unlike mouse eosinophils, do not yet have an identified role in physiological health; thus, clarifying all roles of eosinophils remains an ongoing pursuit.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-093019-125918
2021-04-26
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/immunol/39/1/annurev-immunol-093019-125918.html?itemId=/content/journals/10.1146/annurev-immunol-093019-125918&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Acharya KR, Ackerman SJ. 2014. Eosinophil granule proteins: form and function. J. Biol. Chem. 289:17406–15
    [Google Scholar]
  2. 2. 
    Klion AD, Ackerman SJ, Bochner BS. 2020. Contributions of eosinophils to human health and disease. Annu. Rev. Pathol. Mech. Dis. 15:179–209
    [Google Scholar]
  3. 3. 
    Lee JJ, Jacobsen EA, McGarry MP, Schleimer RP, Lee NA. 2010. Eosinophils in health and disease: the LIAR hypothesis. Clin. Exp. Allergy 40:563–75
    [Google Scholar]
  4. 4. 
    Weller PF, Spencer LA. 2017. Functions of tissue-resident eosinophils. Nat. Rev. Immunol. 17:746–60
    [Google Scholar]
  5. 5. 
    Rothenberg ME, Hogan SP. 2006. The eosinophil. Annu. Rev. Immunol. 24:147–74
    [Google Scholar]
  6. 6. 
    Rosenberg HF, Dyer KD, Foster PS. 2013. Eosinophils: changing perspectives in health and disease. Nat. Rev. Immunol. 13:9–22
    [Google Scholar]
  7. 7. 
    Kay AB. 2015. The early history of the eosinophil. Clin. Exp. Allergy 45:575–82
    [Google Scholar]
  8. 8. 
    O'Sullivan JA, Bochner BS. 2018. Eosinophils and eosinophil-associated diseases: an update. J. Allergy Clin. Immunol. 141:505–17
    [Google Scholar]
  9. 9. 
    Jacobsen EA, Helmers RA, Lee JJ, Lee NA. 2012. The expanding role(s) of eosinophils in health and disease. Blood 120:3882–90
    [Google Scholar]
  10. 10. 
    Valent P, Klion AD, Horny HP, Roufosse F, Gotlib J et al. 2012. Contemporary consensus proposal on criteria and classification of eosinophilic disorders and related syndromes. J. Allergy Clin. Immunol. 130:607–12.e9
    [Google Scholar]
  11. 11. 
    Khoury P, Akuthota P, Ackerman SJ, Arron JR, Bochner BS et al. 2018. Revisiting the NIH Taskforce on the Research needs of Eosinophil-Associated Diseases (RE-TREAD). J. Leukoc. Biol. 104:69–83
    [Google Scholar]
  12. 12. 
    Kulessa H, Frampton J, Graf T. 1995. GATA-1 reprograms avian myelomonocytic cell lines into eosinophils, thromboblasts, and erythroblasts. Genes Dev 9:1250–62
    [Google Scholar]
  13. 13. 
    Hirasawa R, Shimizu R, Takahashi S, Osawa M, Takayanagi S et al. 2002. Essential and instructive roles of GATA factors in eosinophil development. J. Exp. Med. 195:1379–86
    [Google Scholar]
  14. 14. 
    McNagny K, Graf T. 2002. Making eosinophils through subtle shifts in transcription factor expression. J. Exp. Med. 195:F43–47
    [Google Scholar]
  15. 15. 
    Yu C, Cantor AB, Yang H, Browne C, Wells RA et al. 2002. Targeted deletion of a high-affinity GATA-binding site in the GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo. J. Exp. Med. 195:1387–95
    [Google Scholar]
  16. 16. 
    Drissen R, Buza-Vidas N, Woll P, Thongjuea S, Gambardella A et al. 2016. Distinct myeloid progenitor-differentiation pathways identified through single-cell RNA sequencing. Nat. Immunol. 17:666–76
    [Google Scholar]
  17. 17. 
    van Dijk TB, Caldenhoven E, Raaijmakers JA, Lammers JW, Koenderman L et al. 1998. The role of transcription factor PU.1 in the activity of the intronic enhancer of the eosinophil-derived neurotoxin (RNS2) gene. Blood 91:2126–32
    [Google Scholar]
  18. 18. 
    Bouffi C, Kartashov AV, Schollaert KL, Chen X, Bacon WC et al. 2015. Transcription factor repertoire of homeostatic eosinophilopoiesis. J. Immunol. 195:2683–95
    [Google Scholar]
  19. 19. 
    Bedi R, Du J, Sharma AK, Gomes I, Ackerman SJ. 2009. Human C/EBP-epsilon activator and repressor isoforms differentially reprogram myeloid lineage commitment and differentiation. Blood 113:317–27
    [Google Scholar]
  20. 20. 
    Yamanaka R, Barlow C, Lekstrom-Himes J, Castilla LH, Liu PP et al. 1997. Impaired granulopoiesis, myelodysplasia, and early lethality in CCAAT/enhancer binding protein epsilon-deficient mice. PNAS 94:13187–92
    [Google Scholar]
  21. 21. 
    Lekstrom-Himes JA. 2001. The role of C/EBP(epsilon) in the terminal stages of granulocyte differentiation. Stem Cells 19:125–33
    [Google Scholar]
  22. 22. 
    Gombart AF, Kwok SH, Anderson KL, Yamaguchi Y, Torbett BE et al. 2003. Regulation of neutrophil and eosinophil secondary granule gene expression by transcription factors C/EBP epsilon and PU.1. Blood 101:3265–73
    [Google Scholar]
  23. 23. 
    Rosenberg HF, Gallin JI. 1993. Neutrophil-specific granule deficiency includes eosinophils. Blood 82:268–73
    [Google Scholar]
  24. 24. 
    Bettigole SE, Lis R, Adoro S, Lee AH, Spencer LA et al. 2015. The transcription factor XBP1 is selectively required for eosinophil differentiation. Nat. Immunol. 16:829–37
    [Google Scholar]
  25. 25. 
    Lu TX, Lim EJ, Besse JA, Itskovich S, Plassard AJ et al. 2013. MiR-223 deficiency increases eosinophil progenitor proliferation. J. Immunol. 190:1576–82
    [Google Scholar]
  26. 26. 
    Lu TX, Lim EJ, Itskovich S, Besse JA, Plassard AJ et al. 2013. Targeted ablation of miR-21 decreases murine eosinophil progenitor cell growth. PLOS ONE 8:e59397
    [Google Scholar]
  27. 27. 
    Barlow JL, McKenzie AN. 2014. Type-2 innate lymphoid cells in human allergic disease. Curr. Opin. Allergy Clin. Immunol. 14:397–403
    [Google Scholar]
  28. 28. 
    Zimmermann N, Hershey GK, Foster PS, Rothenberg ME. 2003. Chemokines in asthma: cooperative interaction between chemokines and IL-13. J. Allergy Clin. Immunol. 111:227–42
    [Google Scholar]
  29. 29. 
    Matthews AN, Friend DS, Zimmermann N, Sarafi MN, Luster AD et al. 1998. Eotaxin is required for the baseline level of tissue eosinophils. PNAS 95:6273–78
    [Google Scholar]
  30. 30. 
    Sabroe I, Hartnell A, Jopling LA, Bel S, Ponath PD et al. 1999. Differential regulation of eosinophil chemokine signaling via CCR3 and non-CCR3 pathways. J. Immunol. 162:2946–55
    [Google Scholar]
  31. 31. 
    Menzies-Gow A, Ying S, Sabroe I, Stubbs VL, Soler D et al. 2002. Eotaxin (CCL11) and eotaxin-2 (CCL24) induce recruitment of eosinophils, basophils, neutrophils, and macrophages as well as features of early- and late-phase allergic reactions following cutaneous injection in human atopic and nonatopic volunteers. J. Immunol. 169:2712–18
    [Google Scholar]
  32. 32. 
    Chojnacki A, Wojcik K, Petri B, Aulakh G, Jacobsen EA et al. 2019. Intravital imaging allows real-time characterization of tissue resident eosinophils. Commun. Biol. 2:181
    [Google Scholar]
  33. 33. 
    Abdala-Valencia H, Coden ME, Chiarella SE, Jacobsen EA, Bochner BS et al. 2018. Shaping eosinophil identity in the tissue contexts of development, homeostasis, and disease. J. Leukoc. Biol. 104:95–108
    [Google Scholar]
  34. 34. 
    Van Hulst G, Batugedara HM, Jorssen J, Louis R, Bureau F et al. 2020. Eosinophil diversity in asthma. Biochem. Pharmacol. 179:113963
    [Google Scholar]
  35. 35. 
    Johansson MW. 2017. Eosinophil activation status in separate compartments and association with asthma. Front. Med. 4:75
    [Google Scholar]
  36. 36. 
    Abdala Valencia H, Loffredo LF, Misharin AV, Berdnikovs S 2016. Phenotypic plasticity and targeting of Siglec-Fhigh CD11clow eosinophils to the airway in a murine model of asthma. Allergy 71:267–71
    [Google Scholar]
  37. 37. 
