A properly functioning adaptive immune system signifies the best features of life. It is diverse beyond compare, tolerant without fail, and capable of behaving appropriately with a myriad of infections and other challenges. Dendritic cells are required to explain how this remarkable system is energized and directed. I frame this article in terms of the major decisions that my colleagues and I have made in dendritic cell science and some of the guiding themes at the time the decisions were made. As a result of progress worldwide, there is now evidence of a central role for dendritic cells in initiating antigen-specific immunity and tolerance. The in vivo distribution and development of a previously unrecognized white cell lineage is better understood, as is the importance of dendritic cell maturation to link innate and adaptive immunity in response to many stimuli. Our current focus is on antigen uptake receptors on dendritic cells. These receptors enable experiments involving selective targeting of antigens in situ and new approaches to vaccine design in preclinical and clinical systems.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Steinman RM.1.  2004. Dendritic cells: from the fabric of immunology. Clin. Investig. Med. 27:231–36 [Google Scholar]
  2. Steinman RM. 2.  2007. Dendritic cells: understanding immunogenicity. Eur. J. Immunol. 37:S53–60 [Google Scholar]
  3. Burnet FM. 3.  1957. A modification of Jerne's theory of antibody production using the concept of clonal selection. Aust. J. Sci. 20:67–69 [Google Scholar]
  4. Fishman M, Adler FL. 4.  1963. Antibody formation initiated in vitro. II. Antibody synthesis in x-irradiated recipients of diffusion chambers containing nucleic acid derived from macrophages incubated with antigen. J. Exp. Med. 117:595–602 [Google Scholar]
  5. Askonas BA, Rhodes JM. 5.  1965. Immunogenicity of antigen-containing ribonucleic acid preparations from macrophages. Nature 205:470–74 [Google Scholar]
  6. Gottlieb AA, Glisin VR, Doty P. 6.  1967. Studies on macrophage RNA involved in antibody production. Proc. Natl. Acad. Sci. USA 57:1849–56 [Google Scholar]
  7. Brent L, Medawar PB. 7.  1967. Cellular immunity and the homograft reaction. Br. Med. Bull. 23:55–60 [Google Scholar]
  8. Gowans JL. 8.  1965. The role of lymphocytes in the destruction of homografts. Br. Med. Bull. 21:106–10 [Google Scholar]
  9. Mishell RI, Dutton RW. 9.  1967. Immunization of dissociated spleen cell cultures from normal mice. J. Exp. Med. 126:423–42 [Google Scholar]
  10. Steinman RM, Cohn ZA. 10.  1973. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J. Exp. Med. 137:1142–62 [Google Scholar]
  11. Steinman RM, Cohn ZA. 11.  1974. Identification of a novel cell type in peripheral lymphoid organs of mice. II. Functional properties in vitro. J. Exp. Med. 139:380–97 [Google Scholar]
  12. de Duve C, Pressman BC, Gianetto R, Wattiaux R, Appelmans F. 12.  1955. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat liver tissue. Biochem. J. 60:604–17 [Google Scholar]
  13. Steinman RM, Moberg CL. 13.  1995. A tribute to Zanvil Alexander Cohn. The macrophage in cell biology and resistance to infectious disease. J. Exp. Med. 179:1–30 [Google Scholar]
  14. Steinman RM, Kaplan G, Witmer MD, Cohn ZA. 14.  1979. Identification of a novel cell type in peripheral lymphoid organs of mice. V. Purification of spleen dendritic cells, new surface markers, and maintenance in vitro. J. Exp. Med. 149:1–16 [Google Scholar]
