1932

Abstract

Recent years have witnessed an emergence of interest in understanding metabolic changes associated with immune responses, termed immunometabolism. As oxygen is central to all aerobic metabolism, hypoxia is now recognized to contribute fundamentally to inflammatory and immune responses. Studies from a number of groups have implicated a prominent role for oxygen metabolism and hypoxia in innate immunity of healthy tissue (physiologic hypoxia) and during active inflammation (inflammatory hypoxia). This inflammatory hypoxia emanates from a combination of recruited inflammatory cells (e.g., neutrophils, eosinophils, and monocytes), high rates of oxidative metabolism, and the activation of multiple oxygen-consuming enzymes during inflammation. These localized shifts toward hypoxia have identified a prominent role for the transcription factor hypoxia-inducible factor (HIF) in the regulation of innate immunity. Such studies have provided new and enlightening insight into our basic understanding of immune mechanisms, and extensions of these findings have identified potential therapeutic targets. In this review, we summarize recent literature around the topic of innate immunity and mucosal hypoxia with a focus on transcriptional responses mediated by HIF.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-100819-121537
2020-04-26
2024-12-04
Loading full text...

Full text loading...

/deliver/fulltext/immunol/38/1/annurev-immunol-100819-121537.html?itemId=/content/journals/10.1146/annurev-immunol-100819-121537&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Mathis D, Shoelson SE. 2011. Immunometabolism: an emerging frontier. Nat. Rev. Immunol. 11:81–91
    [Google Scholar]
  2. 2. 
    Kominsky DJ, Campbell EL, Colgan SP 2010. Metabolic shifts in immunity and inflammation. J. Immunol. 184:4062–68
    [Google Scholar]
  3. 3. 
    Colgan SP, Taylor CT. 2010. Hypoxia: an alarm signal during intestinal inflammation. Nat. Rev. Gastroenterol. Hepatol. 7:281–87
    [Google Scholar]
  4. 4. 
    Lewis JS, Lee JA, Underwood JC, Harris AL, Lewis CE 1999. Macrophage responses to hypoxia: relevance to disease mechanisms. J. Leukoc. Biol. 66:889–900
    [Google Scholar]
  5. 5. 
    Fox CJ, Hammerman PS, Thompson CB 2005. Fuel feeds function: energy metabolism and the T-cell response. Nat. Rev. Immunol. 5:844–52
    [Google Scholar]
  6. 6. 
    Sitkovsky M, Lukashev D. 2005. Regulation of immune cells by local-tissue oxygen tension: HIF1α and adenosine receptors. Nat. Rev. Immunol. 5:712–21
    [Google Scholar]
  7. 7. 
    Karhausen J, Furuta GT, Tomaszewski JE, Johnson RS, Colgan SP, Haase VH 2004. Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis. J. Clin. Investig. 114:1098–106
    [Google Scholar]
  8. 8. 
    Shepherd AP. 1982. Metabolic control of intestinal oxygenation and blood flow. Fed. Proc. 41:2084–89
    [Google Scholar]
  9. 9. 
    Wang GL, Semenza GL. 1993. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. PNAS 90:4304–8
    [Google Scholar]
  10. 10. 
    Semenza GL, Roth PH, Fang HM, Wang GL 1994. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J. Biol. Chem. 269:23757–63
    [Google Scholar]
  11. 11. 
    Wang GL, Jiang BH, Rue EA, Semenza GL 1995. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular oxygen tension. PNAS 92:5510–14
    [Google Scholar]
  12. 12. 
    Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW et al. 1996. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell. Biol. 16:4604–13
    [Google Scholar]
  13. 13. 
    Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E et al. 1998. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev 12:149–62
    [Google Scholar]
  14. 14. 
    Furuta GT, Turner JR, Taylor CT, Hershberg RM, Comerford K et al. 2001. Hypoxia-inducible factor 1-dependent induction of intestinal trefoil factor protects barrier function during hypoxia. J. Exp. Med. 193:1027–34
    [Google Scholar]
  15. 15. 
    Comerford KM, Wallace TJ, Karhausen J, Louis NA, Montalto MC, Colgan SP 2002. Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res 62:3387–94
    [Google Scholar]
  16. 16. 
    Synnestvedt K, Furuta GT, Comerford KM, Louis N, Karhausen J et al. 2002. Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J. Clin. Investig. 110:993–1002
    [Google Scholar]
  17. 17. 