    Mesnil C, Raulier S, Paulissen G, Xiao X, Birrell MA et al. 2016. Lung-resident eosinophils represent a distinct regulatory eosinophil subset. J. Clin. Investig. 126:3279–95
    [Google Scholar]
  38. 38. 
    Rothenberg ME. 2016. A hidden residential cell in the lung. J. Clin. Investig. 126:3185–87
    [Google Scholar]
  39. 39. 
    Zhu C, Weng QY, Zhou LR, Cao C, Li F et al. 2020. Homeostatic and early recruited CD101 eosinophils suppress endotoxin-induced acute lung injury. Eur. Respir. J. 56:51902354
    [Google Scholar]
  40. 40. 
    Kelly EA, Esnault S, Liu LY, Evans MD, Johansson MW et al. 2017. Mepolizumab attenuates airway eosinophil numbers, but not their functional phenotype, in asthma. Am. J. Respir. Crit. Care Med. 196:1385–95
    [Google Scholar]
  41. 41. 
    Drake LY, Kita H. 2017. IL-33: biological properties, functions, and roles in airway disease. Immunol. Rev. 278:173–84
    [Google Scholar]
  42. 42. 
    Jacobsen EA, Doyle AD, Colbert DC, Zellner KR, Protheroe CA et al. 2015. Differential activation of airway eosinophils induces IL-13-mediated allergic Th2 pulmonary responses in mice. Allergy 70:1148–59
    [Google Scholar]
  43. 43. 
    Stolarski B, Kurowska-Stolarska M, Kewin P, Xu D, Liew FY. 2010. IL-33 exacerbates eosinophil-mediated airway inflammation. J. Immunol. 185:3472–80
    [Google Scholar]
  44. 44. 
    Bouffi C, Rochman M, Zust CB, Stucke EM, Kartashov A et al. 2013. IL-33 markedly activates murine eosinophils by an NF-κB-dependent mechanism differentially dependent upon an IL-4-driven autoinflammatory loop. J. Immunol. 191:4317–25
    [Google Scholar]
  45. 45. 
    Ben Baruch-Morgenstern N, Mingler MK, Stucke E, Besse JA, Wen T et al. 2016. Paired Ig-like receptor B inhibits IL-13-driven eosinophil accumulation and activation in the esophagus. J. Immunol. 197:707–14
    [Google Scholar]
  46. 46. 
    Xenakis JJ, Howard ED, Smith KM, Olbrich CL, Huang Y et al. 2018. Resident intestinal eosinophils constitutively express antigen presentation markers and include two phenotypically distinct subsets of eosinophils. Immunology 154:298–308
    [Google Scholar]
  47. 47. 
    Drake MG, Bivins-Smith ER, Proskocil BJ, Nie Z, Scott GD et al. 2016. Human and mouse eosinophils have antiviral activity against parainfluenza virus. Am. J. Respir. Cell Mol. Biol. 55:387–94
    [Google Scholar]
  48. 48. 
    LeMessurier KS, Rooney R, Ghoneim HE, Liu B, Li K et al. 2020. Influenza A virus directly modulates mouse eosinophil responses. J. Leukoc. Biol. 108:151–68
    [Google Scholar]
  49. 49. 
    Lindsley AW, Schwartz JT, Rothenberg ME. 2020. Eosinophil responses during COVID-19 infections and coronavirus vaccination. J. Allergy Clin. Immunol. 146:1–7
    [Google Scholar]
  50. 50. 
    Percopo CM, Dyer KD, Ochkur SI, Luo JL, Fischer ER et al. 2014. Activated mouse eosinophils protect against lethal respiratory virus infection. Blood 123:743–52
    [Google Scholar]
  51. 51. 
    Samarasinghe AE, Melo RC, Duan S, LeMessurier KS, Liedmann S et al. 2017. Eosinophils promote antiviral immunity in mice infected with influenza A virus. J. Immunol. 198:3214–26
    [Google Scholar]
  52. 52. 
    Arnold IC, Artola-Boran M, Tallon de Lara P, Kyburz A, Taube C et al. 2018. Eosinophils suppress Th1 responses and restrict bacterially induced gastrointestinal inflammation. J. Exp. Med. 215:2055–72
    [Google Scholar]
  53. 53. 
    Guerra ES, Lee CK, Specht CA, Yadav B, Huang H et al. 2017. Central role of IL-23 and IL-17 producing eosinophils as immunomodulatory effector cells in acute pulmonary aspergillosis and allergic asthma. PLOS Pathog 13:e1006175
    [Google Scholar]
  54. 54. 
    Malacco N, Rachid MA, Gurgel I, Moura TR, Sucupira PHF et al. 2018. Eosinophil-associated innate IL-17 response promotes Aspergillus fumigatus lung pathology. Front. Cell Infect. Microbiol. 8:453
    [Google Scholar]
  55. 55. 
    Grisaru-Tal S, Itan M, Klion AD, Munitz A. 2020. A new dawn for eosinophils in the tumour microenvironment. Nat. Rev. Cancer 20:594–607
    [Google Scholar]
  56. 56. 
    Diny NL, Rose NR, Cihakova D. 2017. Eosinophils in autoimmune diseases. Front. Immunol. 8:484
    [Google Scholar]
  57. 57. 
    Lee JJ, Jacobsen EA, Ochkur SI, McGarry MP, Condjella RM et al. 2012. Human versus mouse eosinophils: “That which we call an eosinophil, by any other name would stain as red. .” J. Allergy Clin. Immunol. 130:572–84
    [Google Scholar]
  58. 58. 
    Jacobsen EA, Lee NA, Lee JJ. 2014. Re-defining the unique roles for eosinophils in allergic respiratory inflammation. Clin. Exp. Allergy 44:1119–36
    [Google Scholar]
  59. 59. 
    Kung TT, Stelts DM, Zurcher JA, Adams GK 3rd, Egan RW et al. 1995. Involvement of IL-5 in a murine model of allergic pulmonary inflammation: prophylactic and therapeutic effect of an anti-IL-5 antibody. Am. J. Respir. Cell Mol. Biol. 13:360–65
    [Google Scholar]
  60. 60. 
    Matthaei KI, Foster P, Young IG. 1997. The role of interleukin-5 (IL-5) in vivo: studies with IL-5 deficient mice. Mem. Inst. Oswaldo Cruz 92:Suppl. 263–68
    [Google Scholar]
  61. 61. 
    Kopf M, Brombacher F, Hodgkin PD, Ramsay AJ, Milbourne EA et al. 1996. IL-5-deficient mice have a developmental defect in CD5+ B-1 cells and lack eosinophilia but have normal antibody and cytotoxic T cell responses. Immunity 4:15–24
    [Google Scholar]
  62. 62. 
    Yoshida T, Ikuta K, Sugaya H, Maki K, Takagi M et al. 1996. Defective B-1 cell development and impaired immunity against Angiostrongylus cantonensis in IL-5Rα-deficient mice. Immunity 4:483–94
    [Google Scholar]
  63. 63. 
    Foster PS, Hogan SP, Ramsay AJ, Matthaei KI, Young IG. 1996. Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J. Exp. Med. 183:195–201
    [Google Scholar]
  64. 64. 
    Takatsu K. 2011. Interleukin-5 and IL-5 receptor in health and diseases. Proc. Jpn. Acad. Ser. B 87:463–85
    [Google Scholar]
  65. 65. 
    Bao S, Beagley KW, Murray AM, Caristo V, Matthaei KI et al. 1998. Intestinal IgA plasma cells of the B1 lineage are IL-5 dependent. Immunology 94:181–88
    [Google Scholar]
  66. 66. 
    Hiroi T, Yanagita M, Iijima H, Iwatani K, Yoshida T et al. 1999. Deficiency of IL-5 receptor alpha-chain selectively influences the development of the common mucosal immune system independent IgA-producing B-1 cell in mucosa-associated tissues. J. Immunol. 162:821–28
    [Google Scholar]
  67. 67. 
    Liu LY, Sedgwick JB, Bates ME, Vrtis RF, Gern JE et al. 2002. Decreased expression of membrane IL-5 receptor α on human eosinophils: I. Loss of membrane IL-5 receptor α on airway eosinophils and increased soluble IL-5 receptor α in the airway after allergen challenge. J. Immunol. 169:6452–58
    [Google Scholar]
  68. 68. 
    Sanderson CJ. 1992. Interleukin-5, eosinophils, and disease. Blood 79:3101–9
    [Google Scholar]
  69. 69. 
    Humbles AA, Lloyd CM, McMillan SJ, Friend DS, Xanthou G et al. 2004. A critical role for eosinophils in allergic airways remodeling. Science 305:1776–79
    [Google Scholar]
  70. 70. 
    Lee JJ, Dimina D, Macias MP, Ochkur SI, McGarry MP et al. 2004. Defining a link with asthma in mice congenitally deficient in eosinophils. Science 305:1773–76
    [Google Scholar]
  71. 71. 