  15. Nossal GJV, Abbot A, Mitchell J, Lummus Z. 15.  1968. Antigen in immunity. XV. Ultrastructural features of antigen capture in primary and secondary lymphoid follicles. J. Exp. Med. 127:277–96 [Google Scholar]
  16. Chen LL, Adams JC, Steinman RM. 16.  1978. Anatomy of germinal centers in mouse spleen with special reference to “follicular dendritic cells.”. J. Cell Biol. 77:148–64 [Google Scholar]
  17. Chen LL, Frank AM, Adams JC, Steinman RM. 17.  1978. Distribution of horseradish peroxidase [HRP]-anti HRP immune complexes in mouse spleen, with special reference to follicular dendritic cells. J. Cell Biol. 79:184–99 [Google Scholar]
  18. Steinman RM, Cohn ZA. 18.  1972. The interaction of soluble horseradish peroxidase with mouse peritoneal macrophages in vitro. J. Cell Biol. 55:186–204 [Google Scholar]
  19. Steinman RM, Cohn ZA. 19.  1975. A novel adherent cell in mouse lymphoid organs. Immune Recognition AS Rosenthal 571–87 San Francisco: CA: Academic [Google Scholar]
  20. Steinman RM, Witmer MD. 20.  1978. Lymphoid dendritic cells are potent stimulators of the primary mixed leukocyte reaction in mice. Proc. Natl. Acad. Sci. USA 75:5132–36 [Google Scholar]
  21. Lechler RI, Batchelor JR. 21.  1982. Restoration of immunogenicity to passenger cell-depleted kidney allografts by the addition of donor strain dendritic cells. J. Exp. Med. 155:31–41 [Google Scholar]
  22. Klinkert WEF, Labadie JH, Bowers WE. 22.  1982. Accessory and stimulating properties of dendritic cells and macrophages isolated from various rat tissues. J. Exp. Med. 156:1–19 [Google Scholar]
  23. Austyn JM, Steinman RM, Weinstein DE, Granelli-Piperno A, Palladino MA. 23.  1983. Dendritic cells initiate a two-stage mechanism for T lymphocyte proliferation. J. Exp. Med. 157:1101–15 [Google Scholar]
  24. Nussenzweig MC, Steinman RM, Gutchinov B, Cohn ZA. 24.  1980. Dendritic cells are accessory cells for the development of anti-trinitrophenyl cytotoxic T lymphocytes. J. Exp. Med. 152:1070–84 [Google Scholar]
  25. Van Voorhis WC, Valinsky J, Hoffman E, Luban J, Hair LS, Steinman RM. 25.  1983. Relative efficacy of human monocytes and dendritic cells as accessory cells for T cell replication. J. Exp. Med. 158:174–91 [Google Scholar]
  26. Inaba K, Nakano K, Muramatsu S. 26.  1981. Cellular synergy in the manifestation of accessory cell activity for in vitro antibody response. J. Immunol. 127:453–61 [Google Scholar]
  27. Inaba K, Steinman RM, Van Voorhis WC, Muramatsu S. 27.  1983. Dendritic cells are critical accessory cells for thymus-dependent antibody responses in mouse and man. Proc. Natl. Acad. Sci. USA 80:6041–45 [Google Scholar]
  28. Steinman RM, Nussenzweig MC. 28.  1980. Dendritic cells: features and functions. Immunol. Rev. 53:127–47 [Google Scholar]
  29. Tew JG, Thorbecke J, Steinman RM. 29.  1982. Dendritic cells in the immune response: characteristics and recommended nomenclature. J. Reticuloendothel. Soc. 31:371–80 [Google Scholar]
  30. Inaba K, Steinman RM. 30.  1984. Resting and sensitized T lymphocytes exhibit distinct stimulatory (antigen-presenting cell) requirements for growth and lymphokine release. J. Exp. Med. 160:1717–35 [Google Scholar]
  31. Inaba K, Steinman RM. 31.  1985. Protein-specific helper T lymphocyte formation initiated by dendritic cells. Science 229:475–79 [Google Scholar]
  32. Inaba K, Young JW, Steinman RM. 32.  1987. Direct activation of CD8+ cytotoxic T lymphocytes by dendritic cells. J. Exp. Med. 166:182–94 [Google Scholar]
  33. Koide SL, Inaba K, Steinman RM. 33.  1987. Interleukin-1 enhances T-dependent immune responses by amplifying the function of dendritic cells. J. Exp. Med. 165:515–30 [Google Scholar]