    Eltzschig HK, Ibla JC, Furuta GT, Leonard MO, Jacobson KA et al. 2003. Coordinated adenine nucleotide phosphohydrolysis and nucleoside signaling in posthypoxic endothelium: role of ectonucleotidases and adenosine A2B receptors. J. Exp. Med. 198:783–96
    [Google Scholar]
  18. 18. 
    Burrows N, Maxwell PH. 2017. Hypoxia and B cells. Exp. Cell Res. 356:197–203
    [Google Scholar]
  19. 19. 
    Phan AT, Goldrath AW. 2015. Hypoxia-inducible factors regulate T cell metabolism and function. Mol. Immunol. 68:527–35
    [Google Scholar]
  20. 20. 
    Tao JH, Barbi J, Pan F 2015. Hypoxia-inducible factors in T lymphocyte differentiation and function. A Review in the Theme: Cellular Responses to Hypoxia. Am. J. Physiol. Cell Physiol. 309:C580–89
    [Google Scholar]
  21. 21. 
    Taylor CT. 2008. Mitochondria and cellular oxygen sensing in the HIF pathway. Biochem. J. 409:19–26
    [Google Scholar]
  22. 22. 
    Campbell EL, Bruyninckx WJ, Kelly CJ, Glover LE, McNamee EN et al. 2014. Transmigrating neutrophils shape the mucosal microenvironment through localized oxygen depletion to influence resolution of inflammation. Immunity 40:66–77
    [Google Scholar]
  23. 23. 
    Masterson JC, Biette KA, Hammer JA, Nguyen N, Capocelli KE et al. 2019. Epithelial HIF-1α/claudin-1 axis regulates barrier dysfunction in eosinophilic esophagitis. J. Clin. Investig. 130:126744
    [Google Scholar]
  24. 24. 
    Xing D, Liu L, Marti GP, Zhang X, Reinblatt M et al. 2011. Hypoxia and hypoxia-inducible factor in the burn wound. Wound Repair Regen 19:205–13
    [Google Scholar]
  25. 25. 
    Fearon U, Canavan M, Biniecka M, Veale DJ 2016. Hypoxia, mitochondrial dysfunction and synovial invasiveness in rheumatoid arthritis. Nat. Rev. Rheumatol. 12:385–97
    [Google Scholar]
  26. 26. 
    Ng CT, Biniecka M, Kennedy A, McCormick J, Fitzgerald O et al. 2010. Synovial tissue hypoxia and inflammation in vivo. Ann. Rheum. Dis. 69:1389–95
    [Google Scholar]
  27. 27. 
    Aly S, Wagner K, Keller C, Malm S, Malzan A et al. 2006. Oxygen status of lung granulomas in Mycobacterium tuberculosis-infected mice. J. Pathol. 210:298–305
    [Google Scholar]
  28. 28. 
    Araujo AP, Arrais-Silva WW, Giorgio S 2012. Infection by Leishmania amazonensis in mice: a potential model for chronic hypoxia. Acta Histochem 114:797–804
    [Google Scholar]
  29. 29. 
    Worlitzsch D, Tarran R, Ulrich M, Schwab U, Cekici A et al. 2002. Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J. Clin. Investig. 109:317–25
    [Google Scholar]
  30. 30. 
    Wakefield AJ, Dhillon AP, Rowles PM, Sawyer AM, Pitilo RM et al. 1989. Pathogenesis of Crohn's disease: Multifocal gastrointestinal infarction. Lancet 2:1057–62
    [Google Scholar]
  31. 31. 
    Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC et al. 2015. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 17:662–71
    [Google Scholar]
  32. 32. 
    Rivera-Chavez F, Zhang LF, Faber F, Lopez CA, Byndloss MX et al. 2016. Depletion of butyrate-producing Clostridia from the gut microbiota drives an aerobic luminal expansion of Salmonella. . Cell Host Microbe 19:443–54
    [Google Scholar]
  33. 33. 
    Burman A, Kropski JA, Calvi CL, Serezani AP, Pascoalino BD et al. 2018. Localized hypoxia links ER stress to lung fibrosis through induction of C/EBP homologous protein. JCI Insight 3:e99543
    [Google Scholar]
  34. 34. 
    Taylor CT, Colgan SP. 2017. Regulation of immunity and inflammation by hypoxia in immunological niches. Nat. Rev. Immunol. 17:774–85
    [Google Scholar]
  35. 35. 