    McDevitt MA, Shivdasani RA, Fujiwara Y, Yang H, Orkin SH 1997. A “knockdown” mutation created by cis-element gene targeting reveals the dependence of erythroid cell maturation on the level of transcription factor GATA-1. PNAS 94:6781–85
    [Google Scholar]
  72. 72. 
    Crispino JD, Horwitz MS. 2017. GATA factor mutations in hematologic disease. Blood 129:2103–10
    [Google Scholar]
  73. 73. 
    Doyle AD, Jacobsen EA, Ochkur SI, McGarry MP, Shim KG et al. 2013. Expression of the secondary granule proteins major basic protein 1 (MBP-1) and eosinophil peroxidase (EPX) is required for eosinophilopoiesis in mice. Blood 122:781–90
    [Google Scholar]
  74. 74. 
    Jacobsen EA, Lesuer WE, Willetts L, Zellner KR, Mazzolini K et al. 2014. Eosinophil activities modulate the immune/inflammatory character of allergic respiratory responses in mice. Allergy 69:315–27
    [Google Scholar]
  75. 75. 
    Doyle AD, Jacobsen EA, Ochkur SI, Willetts L, Shim K et al. 2013. Homologous recombination into the eosinophil peroxidase locus generates a strain of mice expressing Cre recombinase exclusively in eosinophils. J. Leukoc. Biol. 94:17–24
    [Google Scholar]
  76. 76. 
    Knuplez E, Krier-Burris R, Cao Y, Marsche G, O'Sullivan J et al. 2020. Superior mouse eosinophil depletion in vivo targeting transgenic Siglec-8 instead of endogenous Siglec-F: mechanisms and pitfalls. J. Leukoc. Biol. 108:43–58
    [Google Scholar]
  77. 77. 
    Gleich GJ, Klion AD, Lee JJ, Weller PF. 2013. The consequences of not having eosinophils. Allergy 68:829–35
    [Google Scholar]
  78. 78. 
    Jung Y, Rothenberg ME. 2014. Roles and regulation of gastrointestinal eosinophils in immunity and disease. J. Immunol. 193:999–1005
    [Google Scholar]
  79. 79. 
    Chu VT, Beller A, Rausch S, Strandmark J, Zanker M et al. 2014. Eosinophils promote generation and maintenance of immunoglobulin-A-expressing plasma cells and contribute to gut immune homeostasis. Immunity 40:582–93
    [Google Scholar]
  80. 80. 
    Jung Y, Wen T, Mingler MK, Caldwell JM, Wang YH et al. 2015. IL-1β in eosinophil-mediated small intestinal homeostasis and IgA production. Mucosal Immunol 8:930–42
    [Google Scholar]
  81. 81. 
    Beller A, Kruglov A, Durek P, von Goetze V, Werner K et al. 2020. Specific microbiota enhances intestinal IgA levels by inducing TGF-beta in T follicular helper cells of Peyer's patches in mice. Eur. J. Immunol. 50:783–94
    [Google Scholar]
  82. 82. 
    Calcinotto A, Brevi A, Chesi M, Ferrarese R, Garcia Perez L et al. 2018. Microbiota-driven interleukin-17-producing cells and eosinophils synergize to accelerate multiple myeloma progression. Nat. Commun. 9:4832
    [Google Scholar]
  83. 83. 
    Fagarasan S, Kawamoto S, Kanagawa O, Suzuki K. 2010. Adaptive immune regulation in the gut: T cell–dependent and T cell–independent IgA synthesis. Annu. Rev. Immunol. 28:243–73
    [Google Scholar]
  84. 84. 
    Douzandeh-Mobarrez B, Kariminik A. 2019. Gut microbiota and IL-17A: physiological and pathological responses. Probiot. Antimicrob. Proteins 11:1–10
    [Google Scholar]
  85. 85. 
    Sugawara R, Lee EJ, Jang MS, Jeun EJ, Hong CP et al. 2016. Small intestinal eosinophils regulate Th17 cells by producing IL-1 receptor antagonist. J. Exp. Med. 213:555–67
    [Google Scholar]
  86. 86. 
    Jacobsen EA, Zellner KR, Colbert D, Lee NA, Lee JJ. 2011. Eosinophils regulate dendritic cells and Th2 pulmonary immune responses following allergen provocation. J. Immunol. 187:6059–68
    [Google Scholar]
  87. 87. 
    Macpherson AJ, Yilmaz B, Limenitakis JP, Ganal-Vonarburg SC. 2018. IgA function in relation to the intestinal microbiota. Annu. Rev. Immunol. 36:359–81
    [Google Scholar]
  88. 88. 
    Hugenholtz F, de Vos WM. 2018. Mouse models for human intestinal microbiota research: a critical evaluation. Cell Mol. Life Sci. 75:149–60
    [Google Scholar]
  89. 89. 
    Barcik W, Boutin RCT, Sokolowska M, Finlay BB. 2020. The role of lung and gut microbiota in the pathology of asthma. Immunity 52:241–55
    [Google Scholar]
  90. 90. 
    Durack J, Christian LS, Nariya S, Gonzalez J, Bhakta NR et al. 2020. Distinct associations of sputum and oral microbiota with atopic, immunologic, and clinical features in mild asthma. J. Allergy Clin. Immunol. 146:51016–26
    [Google Scholar]
  91. 91. 
    Grosserichter-Wagener C, Radjabzadeh D, van der Weide H, Smit KN, Kraaij R et al. 2019. Differences in systemic IgA reactivity and circulating Th subsets in healthy volunteers with specific microbiota enterotypes. Front. Immunol. 10:341
    [Google Scholar]
  92. 92. 
    Hernandez JD, Tew BY, Li T, Gooden GC 2nd, Ghannam H et al. 2020. A FACS-based approach to obtain viable eosinophils from human adipose tissue. Sci. Rep. 10:13210
    [Google Scholar]
  93. 93. 
    Wu D, Molofsky AB, Liang HE, Ricardo-Gonzalez RR, Jouihan HA et al. 2011. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332:243–47
    [Google Scholar]
  94. 94. 
    Chung KJ, Nati M, Chavakis T, Chatzigeorgiou A. 2018. Innate immune cells in the adipose tissue. Rev. Endocr. Metab. Disord. 19:283–92
    [Google Scholar]
  95. 95. 
    Lee EH, Itan M, Jang J, Gu HJ, Rozenberg P et al. 2018. Eosinophils support adipocyte maturation and promote glucose tolerance in obesity. Sci. Rep. 8:9894
    [Google Scholar]
  96. 96. 
    Knights AJ, Vohralik EJ, Houweling PJ, Stout ES, Norton LJ et al. 2020. Eosinophil function in adipose tissue is regulated by Kruppel-like factor 3 (KLF3). Nat. Commun. 11:2922
    [Google Scholar]
  97. 97. 
    Qiu Y, Nguyen KD, Odegaard JI, Cui X, Tian X et al. 2014. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 157:1292–308
    [Google Scholar]
  98. 98. 
    Rozenberg P, Reichman H, Zab-Bar I, Itan M, Pasmanik-Chor M et al. 2017. CD300f:IL-5 cross-talk inhibits adipose tissue eosinophil homing and subsequent IL-4 production. Sci. Rep. 7:5922
    [Google Scholar]
  99. 99. 
    Bolus WR, Gutierrez DA, Kennedy AJ, Anderson-Baucum EK, Hasty AH. 2015. CCR2 deficiency leads to increased eosinophils, alternative macrophage activation, and type 2 cytokine expression in adipose tissue. J. Leukoc. Biol. 98:467–77
    [Google Scholar]
  100. 100. 
    Molofsky AB, Nussbaum JC, Liang HE, Van Dyken SJ, Cheng LE et al. 2013. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J. Exp. Med. 210:535–49
    [Google Scholar]
  101. 101. 
    Tilg H, Zmora N, Adolph TE, Elinav E. 2020. The intestinal microbiota fuelling metabolic inflammation. Nat. Rev. Immunol. 20:40–54
    [Google Scholar]
  102. 102. 
    Fabbiano S, Suarez-Zamorano N, Chevalier C, Lazarevic V, Kieser S et al. 2018. Functional gut microbiota remodeling contributes to the caloric restriction-induced metabolic improvements. Cell Metab 28:907–21.e7
    [Google Scholar]
  103. 103. 
    Suarez-Zamorano N, Fabbiano S, Chevalier C, Stojanovic O, Colin DJ et al. 2015. Microbiota depletion promotes browning of white adipose tissue and reduces obesity. Nat. Med. 21:1497–501
    [Google Scholar]
  104. 104. 
    Hart KM, Fabre T, Sciurba JC, Gieseck RL 3rd, Borthwick LA et al. 2017. Type 2 immunity is protective in metabolic disease but exacerbates NAFLD collaboratively with TGF-β. Sci. Transl. Med. 9:396eaal3694
    [Google Scholar]
  105. 105. 