  34. Steinman RM, Inaba K. 34.  1989. Immunogenicity: role of dendritic cells. BioEssays 10:145–52 [Google Scholar]
  35. Steinman RM. 35.  1991. The dendritic cell system and its role in immunogenicity. Annu. Rev. Immunol. 9:271–96 [Google Scholar]
  36. Witmer MD, Steinman RM. 36.  1984. The anatomy of peripheral lymphoid organs with emphasis on accessory cells: light microscopic, immunocytochemical studies of mouse spleen, lymph node and Peyer's patch. Am. J. Anat. 170:465–81 [Google Scholar]
  37. Schuler G, Steinman RM. 37.  1985. Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J. Exp. Med. 161:526–46 [Google Scholar]
  38. Witmer-Pack MD, Olivier W, Valinsky J, Schuler G, Steinman RM. 38.  1987. Granulocyte/macrophage colony-stimulating factor is essential for the viability and function of cultured murine epidermal Langerhans cells. J. Exp. Med. 166:1484–98 [Google Scholar]
  39. Pierre P, Turley SJ, Gatti E, Hull M, Meltzer J. 39.  et al. 1997. Developmental regulation of MHC class II transport in mouse dendritic cells. Nature 388:787–92 [Google Scholar]
  40. Trombetta ES, Ebersold M, Garrett W, Pypaert M, Mellman I. 40.  2003. Activation of lysosomal function during dendritic cell maturation. Science 299:1400–3 [Google Scholar]
  41. Inaba K, Turley S, Iyoda T, Yamaide F, Shimoyama S. 41.  et al. 2000. The formation of immunogenic major histocompatibility complex class II-peptide ligands in lysosomal compartments of dendritic cells is regulated by inflammatory stimuli. J. Exp. Med. 191:927–36 [Google Scholar]
  42. Turley SJ, Inaba K, Garrett WS, Ebersold M, Untermaehrer J. 42.  et al. 2000. Transport of peptide-MHC class II complexes in developing dendritic cells. Science 288:522–27 [Google Scholar]
  43. Romani N, Koide S, Crowley M, Witmer-Pack M, Livingstone AM. 43.  et al. 1989. Presentation of exogenous protein antigens by dendritic cells to T cell clones: intact protein is presented best by immature, epidermal Langerhans cells. J. Exp. Med. 169:1169–78 [Google Scholar]
  44. Fujii S, Shimizu K, Smith C, Bonifaz L, Steinman RM. 44.  2003. Activation of natural killer T cells by α-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a co-administered protein. J. Exp. Med. 198:267–79 [Google Scholar]
  45. Fujii S, Liu K, Smith C, Bonito AJ, Steinman RM. 45.  2004. The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation. J. Exp. Med. 199:1607–18 [Google Scholar]
  46. Hammad H, Lambrecht BN. 46.  2011. Dendritic cells and airway epithelial cells at the interface between innate and adaptive immune responses. Allergy 66:579–87 [Google Scholar]
  47. Ronnblom L, Pascual V. 47.  2008. The innate immune system in SLE: type I interferons and dendritic cells. Lupus 17:394–99 [Google Scholar]
  48. Inaba K, Inaba M, Romani N, Aya H, Deguchi M. 48.  et al. 1992. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 176:1693–702 [Google Scholar]
  49. Inaba K, Steinman RM, Witmer-Pack M, Aya H, Inaba M. 49.  et al. 1992. Identification of proliferating dendritic cell precursors in mouse blood. J. Exp. Med. 175:1157–67 [Google Scholar]
  50. Inaba K, Inaba M, Deguchi M, Hagi K, Yasumizu R. 50.  et al. 1993. Granulocytes, macrophages, and dendritic cells arise from a common major histocompatibility complex class II-negative progenitor in mouse bone marrow. Proc. Natl. Acad. Sci. USA 90:3038–42 [Google Scholar]
  51. Caux C, Dezutter-Dambuyant C, Schmitt D, Banchereau J. 51.  1992. GM-CSF and TNF-α cooperate in the generation of dendritic Langerhans cells. Nature 360:258–61 [Google Scholar]
  52. Inaba K, Inaba M, Naito M, Steinman RM. 52.  1993. Dendritic cell progenitors phagocytose particulates, including Bacillus Calmette-Guerin organisms, and sensitize mice to mycobacterial antigens in vivo. J. Exp. Med. 178:479–88 [Google Scholar]
  53. Sallusto F, Lanzavecchia A. 53.  1994. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor α. . J. Exp. Med. 971:81–9011 [Google Scholar]
  54. Romani N, Gruner S, Brang D, Kämpgen E, Lenz A. 54.  et al. 1994. Proliferating dendritic cell progenitors in human blood. J. Exp. Med. 180:83–93 [Google Scholar]
  55. Sallusto F, Cella M, Danieli C, Lanzavecchia A. 55.  1995. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility class II compartment: downregulation by cytokines and bacterial products. J. Exp. Med. 182:389–400 [Google Scholar]
  56. Inaba K, Metlay JP, Crowley MT, Steinman RM. 56.  1990. Dendritic cells pulsed with protein antigens in vitro can prime antigen-specific, MHC-restricted T cells in situ. J. Exp. Med. 172:631–40 [Google Scholar]
  57. Dhodapkar MV, Steinman RM, Sapp M, Desai H, Fossella C. 57.  et al. 1999. Rapid generation of broad T-cell immunity in humans after single injection of mature dendritic cells. J. Clin. Investig. 104:173–80 [Google Scholar]
  58. Dhodapkar MV, Krasovsky J, Steinman RM, Bhardwaj N. 58.  2000. Mature dendritic cells boost functionally superior CD8+ T-cell in humans without foreign helper epitopes. J. Clin. Investig. 105:R9–14 [Google Scholar]
  59. Vremec D, Lieschke GJ, Dunn AR, Robb L, Metcalf D, Shortman K. 59.  1997. The influence of granulocyte/macrophage colony-stimulating factor on dendritic cell levels in mouse lymphoid organs. Eur. J. Immunol. 27:40–44 [Google Scholar]
  60. Maraskovsky E, Brasel K, Teepe M, Roux ER, Lyman SD. 60.  et al. 1996. Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J. Exp. Med. 184:1953–62 [Google Scholar]
  61. Maraskovsky E, Daro E, Roux E, Teepe M, Maliszewski CR. 61.  et al. 2000. In vivo generation of human dendritic cell subsets by Flt3 ligand. Blood 96:878–84 [Google Scholar]
  62. D'Amico A, Wu L. 62.  2003. The early progenitors of mouse dendritic cells and plasmacytoid predendritic cells are within the bone marrow hemopoietic precursors expressing Flt3. J. Exp. Med. 198:293–303 [Google Scholar]
  63. Karsunky H, Merad M, Cozzio A, Weissman IL, Manz MG. 63.  2003. Flt3 ligand regulates dendritic cell development from flt3+ lymphoid and myeloid-committed progenitors to flt3+ dendritic cells in vivo. J. Exp. Med. 198:305–13 [Google Scholar]
  64. Waskow C, Liu K, Darrasse-Jèze G, Guermonprez P, Ginhoux F. 64.  et al. 2008. The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat. Immunol. 9:676–83 [Google Scholar]
  65. Liu K, Victora GD, Schwickert TA, Guermonprez P, Meredith MM. 65.  et al. 2009. In vivo analysis of dendritic cell development and homeostasis. Science 324:392–97 [Google Scholar]
  66. Liu K, Waskow C, Liu X, Yao K, Hoh J, Nussenzweig M. 66.  2007. Origin of dendritic cells in peripheral lymphoid organs of mice. Nat. Immunol. 8:578–83 [Google Scholar]
  67. Merad M, Ginhoux F, Collin M. 67.  2008. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat. Rev. Immunol. 8:935–47 [Google Scholar]
  68. Anandasabapathy N, Victora GD, Meredith M, Feder R, Dong B. 68.  et al. 2011. Flt3L controls the development of radiosensitive dendritic cells in the meninges and choroid plexus of the steady-state mouse brain. J. Exp. Med. 208:1695–705 [Google Scholar]