    Zuo L, Fulkerson PC, Finkelman FD, Mingler M, Fischetti CA et al. 2010. IL-13 induces esophageal remodeling and gene expression by an eosinophil-independent, IL-13Rα2–inhibited pathway. J. Immunol. 185:660–69
    [Google Scholar]
  106. 106. 
    O'Shea KM, Aceves SS, Dellon ES, Gupta SK, Spergel JM et al. 2018. Pathophysiology of eosinophilic esophagitis. Gastroenterology 154:333–45
    [Google Scholar]
  107. 107. 
    Withers SB, Forman R, Meza-Perez S, Sorobetea D, Sitnik K et al. 2017. Eosinophils are key regulators of perivascular adipose tissue and vascular functionality. Sci. Rep. 7:44571
    [Google Scholar]
  108. 108. 
    Agabiti-Rosei C, Paini A, De Ciuceis C, Withers S, Greenstein A et al. 2018. Modulation of vascular reactivity by perivascular adipose tissue (PVAT). Curr. Hypertens. Rep. 20:44
    [Google Scholar]
  109. 109. 
    Uderhardt S, Ackermann JA, Fillep T, Hammond VJ, Willeit J et al. 2017. Enzymatic lipid oxidation by eosinophils propagates coagulation, hemostasis, and thrombotic disease. J. Exp. Med. 214:2121–38
    [Google Scholar]
  110. 110. 
    Marx C, Novotny J, Salbeck D, Zellner KR, Nicolai L et al. 2019. Eosinophil-platelet interactions promote atherosclerosis and stabilize thrombosis with eosinophil extracellular traps. Blood 134:1859–72
    [Google Scholar]
  111. 111. 
    Lin L, Hwang BJ, Culton DA, Li N, Burette S et al. 2018. Eosinophils mediate tissue injury in the autoimmune skin disease bullous pemphigoid. J. Investig. Dermatol. 138:1032–43
    [Google Scholar]
  112. 112. 
    Sakurai Y, Morioke S, Takeda T, Takahagi S, Hide M et al. 2015. Increased thrombin generation potential in patients with chronic spontaneous urticaria. Allergol. Int 64:96–98
    [Google Scholar]
  113. 113. 
    Shimizu S, Ogawa T, Takezawa K, Tojima I, Kouzaki H et al. 2015. Tissue factor and tissue factor pathway inhibitor in nasal mucosa and nasal secretions of chronic rhinosinusitis with nasal polyp. Am. J. Rhinol. Allergy 29:235–42
    [Google Scholar]
  114. 114. 
    Naidoo K, Jagot F, van den Elsen L, Pellefigues C, Jones A et al. 2018. Eosinophils determine dermal thickening and water loss in an MC903 model of atopic dermatitis. J. Investig. Dermatol. 138:2606–16
    [Google Scholar]
  115. 115. 
    Lee JJ, Protheroe CA, Luo H, Ochkur SI, Scott GD et al. 2015. Eosinophil-dependent skin innervation and itching following contact toxicant exposure in mice. J. Allergy Clin. Immunol. 135:477–87
    [Google Scholar]
  116. 116. 
    Lagrange J, Lacolley P, Wahl D, Peyrin-Biroulet L, Regnault V. 2020. Shedding light on hemostasis in patients with inflammatory bowel diseases. Clin. Gastroenterol. Hepatol. In press
    [Google Scholar]
  117. 117. 
    Mastalerz L, Celinska-Lwenhoff M, Krawiec P, Batko B, Tlustochowicz W et al. 2015. Unfavorably altered fibrin clot properties in patients with eosinophilic granulomatosis with polyangiitis (Churg-Strauss syndrome): association with thrombin generation and eosinophilia. PLOS ONE 10:e0142167
    [Google Scholar]
  118. 118. 
    Nishi R, Koike H, Ohyama K, Fukami Y, Ikeda S et al. 2020. Differential clinicopathologic features of EGPA-associated neuropathy with and without ANCA. Neurology 94:e1726–37
    [Google Scholar]
  119. 119. 
    Lucchinetti CF, Mandler RN, McGavern D, Bruck W, Gleich G et al. 2002. A role for humoral mechanisms in the pathogenesis of Devic's neuromyelitis optica. Brain 125:1450–61
    [Google Scholar]
  120. 120. 
    Talbot S, Foster SL, Woolf CJ. 2016. Neuroimmunity: physiology and pathology. Annu. Rev. Immunol. 34:421–47
    [Google Scholar]
  121. 121. 
    Drake MG, Lebold KM, Roth-Carter QR, Pincus AB, Blum ED et al. 2018. Eosinophil and airway nerve interactions in asthma. J. Leukoc. Biol. 104:61–67
    [Google Scholar]
  122. 122. 
    Guseva D, Rudrich U, Kotnik N, Gehring M, Patsinakidis N et al. 2020. Neuronal branching of sensory neurons is associated with BDNF-positive eosinophils in atopic dermatitis. Clin. Exp. Allergy 50:577–84
    [Google Scholar]
  123. 123. 
    Kobayashi H, Gleich GJ, Butterfield JH, Kita H. 2002. Human eosinophils produce neurotrophins and secrete nerve growth factor on immunologic stimuli. Blood 99:2214–20
    [Google Scholar]
  124. 124. 
    Dileepan M, Ge XN, Bastan I, Greenberg YG, Liang Y et al. 2020. Regulation of eosinophil recruitment and allergic airway inflammation by tropomyosin receptor kinase A. J. Immunol. 204:682–93
    [Google Scholar]
  125. 125. 
    Rudrich U, Gehring M, Papakonstantinou E, Illerhaus A, Engmann J et al. 2018. Eosinophils are a major source of interleukin-31 in bullous pemphigoid. Acta Derm. Venereol. 98:766–71
    [Google Scholar]
  126. 126. 
    Pan D, Hunter DA, Schellhardt L, Fuchs A, Halevi AE et al. 2020. T cells modulate IL-4 expression by eosinophil recruitment within decellularized scaffolds to repair nerve defects. Acta Biomater 112:149–63
    [Google Scholar]
  127. 127. 
    Foster EL, Simpson EL, Fredrikson LJ, Lee JJ, Lee NA et al. 2011. Eosinophils increase neuron branching in human and murine skin and in vitro. PLOS ONE 6:e22029
    [Google Scholar]
  128. 128. 
    Nakanishi S, Mantani Y, Haruta T, Yokoyama T, Hoshi N. 2020. Three-dimensional analysis of neural connectivity with cells in rat ileal mucosa by serial block-face scanning electron microscopy. J. Vet. Med. Sci. 82:990–99
    [Google Scholar]
  129. 129. 
    Carlens J, Wahl B, Ballmaier M, Bulfone-Paus S, Forster R et al. 2009. Common gamma-chain-dependent signals confer selective survival of eosinophils in the murine small intestine. J. Immunol. 183:5600–7
    [Google Scholar]
  130. 130. 
    Yamada T, Tani Y, Nakanishi H, Taguchi R, Arita M et al. 2011. Eosinophils promote resolution of acute peritonitis by producing proresolving mediators in mice. FASEB J 25:561–68
    [Google Scholar]
  131. 131. 
    Masterson JC, McNamee EN, Fillon SA, Hosford L, Harris R et al. 2015. Eosinophil-mediated signalling attenuates inflammatory responses in experimental colitis. Gut 64:1236–47
    [Google Scholar]
  132. 132. 
    Takeda K, Shiraishi Y, Ashino S, Han J, Jia Y et al. 2015. Eosinophils contribute to the resolution of lung-allergic responses following repeated allergen challenge. J. Allergy Clin. Immunol. 135:451–60
    [Google Scholar]
  133. 133. 
    Isobe Y, Kato T, Arita M. 2012. Emerging roles of eosinophils and eosinophil-derived lipid mediators in the resolution of inflammation. Front. Immunol. 3:270
    [Google Scholar]
  134. 134. 
    Denzler KL, Borchers MT, Crosby JR, Cieslewicz G, Hines EM et al. 2001. Extensive eosinophil degranulation and peroxidase-mediated oxidation of airway proteins do not occur in a mouse ovalbumin-challenge model of pulmonary inflammation. J. Immunol. 167:1672–82
    [Google Scholar]
  135. 135. 
    Jacobsen EA, Ochkur SI, Pero RS, Taranova AG, Protheroe CA et al. 2008. Allergic pulmonary inflammation in mice is dependent on eosinophil-induced recruitment of effector T cells. J. Exp. Med. 205:699–710
    [Google Scholar]
  136. 136. 
    Walsh ER, Sahu N, Kearley J, Benjamin E, Kang BH et al. 2008. Strain-specific requirement for eosinophils in the recruitment of T cells to the lung during the development of allergic asthma. J. Exp. Med. 205:1285–92
    [Google Scholar]
  137. 137. 