  69. Cheong C, Matos I, Choi J-H, Dandamudi DB, Shrestha E. 69.  et al. 2010. Microbial stimulation fully differentiates monocytes to DC-SIGN/CD209+ dendritic cells for immune T cell areas. Cell 143:416–29 [Google Scholar]
  70. Choi J-H, Cheong C, Dandamudi DB, Park CG, Rodriguez AM. 70.  et al. 2011. Flt3 signaling dependent dendritic cells protect atherosclerosis via regulatory T cell homeostasis. Immunity In press
  71. Regnault A, Lankar D, Lacabanne V, Rodriguez A, Thery C. 71.  et al. 1999. Fcγ receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization. J. Exp. Med. 189:371–80 [Google Scholar]
  72. Albert ML, Sauter B, Bhardwaj N. 72.  1998. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392:86–89 [Google Scholar]
  73. Cisse B, Caton ML, Lehner M, Maeda T, Scheu S. 73.  et al. 2008. Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development. Cell 135:37–48 [Google Scholar]
  74. Nussenzweig MC, Steinman RM, Unkeless JC, Witmer MD, Gutchinov B, Cohn ZA. 74.  1981. Studies of the cell surface of mouse dendritic cells and other leukocytes. J. Exp. Med. 154:168–87 [Google Scholar]
  75. Crowley MT, Inaba K, Witmer-Pack MD, Gezelter S, Steinman RM. 75.  1990. Use of the fluorescence activated cell sorter to enrich dendritic cells from mouse spleen. J. Immunol. Methods 133:55–66 [Google Scholar]
  76. Metlay JP, Witmer-Pack MD, Agger R, Crowley MT, Lawless D, Steinman RM. 76.  1990. The distinct leukocyte integrins of mouse spleen dendritic cells as identified with new hamster monoclonal antibodies. J. Exp. Med. 171:1753–71 [Google Scholar]
  77. Geissmann F, Gordon S, Hume DA, Mowat AM, Randolph GJ. 77.  2010. Unravelling mononuclear phagocyte heterogeneity. Nat. Rev. Immunol. 10:453–60 [Google Scholar]
  78. Kraal G, Breel M, Janse M, Bruin G. 78.  1986. Langerhans cells, veiled cells, and interdigitating cells in the mouse recognized by a monoclonal antibody. J. Exp. Med. 163:981–97 [Google Scholar]
  79. Witmer-Pack MD, Swiggard WJ, Mirza A, Inaba K, Steinman RM. 79.  1995. Tissue distribution of the DEC-205 protein that is detected by the monoclonal antibody NLDC-145. II. Expression in situ in lymphoid and nonlymphoid tissues. Cell. Immunol. 163:157–62 [Google Scholar]
  80. Swiggard WJ, Mirza A, Nussenzweig MC, Steinman RM. 80.  1995. DEC-205, a 205 kDa protein abundant on mouse dendritic cells and thymic epithelium that is detected by the monoclonal antibody NLDC-145: purification, characterization and N-terminal amino acid sequence. Cell. Immunol. 165:302–11 [Google Scholar]
  81. Jiang W, Swiggard WJ, Heufler C, Peng M, Mirza A. 81.  et al. 1995. The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature 375:151–55 [Google Scholar]
  82. Linehan SA, Martinez-Pomares L, Stahl PD, Gordon S. 82.  1999. Mannose receptor and its putative ligands in normal murine lymphoid and nonlymphoid organs: in situ expression of mannose receptor by selected macrophages, endothelial cells, perivascular microglia, and mesangial cells, but not dendritic cells. J. Exp. Med. 189:1961–72 [Google Scholar]
  83. Mahnke K, Guo M, Lee S, Sepulveda H, Swain SL. 83.  et al. 2000. The dendritic cell receptor for endocytosis, DEC-205, can recycle and enhance antigen presentation via major histocompatibility complex class II-positive lysosomal compartments. J. Cell Biol. 151:673–83 [Google Scholar]
  84. Guo M, Gong S, Maric S, Misulovin Z, Pack M. 84.  et al. 2000. A monoclonal antibody to the DEC-205 endocytosis receptor on human dendritic cells. Hum. Immunol. 61:729–38 [Google Scholar]
  85. Granelli-Piperno A, Pritsker A, Pack M, Shimeliovich I, Arrighi J-F. 85.  et al. 2005. Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin/CD209 is abundant on macrophages in the normal human lymph node and is not required for dendritic cell stimulation of the mixed leukocyte reaction. J. Immunol. 175:4265–73 [Google Scholar]
  86. Hawiger D, Inaba K, Dorsett Y, Guo M, Mahnke K. 86.  et al. 2001. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med. 194:769–80 [Google Scholar]
  87. Bonifaz L, Bonnyay D, Mahnke K, Rivera M, Nussenzweig MC, Steinman RM. 87.  2002. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J. Exp. Med. 196:1627–38 [Google Scholar]
  88. Tarbell KV, Yamazaki S, Olson K, Toy P, Steinman RM. 88.  2004. CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoantigenic peptide, suppress autoimmune diabetes. J. Exp. Med. 199:1467–77 [Google Scholar]
  89. Luo X, Tarbell KV, Yang H, Pothoven K, Bailey SL. 89.  et al. 2007. Dendritic cells with TGF-β1 differentiate naive CD4+CD25 T cells into islet-protective Foxp3+ regulatory T cells. Proc. Natl. Acad. Sci. USA 104:2821–26 [Google Scholar]
  90. Liu K, Iyoda T, Saternus M, Kimura Y, Inaba K, Steinman RM. 90.  2002. Immune tolerance after delivery of dying cells to dendritic cells in situ. J. Exp. Med. 196:1091–97 [Google Scholar]
  91. Kretschmer K, Apostolou I, Hawiger D, Khazaie K, Nussenzweig MC, von Boehmer H. 91.  2005. Inducing and expanding regulatory T cell populations by foreign antigen. Nat. Immunol. 6:1219–27 [Google Scholar]
  92. Mahnke K, Qian Y, Knop J, Enk AH. 92.  2003. Induction of CD4+/CD25+ regulatory T cells by targeting of antigens to immature dendritic cells. Blood 101:4862–69 [Google Scholar]
  93. Yamazaki S, Dudziak D, Heidkamp GF, Fiorese C, Bonito AJ. 93.  et al. 2008. CD8+ CD205+ splenic dendritic cells are specialized to induce Foxp3+ regulatory T cells. J. Immunol. 181:6923–33 [Google Scholar]
  94. Vremec D, Zorbas M, Scollay R, Saunders DJ, Ardavin CF. 94.  et al. 1992. The surface phenotype of dendritic cells purified from mouse thymus and spleen: investigation of the CD8 expression by a subpopulation of dendritic cells. J. Exp. Med. 176:47–58 [Google Scholar]
  95. Grouard G, Rissoan M-C, Filgueira L, Durand I, Banchereau J, Liu Y-J. 95.  1997. The enigmatic plasmacytoid T cells develop into dendritic cells with IL-3 and CD40-ligand. J. Exp. Med. 185:1101–11 [Google Scholar]
  96. Dzionek A, Fuchs A, Schmidt P, Cremer S, Zysk M. 96.  et al. 2000. BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J. Immunol. 165:6037–46 [Google Scholar]
  97. Nussenzweig MC, Steinman RM, Witmer MD, Gutchinov B. 97.  1982. A monoclonal antibody specific for mouse dendritic cells. Proc. Natl. Acad. Sci. USA 79:161–65 [Google Scholar]
  98. Dudziak D, Kamphorst AO, Heidkamp GF, Buchholz V, Trumpfheller C. 98.  et al. 2007. Differential antigen processing by dendritic cell subsets in vivo. Science 315:107–11 [Google Scholar]
  99. Idoyaga J, Cheong C, Suda K, Suda N, Kim JY. 99.  et al. 2008. Langerin/CD207 receptor on dendritic cells mediates efficient antigen presentation on MHC I and II products in vivo. J. Immunol. 180:3647–50 [Google Scholar]
  100. Subklewe M, Paludan C, Tsang ML, Mahnke K, Steinman RM, Münz C. 100.  2001. Dendritic cells cross-present latency gene products from Epstein-Barr virus-transformed B cells and expand tumor-reactive CD8+ killer T cells. J. Exp. Med. 193:405–12 [Google Scholar]