    Fulkerson PC, Fischetti CA, Rothenberg ME. 2006. Eosinophils and CCR3 regulate interleukin-13 transgene-induced pulmonary remodeling. Am. J. Pathol. 169:2117–26
    [Google Scholar]
  138. 138. 
    Jacobsen EA, LeSuer WE, Nazaroff CD, Ochkur SI, Doyle AD et al. 2019. Eosinophils induce recruitment and activation of ILC2s. J. Allergy Clin. Immunol. 143:2 SupplAB289 Abstr .)
    [Google Scholar]
  139. 139. 
    Ochkur SI, Jacobsen EA, Protheroe CA, Biechele TL, Pero RS et al. 2007. Coexpression of IL-5 and eotaxin-2 in mice creates an eosinophil-dependent model of respiratory inflammation with characteristics of severe asthma. J. Immunol. 178:7879–89
    [Google Scholar]
  140. 140. 
    Mould AW, Ramsay AJ, Matthaei KI, Young IG, Rothenberg ME et al. 2000. The effect of IL-5 and eotaxin expression in the lung on eosinophil trafficking and degranulation and the induction of bronchial hyperreactivity. J. Immunol. 164:2142–50
    [Google Scholar]
  141. 141. 
    Jacobsen EA, Ochkur SI, Doyle AD, LeSuer WE, Li W et al. 2017. Lung pathologies in a chronic inflammation mouse model are independent of eosinophil degranulation. Am. J. Respir. Crit. Care Med. 195:1321–32
    [Google Scholar]
  142. 142. 
    Doyle AD, Mukherjee M, LeSuer WE, Bittner TB, Pasha SM et al. 2019. Eosinophil-derived IL-13 promotes emphysema. Eur. Respir. J. 53:1801291
    [Google Scholar]
  143. 143. 
    Fattouh R, Al-Garawi A, Fattouh M, Arias K, Walker TD et al. 2011. Eosinophils are dispensable for allergic remodeling and immunity in a model of house dust mite-induced airway disease. Am. J. Respir. Crit. Care Med. 183:179–88
    [Google Scholar]
  144. 144. 
    Peters MC, Mauger D, Ross KR, Phillips B, Gaston B et al. 2020. Evidence for exacerbation-prone asthma and predictive biomarkers of exacerbation frequency. Am. J. Respir. Crit. Care Med. 202:7973–82 https://doi.org/10.1164/rccm.201909-1813OC
    [Crossref] [Google Scholar]
  145. 145. 
    Filippone RT, Sahakian L, Apostolopoulos V, Nurgali K. 2019. Eosinophils in inflammatory bowel disease. Inflamm. Bowel Dis. 25:1140–51
    [Google Scholar]
  146. 146. 
    Vieira AT, Fagundes CT, Alessandri AL, Castor MG, Guabiraba R et al. 2009. Treatment with a novel chemokine-binding protein or eosinophil lineage-ablation protects mice from experimental colitis. Am. J. Pathol. 175:2382–91
    [Google Scholar]
  147. 147. 
    Radnai B, Sturm EM, Stancic A, Jandl K, Labocha S et al. 2016. Eosinophils contribute to intestinal inflammation via chemoattractant receptor-homologous molecule expressed on Th2 cells, CRTH2, in experimental Crohn's disease. J. Crohn's Colitis 10:1087–95
    [Google Scholar]
  148. 148. 
    De Salvo C, Wang XM, Pastorelli L, Mattioli B, Omenetti S et al. 2016. IL-33 drives eosinophil infiltration and pathogenic type 2 helper T-cell immune responses leading to chronic experimental ileitis. Am. J. Pathol. 186:885–98
    [Google Scholar]
  149. 149. 
    Hogan SP, Mishra A, Brandt EB, Royalty MP, Pope SM et al. 2001. A pathological function for eotaxin and eosinophils in eosinophilic gastrointestinal inflammation. Nat. Immunol. 2:353–60
    [Google Scholar]
  150. 150. 
    Mishra A, Rothenberg ME. 2003. Intratracheal IL-13 induces eosinophilic esophagitis by an IL-5, eotaxin-1, and STAT6-dependent mechanism. Gastroenterology 125:1419–27
    [Google Scholar]
  151. 151. 
    Youngblood BA, Brock EC, Leung J, Falahati R, Bochner BS et al. 2019. Siglec-8 antibody reduces eosinophils and mast cells in a transgenic mouse model of eosinophilic gastroenteritis. JCI Insight 4:e126219
    [Google Scholar]
  152. 152. 
    Reichman H, Itan M, Rozenberg P, Yarmolovski T, Brazowski E et al. 2019. Activated eosinophils exert antitumorigenic activities in colorectal cancer. Cancer Immunol. Res. 7:388–400
    [Google Scholar]
  153. 153. 
    Carretero R, Sektioglu IM, Garbi N, Salgado OC, Beckhove P et al. 2015. Eosinophils orchestrate cancer rejection by normalizing tumor vessels and enhancing infiltration of CD8+ T cells. Nat. Immunol. 16:609–17
    [Google Scholar]
  154. 154. 
    Hollande C, Boussier J, Ziai J, Nozawa T, Bondet V et al. 2019. Inhibition of the dipeptidyl peptidase DPP4 (CD26) reveals IL-33-dependent eosinophil-mediated control of tumor growth. Nat. Immunol. 20:257–64
    [Google Scholar]
  155. 155. 
    Simon SCS, Hu X, Panten J, Grees M, Renders S et al. 2020. Eosinophil accumulation predicts response to melanoma treatment with immune checkpoint inhibitors. Oncoimmunology 9:1727116
    [Google Scholar]
  156. 156. 
    Nunez-Nateras R, Castle EP, Protheroe CA, Stanton ML, Ocal TI et al. 2014. Predicting response to bacillus Calmette-Guerin (BCG) in patients with carcinoma in situ of the bladder. Urol. Oncol. 32:45e30
    [Google Scholar]
  157. 157. 
    Cameron GJM, Cautivo KM, Loering S, Jiang SH, Deshpande AV et al. 2019. Group 2 innate lymphoid cells are redundant in experimental renal ischemia-reperfusion injury. Front. Immunol. 10:826
    [Google Scholar]
  158. 158. 
    Onyema OO, Guo Y, Mahgoub B, Wang Q, Manafi A et al. 2019. Eosinophils downregulate lung alloimmunity by decreasing TCR signal transduction. JCI Insight 4:e128241
    [Google Scholar]
  159. 159. 
    Heredia JE, Mukundan L, Chen FM, Mueller AA, Deo RC et al. 2013. Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell 153:376–88
    [Google Scholar]
  160. 160. 
    Hart TK, Cook RM, Zia-Amirhosseini P, Minthorn E, Sellers TS et al. 2001. Preclinical efficacy and safety of mepolizumab (SB-240563), a humanized monoclonal antibody to IL-5, in cynomolgus monkeys. J. Allergy Clin. Immunol. 108:250–57
    [Google Scholar]
  161. 161. 
    Menzies-Gow A, Flood-Page P, Sehmi R, Burman J, Hamid Q et al. 2003. Anti-IL-5 (mepolizumab) therapy induces bone marrow eosinophil maturational arrest and decreases eosinophil progenitors in the bronchial mucosa of atopic asthmatics. J. Allergy Clin. Immunol. 111:714–19
    [Google Scholar]
  162. 162. 
    Stein ML, Villanueva JM, Buckmeier BK, Yamada Y, Filipovich AH et al. 2008. Anti-IL-5 (mepolizumab) therapy reduces eosinophil activation ex vivo and increases IL-5 and IL-5 receptor levels. J. Allergy Clin. Immunol. 121:1473–83.e4
    [Google Scholar]
  163. 163. 
    Flood-Page PT, Menzies-Gow AN, Kay AB, Robinson DS. 2003. Eosinophil's role remains uncertain as anti-interleukin-5 only partially depletes numbers in asthmatic airway. Am. J. Respir. Crit. Care Med. 167:199–204
    [Google Scholar]
  164. 164. 
    Zhang J, Kuvelkar R, Murgolo NJ, Taremi SS, Chou CC et al. 1999. Mapping and characterization of the epitope(s) of Sch 55700, a humanized mAb, that inhibits human IL-5. Int. Immunol. 11:1935–44
    [Google Scholar]
  165. 165. 
    Liddament M, Husten J, Estephan T, Laine D, Mabon D et al. 2019. Higher binding affinity and in vitro potency of reslizumab for interleukin-5 compared with mepolizumab. Allergy Asthma Immunol. Res. 11:291–98
    [Google Scholar]
  166. 166. 
    Kolbeck R, Kozhich A, Koike M, Peng L, Andersson CK et al. 2010. MEDI-563, a humanized anti-IL-5 receptor alpha mAb with enhanced antibody-dependent cell-mediated cytotoxicity function. J. Allergy Clin. Immunol. 125:1344–53.e2
    [Google Scholar]
  167. 167. 
    Busse WW, Katial R, Gossage D, Sari S, Wang B et al. 2010. Safety profile, pharmacokinetics, and biologic activity of MEDI-563, an anti-IL-5 receptor alpha antibody, in a phase I study of subjects with mild asthma. J. Allergy Clin. Immunol. 125:1237–44.e2
    [Google Scholar]
  168. 168. 
    Laviolette M, Gossage DL, Gauvreau G, Leigh R, Olivenstein R et al. 2013. Effects of benralizumab on airway eosinophils in asthmatic patients with sputum eosinophilia. J. Allergy Clin. Immunol. 132:1086–96.e5
    [Google Scholar]
  169. 169. 
    Leckie MJ, ten Brinke A, Khan J, Diamant Z, O'Connor BJ et al. 2000. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet 356:2144–48
    [Google Scholar]
  170. 170. 
    Kiwamoto T, Kawasaki N, Paulson JC, Bochner BS. 2012. Siglec-8 as a drugable target to treat eosinophil and mast cell-associated conditions. Pharmacol. Ther. 135:327–36
    [Google Scholar]
  171. 171. 
    Youngblood BA, Brock EC, Leung J, Falahati R, Bryce PJ et al. 2019. AK002, a humanized sialic acid-binding immunoglobulin-like lectin-8 antibody that induces antibody-dependent cell-mediated cytotoxicity against human eosinophils and inhibits mast cell-mediated anaphylaxis in mice. Int. Arch. Allergy Immunol. 180:91–102
    [Google Scholar]
  172. 172. 
    Kikly KK, Bochner BS, Freeman SD, Tan KB, Gallagher KT et al. 2000. Identification of SAF-2, a novel siglec expressed on eosinophils, mast cells, and basophils. J. Allergy Clin. Immunol. 105:1093–100
    [Google Scholar]
  173. 173. 
    Dellon ES, Peterson KA, Murray JA, Falk GW, Gonsalves N et al. 2020. Anti–Siglec-8 antibody for eosinophilic gastritis and duodenitis. N. Engl. J. Med. 383:1624–34
    [Google Scholar]
  174. 174. 
    Holgate ST, Wenzel S, Postma DS, Weiss ST, Renz H et al. 2015. Asthma. Nat. Rev. Dis. Primers 1:15025
    [Google Scholar]
  175. 175. 
    Yancey SW, Keene ON, Albers FC, Ortega H, Bates S et al. 2017. Biomarkers for severe eosinophilic asthma. J. Allergy Clin. Immunol. 140:1509–18
    [Google Scholar]
  176. 176. 
    Ray A, Camiolo M, Fitzpatrick A, Gauthier M, Wenzel SE. 2020. Are we meeting the promise of endotypes and precision medicine in asthma?. Physiol. Rev. 100:983–1017
    [Google Scholar]
  177. 177. 
    Flood-Page P, Swenson C, Faiferman I, Matthews J, Williams M et al. 2007. A study to evaluate safety and efficacy of mepolizumab in patients with moderate persistent asthma. Am. J. Respir. Crit. Care Med. 176:1062–71
    [Google Scholar]
  178. 178. 
    Haldar P, Brightling CE, Hargadon B, Gupta S, Monteiro W et al. 2009. Mepolizumab and exacerbations of refractory eosinophilic asthma. N. Engl. J. Med. 360:973–84
    [Google Scholar]
  179. 179. 
    Nair P, Pizzichini MM, Kjarsgaard M, Inman MD, Efthimiadis A et al. 2009. Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N. Engl. J. Med. 360:985–93
    [Google Scholar]
  180. 180. 
    Castro M, Mathur S, Hargreave F, Boulet LP, Xie F et al. 2011. Reslizumab for poorly controlled, eosinophilic asthma: a randomized, placebo-controlled study. Am. J. Respir. Crit. Care Med. 184:1125–32
    [Google Scholar]
  181. 181. 
    Castro M, Zangrilli J, Wechsler ME, Bateman ED, Brusselle GG et al. 2015. Reslizumab for inadequately controlled asthma with elevated blood eosinophil counts: results from two multicentre, parallel, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet Respir. Med. 3:355–66
    [Google Scholar]
  182. 182. 
    FitzGerald JM, Bleecker ER, Nair P, Korn S, Ohta K et al. 2016. Benralizumab, an anti-interleukin-5 receptor alpha monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 388:2128–41
    [Google Scholar]
  183. 183. 
    Bleecker ER, FitzGerald JM, Chanez P, Papi A, Weinstein SF et al. 2016. Efficacy and safety of benralizumab for patients with severe asthma uncontrolled with high-dosage inhaled corticosteroids and long-acting β2-agonists (SIROCCO): a randomised, multicentre, placebo-controlled phase 3 trial. Lancet 388:2115–27
    [Google Scholar]
  184. 184. 
    Pavord ID, Chanez P, Criner GJ, Kerstjens HAM, Korn S et al. 2017. Mepolizumab for eosinophilic chronic obstructive pulmonary disease. N. Engl. J. Med. 377:171613–29
    [Google Scholar]
  185. 185. 
    Criner GJ, Celli BR, Singh D, Agusti A, Papi A et al. 2020. Predicting response to benralizumab in chronic obstructive pulmonary disease: analyses of GALATHEA and TERRANOVA studies. Lancet Respir. Med. 8:2158–70
    [Google Scholar]
  186. 186. 
    Criner GJ, Celli BR, Brightling CE, Agusti A, Papi A et al. 2019. Benralizumab for the prevention of COPD exacerbations. N. Engl. J. Med. 381:1023–34
    [Google Scholar]
  187. 187. 
    Fokkens WJ, Lund VJ, Hopkins C, Hellings PW, Kern R et al. 2020. European Position Paper on Rhinosinusitis and Nasal Polyps 2020. Rhinology 58:1–464
    [Google Scholar]
  188. 188. 
    Tan BK, Klingler AI, Poposki JA, Stevens WW, Peters AT et al. 2017. Heterogeneous inflammatory patterns in chronic rhinosinusitis without nasal polyps in Chicago, Illinois. J. Allergy Clin. Immunol. 139:699–703.e7
    [Google Scholar]
  189. 189. 
    Bochner BS, Stevens WW. 2021. Biology and function of eosinophils in chronic rhinosinusitis with or without nasal polyps. Allergy Asthma Immunol. Res. 13:18–22
    [Google Scholar]
  190. 190. 
    Zhang Y, Gevaert E, Lou H, Wang X, Zhang L et al. 2017. Chronic rhinosinusitis in Asia. J. Allergy Clin. Immunol. 140:1230–39
    [Google Scholar]
  191. 191. 
    Kim SJ, Lee KH, Kim SW, Cho JS, Park YK et al. 2013. Changes in histological features of nasal polyps in a Korean population over a 17-year period. Otolaryngol. Head Neck Surg. 149:431–37
    [Google Scholar]
  192. 192. 
    Wang W, Gao Y, Zhu Z, Zha Y, Wang X et al. 2019. Changes in the clinical and histological characteristics of Chinese chronic rhinosinusitis with nasal polyps over 11 years. Int. Forum. Allergy Rhinol. 9:149–57
    [Google Scholar]
  193. 193. 
    Katotomichelakis M, Tantilipikorn P, Holtappels G, De Ruyck N, Feng L et al. 2013. Inflammatory patterns in upper airway disease in the same geographical area may change over time. Am. J. Rhinol. Allergy 27:354–60
    [Google Scholar]
  194. 194. 
    Simon HU, Yousefi S, Schranz C, Schapowal A, Bachert C et al. 1997. Direct demonstration of delayed eosinophil apoptosis as a mechanism causing tissue eosinophilia. J. Immunol. 158:3902–8
    [Google Scholar]
  195. 195. 
    Persson EK, Verstraete K, Heyndrickx I, Gevaert E, Aegerter H et al. 2019. Protein crystallization promotes type 2 immunity and is reversible by antibody treatment. Science 364:6442eaaw4295
    [Google Scholar]
  196. 196. 
    Perez-Novo CA, Watelet JB, Claeys C, Van Cauwenberge P, Bachert C. 2005. Prostaglandin, leukotriene, and lipoxin balance in chronic rhinosinusitis with and without nasal polyposis. J. Allergy Clin. Immunol. 115:1189–96
    [Google Scholar]
  197. 197. 
    Yun Y, Kanda A, Kobayashi Y, Van Bui D, Suzuki K et al. 2020. Increased CD69 expression on activated eosinophils in eosinophilic chronic rhinosinusitis correlates with clinical findings. Allergol. Int. 69:232–38
    [Google Scholar]
  198. 198. 
    Gevaert E, Delemarre T, De Volder J, Zhang N, Holtappels G et al. 2020. Charcot-Leyden crystals promote neutrophilic inflammation in patients with nasal polyposis. J. Allergy Clin. Immunol. 145:427–30.e4
    [Google Scholar]
  199. 199. 
    Watelet JB, Bachert C, Claeys C, Van Cauwenberge P. 2004. Matrix metalloproteinases MMP-7, MMP-9 and their tissue inhibitor TIMP-1: expression in chronic sinusitis versus nasal polyposis. Allergy 59:54–60
    [Google Scholar]
  200. 200. 