  101. Berard F, Blanco P, Davoust J, Neidhart-Berard E-M, Nouri-Shirazi M. 101.  et al. 2000. Cross-priming of naive CD8 T cells against melanoma antigens using dendritic cells loaded with killed allogeneic melanoma cells. J. Exp. Med. 192:1535–44 [Google Scholar]
  102. Huang FP, Platt N, Wykes M, Major JR, Powell TJ. 102.  et al. 2000. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J. Exp. Med. 191:435–43 [Google Scholar]
  103. Liu YJ. 103.  2005. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu. Rev. Immunol. 23:275–306 [Google Scholar]
  104. Heath WR, Carbone FR. 104.  2009. Dendritic cell subsets in primary and secondary T cell responses at body surfaces. Nat. Immunol. 10:1237–44 [Google Scholar]
  105. Bar-On L, Jung S. 105.  2010. Defining dendritic cells by conditional and constitutive cell ablation. Immunol. Rev. 234:76–89 [Google Scholar]
  106. Steinman RM, Banchereau J. 106.  2007. Taking dendritic cells into medicine. Nature 449:419–26 [Google Scholar]
  107. Cameron PU, Freudenthal PS, Barker JM, Gezelter S, Inaba K, Steinman RM. 107.  1992. Dendritic cells exposed to human immunodeficiency virus type-1 transmit a vigorous cytopathic infection to CD4+ T cells. Science 257:383–87 [Google Scholar]
  108. Pope M, Betjes MGH, Romani N, Hirmand H, Cameron PU. 108.  et al. 1994. Conjugates of dendritic cells and memory T lymphocytes from skin facilitate productive infection with HIV-1. Cell 78:389–98 [Google Scholar]
  109. Sela U, Olds P, Park A, Schlesinger SJ, Steinman RM. 109.  2011. Dendritic cells induce antigen-specific regulatory T cells that prevent graft versus host disease and persist in mice. J. Exp. Med. 208:2489–96 [Google Scholar]
  110. Thurner B, Haendle I, Röder C, Dieckmann D, Keikavoussi P. 110.  et al. 1999. Vaccination with Mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J. Exp. Med. 190:1669–78 [Google Scholar]
  111. Banchereau J, Palucka AK, Dhodapkar M, Burkeholder S, Taquet N. 111.  et al. 2001. Immune and clinical responses in patients with metastatic melanoma to CD34+ progenitor-derived dendritic cell vaccine. Cancer Res. 61:6451–58 [Google Scholar]
  112. Hsu FJ, Benike C, Fagnoni F, Liles TM, Czerwinski D. 112.  et al. 1996. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat. Med. 2:52–58 [Google Scholar]
  113. Nestle FO, Banchereau J, Hart D. 113.  2001. Dendritic cells: on the move from bench to bedside. Nat. Med. 7:761–65 [Google Scholar]
  114. Figdor CG, De Vries IJ, Lesterhuis WJ, Melief CJ. 114.  2004. Dendritic cell immunotherapy: mapping the way. Nat. Med. 10:475–80 [Google Scholar]
  115. Small EJ, Fratesi P, Reese DM, Strang G, Laus R. 115.  et al. 2000. Immunotherapy of hormone-refractory prostate cancer with antigen-loaded dendritic cells. J. Clin. Oncol. 18:3894–903 [Google Scholar]
  116. Melief CJ. 116.  2008. Cancer immunotherapy by dendritic cells. Immunity 29:372–83 [Google Scholar]
  117. Tacken PJ, de Vries IJM, Torensma R, Figdor CG. 117.  2007. Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat. Rev. Immunol. 7:790–802 [Google Scholar]
  118. Zitvogel L, Kepp O, Kroemer G. 118.  2011. Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat. Rev. Clin. Oncol. 8:151–60 [Google Scholar]
  119. Crowley M, Inaba K, Steinman RM. 119.  1990. Dendritic cells are the principal cells in mouse spleen bearing immunogenic fragments of foreign proteins. J. Exp. Med. 172:383–86 [Google Scholar]
  120. Bonifaz LC, Bonnyay DP, Charalambous A, Darguste DI, Fujii S. 120.  et al. 2004. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J. Exp. Med. 199:815–24 [Google Scholar]