    Gevaert P, Van Bruaene N, Cattaert T, Van Steen K, Van Zele T et al. 2011. Mepolizumab, a humanized anti-IL-5 mAb, as a treatment option for severe nasal polyposis. J. Allergy Clin. Immunol. 128:989–95.e1–8
    [Google Scholar]
  201. 201. 
    Bachert C, Sousa AR, Lund VJ, Scadding GK, Gevaert P et al. 2017. Reduced need for surgery in severe nasal polyposis with mepolizumab: randomized trial. J. Allergy Clin. Immunol. 140:1024–31.e14
    [Google Scholar]
  202. 202. 
    Gevaert P, Lang-Loidolt D, Lackner A, Stammberger H, Staudinger H et al. 2006. Nasal IL-5 levels determine the response to anti-IL-5 treatment in patients with nasal polyps. J. Allergy Clin. Immunol. 118:1133–41
    [Google Scholar]
  203. 203. 
    Oldhoff JM, Darsow U, Werfel T, Katzer K, Wulf A et al. 2005. Anti-IL-5 recombinant humanized monoclonal antibody (mepolizumab) for the treatment of atopic dermatitis. Allergy 60:5693–96
    [Google Scholar]
  204. 204. 
    Kang EG, Narayana PK, Pouliquen IJ, Lopez MC, Ferreira-Cornwell MC et al. 2020. Efficacy and safety of mepolizumab administered subcutaneously for moderate to severe atopic dermatitis. Allergy 75:4950–53
    [Google Scholar]
  205. 205. 
    Bernstein JA, Singh U, Rao MB, Berendts K, Zhang X et al. 2020. Benralizumab for chronic spontaneous urticaria. N. Engl. J. Med. 383:141389–91
    [Google Scholar]
  206. 206. 
    Kolkhir P, Church MK, Altrichter S, Skov PS, Hawro T et al. 2020. Eosinopenia, in chronic spontaneous urticaria, is associated with high disease activity, autoimmunity, and poor response to treatment. J. Allergy Clin. Immunol. Pract 8:1318–25
    [Google Scholar]
  207. 207. 
    Amber KT, Valdebran M, Kridin K, Grando SA. 2018. The role of eosinophils in bullous pemphigoid: a developing model of eosinophil pathogenicity in mucocutaneous disease. Front. Med. 5:201
    [Google Scholar]
  208. 208. 
    de Graauw E, Sitaru C, Horn M, Borradori L, Yousefi S et al. 2017. Evidence for a role of eosinophils in blister formation in bullous pemphigoid. Allergy 72:71105–13
    [Google Scholar]
  209. 209. 
    Simon D, Yousefi S, Cazzaniga S, Bürgler C, Radonjic S et al. 2020. Mepolizumab failed to affect bullous pemphigoid: a randomized, placebo-controlled, double-blind phase 2 pilot study. Allergy 75:3669–72
    [Google Scholar]
  210. 210. 
    Dellon ES, Liacouras CA, Molina-Infante J, Furuta GT, Spergel JM et al. 2018. Updated international consensus diagnostic criteria for eosinophilic esophagitis: proceedings of the AGREE conference. Gastroenterology 155:1022–33.e10
    [Google Scholar]
  211. 211. 
    Lyles J, Rothenberg M. 2019. Role of genetics, environment, and their interactions in the pathogenesis of eosinophilic esophagitis. Curr. Opin. Immunol. 60:46–53
    [Google Scholar]
  212. 212. 
    Blanchard C, Wang N, Rothenberg ME. 2006. Eosinophilic esophagitis: pathogenesis, genetics, and therapy. J. Allergy Clin. Immunol. 118:1054–59
    [Google Scholar]
  213. 213. 
    Alexander ES, Martin LJ, Collins MH, Kottyan LC, Sucharew H et al. 2014. Twin and family studies reveal strong environmental and weaker genetic cues explaining heritability of eosinophilic esophagitis. J. Allergy Clin. Immunol. 134:1084–92.e1
    [Google Scholar]
  214. 214. 
    Rothenberg ME, Spergel JM, Sherrill JD, Annaiah K, Martin LJ et al. 2010. Common variants at 5q22 associate with pediatric eosinophilic esophagitis. Nat. Genet. 42:289–91
    [Google Scholar]
  215. 215. 
    Kottyan LC, Davis BP, Sherrill JD, Liu K, Rochman M et al. 2014. Genome-wide association analysis of eosinophilic esophagitis provides insight into the tissue specificity of this allergic disease. Nat. Genet. 46:895–900
    [Google Scholar]
  216. 216. 
    Sleiman PM, Wang ML, Cianferoni A, Aceves S, Gonsalves N et al. 2014. GWAS identifies four novel eosinophilic esophagitis loci. Nat. Commun. 5:5593
    [Google Scholar]
  217. 217. 
    Litosh VA, Rochman M, Rymer JK, Porollo A, Kottyan LC et al. 2017. Calpain-14 and its association with eosinophilic esophagitis. J. Allergy Clin. Immunol. 139:1762–71.e7
    [Google Scholar]
  218. 218. 
    Allakhverdi Z, Comeau MR, Jessup HK, Yoon BR, Brewer A et al. 2007. Thymic stromal lymphopoietin is released by human epithelial cells in response to microbes, trauma, or inflammation and potently activates mast cells. J. Exp. Med. 204:253–58
    [Google Scholar]
  219. 219. 
    Wong CK, Hu S, Cheung PF, Lam CW. 2010. Thymic stromal lymphopoietin induces chemotactic and prosurvival effects in eosinophils: implications in allergic inflammation. Am. J. Respir. Cell Mol. Biol. 43:305–15
    [Google Scholar]
  220. 220. 
    Noti M, Wojno ED, Kim BS, Siracusa MC, Giacomin PR et al. 2013. Thymic stromal lymphopoietin-elicited basophil responses promote eosinophilic esophagitis. Nat. Med. 19:1005–13
    [Google Scholar]
  221. 221. 
    Stein ML, Collins MH, Villanueva JM, Kushner JP, Putnam PE et al. 2006. Anti-IL-5 (mepolizumab) therapy for eosinophilic esophagitis. J. Allergy Clin. Immunol. 118:1312–19
    [Google Scholar]
  222. 222. 
    Straumann A, Conus S, Grzonka P, Kita H, Kephart G et al. 2010. Anti-interleukin-5 antibody treatment (mepolizumab) in active eosinophilic oesophagitis: a randomised, placebo-controlled, double-blind trial. Gut 59:21–30
    [Google Scholar]
  223. 223. 
    Assa'ad AH, Gupta SK, Collins MH, Thomson M, Heath AT et al. 2011. An antibody against IL-5 reduces numbers of esophageal intraepithelial eosinophils in children with eosinophilic esophagitis. Gastroenterology 141:1593–604
    [Google Scholar]
  224. 224. 
    Spergel JM, Rothenberg ME, Collins MH, Furuta GT, Markowitz JE et al. 2012. Reslizumab in children and adolescents with eosinophilic esophagitis: results of a double-blind, randomized, placebo-controlled trial. J. Allergy Clin. Immunol. 129:456–63.e3
    [Google Scholar]
  225. 225. 
    Shoda T, Wen T, Caldwell JM, Collins MH, Besse JA et al. 2020. Molecular, endoscopic, histologic, and circulating biomarker-based diagnosis of eosinophilic gastritis: multi-site study. J. Allergy Clin. Immunol. 145:255–69
    [Google Scholar]
  226. 226. 
    Hirano I, Dellon ES, Hamilton JD, Collins MH, Peterson K et al. 2020. Efficacy of dupilumab in a phase 2 randomized trial of adults with active eosinophilic esophagitis. Gastroenterology 158:111–22.e10
    [Google Scholar]
  227. 227. 
    Hirano I, Collins MH, Assouline-Dayan Y, Evans L, Gupta S et al. 2019. RPC4046, a monoclonal antibody against IL13, reduces histologic and endoscopic activity in patients with eosinophilic esophagitis. Gastroenterology 156:592–603.e10
    [Google Scholar]
  228. 228. 
    Rothenberg ME, Wen T, Greenberg A, Alpan O, Enav B et al. 2015. Intravenous anti-IL-13 mAb QAX576 for the treatment of eosinophilic esophagitis. J. Allergy Clin. Immunol. 135:500–7
    [Google Scholar]
  229. 229. 
    Cools J, DeAngelo DJ, Gotlib J, Stover EH, Legare RD et al. 2003. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N. Engl. J. Med. 348:1201–14
    [Google Scholar]
  230. 230. 
    Roufosse F, Cogan E, Goldman M. 2007. Lymphocytic variant hypereosinophilic syndromes. Immunol. Allergy Clin. N. Am. 27:389–413
    [Google Scholar]
  231. 231. 