  121. Trumpfheller C, Finke JS, Lopez CB, Moran TM, Moltedo B. 121.  et al. 2006. Intensified and protective CD4+ T cell immunity in mice with anti-dendritic cell HIV gag fusion antibody vaccine. J. Exp. Med. 203:607–17 [Google Scholar]
  122. Trumpfheller C, Caskey M, Nchinda G, Longhi MP, Mizenina O. 122.  et al. 2008. The microbial mimic poly IC induces durable and protective CD4+ T cell immunity together with a dendritic cell targeted vaccine. Proc. Natl. Acad. Sci. USA 105:2574–79 [Google Scholar]
  123. Bozzacco L, Trumpfheller C, Siegal FP, Mehandru S, Markowitz M. 123.  et al. 2007. DEC-205 receptor on dendritic cells mediates presentation of HIV gag protein to CD8+ T cells in a spectrum of human MHC I haplotypes. Proc. Natl. Acad. Sci. USA 104:1289–94 [Google Scholar]
  124. Wang B, Kuroiwa JM, He LZ, Charalambous A, Keler T, Steinman RM. 124.  2009. The human cancer antigen mesothelin is more efficiently presented to the mouse immune system when targeted to the DEC-205/CD205 receptor on dendritic cells. Ann. NY Acad. Sci. 1174:6–17 [Google Scholar]
  125. Akira S, Takeda K, Kaisho T. 125.  2001. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol. 2:675–80 [Google Scholar]
  126. Stahl-Hennig C, Eisenblatter M, Jasny E, Rzehak T, Tenner-Racz K. 126.  et al. 2009. Synthetic double-stranded RNAs are adjuvants for the induction of T helper 1 and humoral immune responses to human papillomavirus in rhesus macaques. PLoS Pathog. 5:e1000373 [Google Scholar]
  127. Longhi MP, Trumpfheller C, Idoyaga J, Caskey M, Matos I. 127.  et al. 2009. Dendritic cells require a systemic type I interferon response to induce CD4+ Th1 immunity with poly IC as adjuvant. J. Exp. Med. 206:1589–602 [Google Scholar]
  128. Caskey M, Lefebvre F, Filali-Mouhim A, Cameron MJ, Goulet J-P. 128.  et al. 2011. Synthetic double-stranded RNA induces innate immune responses similar to a live viral vaccine in humans. J. Exp. Med. 208:2357–66 [Google Scholar]
  129. Pantel A, Cheong C, Dandamudi DB, Shrestha E, Mehandru S, Steinman RM. 129.  2011. A new synthetic TLR4 agonist, GLA, allows dendritic cells targeted with antigen to elicit Th1 T cell immunity in vivo. Eur. J. Immunol. doi: 10.1002/eji.20114185
  130. Vulink A, Radford KJ, Melief C, Hart DN. 130.  2008. Dendritic cells in cancer immunotherapy. Adv. Cancer Res. 99:363–407 [Google Scholar]
  131. Idoyaga J, Lubkin A, Fiorese C, Lahoud MH, Caminschi I. 131.  et al. 2011. Comparable T helper 1 (Th1) and CD8 T-cell immunity by targeting HIV gag p24 to CD8 dendritic cells within antibodies to Langerin, DEC205, and Clec9A. Proc. Natl. Acad. Sci. USA 108:2384–89 [Google Scholar]
  132. Flynn BJ, Kastenmüller K, Wille-Reece U, Tomaras GD, Alam SM. 132.  et al. 2011. Immunization with HIV Gag targeted to dendritic cells followed by recombinant NYVAC induces robust T cell immunity in nonhuman primates. Proc. Natl. Acad. Sci. USA 108:7131–36 [Google Scholar]
  133. Cheong C, Choi JH, Vitale L, He LZ, Trumpfheller C. 133.  et al. 2010. Improved cellular and humoral immune responses in vivo following targeting of HIV Gag to dendritic cells within human anti-human DEC205 monoclonal antibody. Blood 116:3828–38 [Google Scholar]
  134. Hemmi H, Idoyaga J, Suda K, Suda N, Kennedy K. 134.  et al. 2009. A new triggering receptor expressed on myeloid cells (Trem) family member, Trem-like 4, binds to dead cells and is a DNAX activation protein 12-linked marker for subsets of mouse macrophages and dendritic cells. J. Immunol. 182:1278–86 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error