    Garrett JK, Jameson SC, Thomson B, Collins MH, Wagoner LE et al. 2004. Anti-interleukin-5 (mepolizumab) therapy for hypereosinophilic syndromes. J. Allergy Clin. Immunol. 113:115–19
    [Google Scholar]
  232. 232. 
    Plotz SG, Simon HU, Darsow U, Simon D, Vassina E et al. 2003. Use of an anti-interleukin-5 antibody in the hypereosinophilic syndrome with eosinophilic dermatitis. N. Engl. J. Med. 349:2334–39
    [Google Scholar]
  233. 233. 
    Rothenberg ME, Klion AD, Roufosse FE, Kahn JE, Weller PF et al. 2008. Treatment of patients with the hypereosinophilic syndrome with mepolizumab. N. Engl. J. Med. 358:1215–28
    [Google Scholar]
  234. 234. 
    Roufosse F, Kahn J-E, Rothenberg ME, Wardlaw AJ, Klion AD et al. 2020. Efficacy and safety of mepolizumab in hypereosinophilic syndrome: a phase III, randomized, placebo-controlled trial. J. Allergy Clin. Immunol. 146:61397–405
    [Google Scholar]
  235. 235. 
    Kuang FL, Legrand F, Makiya M, Ware J, Wetzler L et al. 2019. Benralizumab for PDGFRA-negative hypereosinophilic syndrome. N. Engl. J. Med. 380:1336–46
    [Google Scholar]
  236. 236. 
    Kuang FL, Fay MP, Ware J, Wetzler L, Holland-Thomas N et al. 2018. Long-term clinical outcomes of high-dose mepolizumab treatment for hypereosinophilic syndrome. J. Allergy Clin. Immunol. Pract. 6:1518–27.e5
    [Google Scholar]
  237. 237. 
    Roufosse F, de Lavareille A, Schandene L, Cogan E, Georgelas A et al. 2010. Mepolizumab as a corticosteroid-sparing agent in lymphocytic variant hypereosinophilic syndrome. J. Allergy Clin. Immunol. 126:828–35.e3
    [Google Scholar]
  238. 238. 
    Khoury P, Grayson PC, Klion AD. 2014. Eosinophils in vasculitis: characteristics and roles in pathogenesis. Nat. Rev. Rheumatol. 10:474–83
    [Google Scholar]
  239. 239. 
    Jennette JC, Falk RJ, Bacon PA, Basu N, Cid MC et al. 2013. 2012. revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum 65:1–11
    [Google Scholar]
  240. 240. 
    Khoury P, Zagallo P, Talar-Williams C, Santos CS, Dinerman E et al. 2012. Serum biomarkers are similar in Churg-Strauss syndrome and hypereosinophilic syndrome. Allergy 67:1149–56
    [Google Scholar]
  241. 241. 
    Sable-Fourtassou R, Cohen P, Mahr A, Pagnoux C, Mouthon L et al. 2005. Antineutrophil cytoplasmic antibodies and the Churg-Strauss syndrome. Ann. Intern. Med. 143:632–38
    [Google Scholar]
  242. 242. 
    Lyons PA, Peters JE, Alberici F, Liley J, Coulson RMR et al. 2019. Genome-wide association study of eosinophilic granulomatosis with polyangiitis reveals genomic loci stratified by ANCA status. Nat. Commun. 10:5120
    [Google Scholar]
  243. 243. 
    Jakiela B, Szczeklik W, Plutecka H, Sokolowska B, Mastalerz L et al. 2012. Increased production of IL-5 and dominant Th2-type response in airways of Churg-Strauss syndrome patients. Rheumatology 51:1887–93
    [Google Scholar]
  244. 244. 
    Kim S, Marigowda G, Oren E, Israel E, Wechsler ME 2010. Mepolizumab as a steroid-sparing treatment option in patients with Churg-Strauss syndrome. J. Allergy Clin. Immunol. 125:1336–43
    [Google Scholar]
  245. 245. 
    Moosig F, Gross WL, Herrmann K, Bremer JP, Hellmich B. 2011. Targeting interleukin-5 in refractory and relapsing Churg-Strauss syndrome. Ann. Intern. Med. 155:341–43
    [Google Scholar]
  246. 246. 
    Wechsler ME, Akuthota P, Jayne D, Khoury P, Klion A et al. 2017. Mepolizumab or placebo for eosinophilic granulomatosis with polyangiitis. N. Engl. J. Med. 376:1921–32
    [Google Scholar]
  247. 247. 
    Jackson DJ, Korn S, Mathur SK, Barker P, Meka VG et al. 2020. Safety of eosinophil-depleting therapy for severe, eosinophilic asthma: focus on benralizumab. Drug Saf 43:409–25
    [Google Scholar]
  248. 248. 
    Nakahata T, Spicer SS, Leary AG, Ogawa M, Franklin W et al. 1984. Circulating eosinophil colony-forming cells in pure eosinophil aplasia. Ann. Intern. Med. 101:321–24
    [Google Scholar]
  249. 249. 
    Krantz SB, Kao V 1967. Studies on red cell aplasia: I. Demonstration of a plasma inhibitor to heme synthesis and an antibody to erythroblast nuclei. PNAS 58:493–500
    [Google Scholar]
  250. 250. 
    Prazma CM, Bel EH, Price RG, Bradford ES, Albers FC et al. 2019. Oral corticosteroid dose changes and impact on peripheral blood eosinophil counts in patients with severe eosinophilic asthma: a post hoc analysis. Respir. Res. 20:83
    [Google Scholar]
  251. 251. 
    Al Efraij K, Johnson KM, Wiebe D, Sadatsafavi M, FitzGerald JM 2019. A systematic review of the adverse events and economic impact associated with oral corticosteroids in asthma. J. Asthma 56:1334–46
    [Google Scholar]
  252. 252. 
    Busse WW, Bleecker ER, FitzGerald JM, Ferguson GT, Barker P et al. 2019. Long-term safety and efficacy of benralizumab in patients with severe, uncontrolled asthma: 1-year results from the BORA phase 3 extension trial. Lancet Respir. Med. 7:46–59
    [Google Scholar]
  253. 253. 
    Kavanagh JE, d'Ancona G, Elstad M, Green L, Fernandes M et al. 2020. Real-world effectiveness and the characteristics of a “super-responder” to mepolizumab in severe eosinophilic asthma. Chest 158:491–500
    [Google Scholar]
  254. 254. 
    Kavanagh JE, Hearn AP, Dhariwal J, d'Ancona G, Douiri A et al. 2021. Real world effectiveness of benralizumab in severe eosinophilic asthma. Chest 159:496–506
    [Google Scholar]
  255. 255. 
    Khatri S, Moore W, Gibson PG, Leigh R, Bourdin A et al. 2019. Assessment of the long-term safety of mepolizumab and durability of clinical response in patients with severe eosinophilic asthma. J. Allergy Clin. Immunol. 143:1742–51.e7
    [Google Scholar]
  256. 256. 
    Roufosse FE, Kahn JE, Gleich GJ, Schwartz LB, Singh AD et al. 2013. Long-term safety of mepolizumab for the treatment of hypereosinophilic syndromes. J. Allergy Clin. Immunol. 131:461–67.e5
    [Google Scholar]
  257. 257. 
    Efremova M, Vento-Tormo R, Park JE, Teichmann SA, James KR. 2020. Immunology in the era of single-cell technologies. Annu. Rev. Immunol. 38:727–57
    [Google Scholar]
  258. 258. 
    Bassler K, Schulte-Schrepping J, Warnat-Herresthal S, Aschenbrenner AC, Schultze JL. 2019. The myeloid cell compartment—cell by cell. Annu. Rev. Immunol. 37:269–93
    [Google Scholar]
  259. 259. 
    Wen T, Rothenberg ME. 2019. Cell-by-cell deciphering of T cells in allergic inflammation. J. Allergy Clin. Immunol. 144:1143–48
    [Google Scholar]
  260. 260. 
    Philpott M, Cribbs AP, Brown T Jr., Brown T Sr, Oppermann U. 2020. Advances and challenges in epigenomic single-cell sequencing applications. Curr. Opin. Chem. Biol. 57:17–26
    [Google Scholar]
  261. 261. 
    Nei Y, Obata-Ninomiya K, Tsutsui H, Ishiwata K, Miyasaka M et al. 2013. GATA-1 regulates the generation and function of basophils. PNAS 110:18620–25
    [Google Scholar]
  262. 262. 
    Sharma S, Tomar S, Dharne M, Ganesan V, Smith A et al. 2019. Deletion of ΔdblGata motif leads to increased predisposition and severity of IgE-mediated food-induced anaphylaxis response. PLOS ONE 14:e0219375
    [Google Scholar]
  263. 263. 
    Takemoto CM, Brandal S, Jegga AG, Lee YN, Shahlaee A et al. 2010. PU.1 positively regulates GATA-1 expression in mast cells. J. Immunol. 184:4349–61
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-093019-125918
Loading
/content/journals/10.1146/annurev-immunol-093019-125918
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error