    Semenza GL. 2011. Regulation of metabolism by hypoxia-inducible factor 1. Cold Spring Harb. Symp. Quant. Biol. 2011:22–40
    [Google Scholar]
  36. 36. 
    Semenza GL. 2001. HIF-1, O2, and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell 107:1–3
    [Google Scholar]
  37. 37. 
    Tanimoto K, Makino Y, Pereira T, Poellinger L 2000. Mechanism of regulation of the hypoxia-inducible factor-1α by the von Hippel-Lindau tumor suppressor protein. EMBO J 19:4298–309
    [Google Scholar]
  38. 38. 
    Kaelin WG Jr., Ratcliffe PJ. 2008. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell 30:393–402
    [Google Scholar]
  39. 39. 
    Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O'Rourke J et al. 2001. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107:43–54
    [Google Scholar]
  40. 40. 
    Strowitzki MJ, Cummins EP, Taylor CT 2019. Protein hydroxylation by hypoxia-inducible factor (HIF) hydroxylases: unique or ubiquitous. ? Cells 8:384–406
    [Google Scholar]
  41. 41. 
    Lando D, Peet DJ, Whelan DA, Gorman JJ, Murray LW 2002. Asparagine hydroxylation of the HIF transactivation domain: a hypoxic switch. Science 295:858–61
    [Google Scholar]
  42. 42. 
    Eltzschig HK, Bratton DL, Colgan SP 2014. Targeting hypoxia signalling for the treatment of ischaemic and inflammatory diseases. Nat. Rev. Drug Discov. 13:852–69
    [Google Scholar]
  43. 43. 
    Hellwig-Burgel T, Rutkowski K, Metzen E, Fandrey J, Jelkmann W 1999. Interleukin-1β and tumor necrosis factor-α stimulate DNA binding of hypoxia-inducible factor-1. Blood 94:1561–7
    [Google Scholar]
  44. 44. 
    D'Ignazio L, Batie M, Rocha S 2017. Hypoxia and inflammation in cancer, focus on HIF and NF-κB. Biomedicines 5:21–44
    [Google Scholar]
  45. 45. 
    D'Ignazio L, Bandarra D, Rocha S 2016. NF-κB and HIF crosstalk in immune responses. FEBS J 283:413–24
    [Google Scholar]
  46. 46. 
    Colgan SP, Eltzschig HK. 2012. Adenosine and hypoxia-inducible factor signaling in intestinal injury and recovery. Annu. Rev. Physiol. 74:153–75
    [Google Scholar]
  47. 47. 
    Neish AS, Gewirtz AT, Zeng H, Young AN, Hobert ME et al. 2000. Prokaryotic regulation of epithelial responses by inhibition of IκB-α ubiquitination. Science 289:1560–63
    [Google Scholar]
  48. 48. 
    Read MA, Brownell JE, Gladysheva TB, Hottelet M, Parent LA et al. 2000. Nedd8 modification of cul-1 activates SCFβTrCP-dependent ubiquitination of IκBα. Mol. Cell. Biol. 20:2326–33
    [Google Scholar]
  49. 49. 
    Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC et al. 1999. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271–75
    [Google Scholar]
  50. 50. 
    Wada H, Yeh ET, Kamitani T 1999. Identification of NEDD8-conjugation site in human cullin-2. Biochem. Biophys. Res. Commun. 257:100–5
    [Google Scholar]
  51. 51. 
    Liakopoulos D, Busgen T, Brychzy A, Jentsch S, Pause A 1999. Conjugation of the ubiquitin-like protein NEDD8 to cullin-2 is linked to von Hippel-Lindau tumor suppressor function. PNAS 96:5510–15
    [Google Scholar]
  52. 52. 
    Sufan RI, Ohh M. 2006. Role of the NEDD8 modification of Cul2 in the sequential activation of ECV complex. Neoplasia 8:956–63
    [Google Scholar]
  53. 53. 
    Mendoza HM, Shen LN, Botting C, Lewis A, Chen J et al. 2003. NEDP1, a highly conserved cysteine protease that deNEDDylates Cullins. J. Biol. Chem. 278:25637–43
    [Google Scholar]
  54. 54. 
    Wu K, Yamoah K, Dolios G, Gan-Erdene T, Tan P et al. 2003. DEN1 is a dual function protease capable of processing the C terminus of Nedd8 and deconjugating hyper-neddylated CUL1. J. Biol. Chem. 278:28882–91
    [Google Scholar]
  55. 55. 
    Hartmann H, Eltzschig HK, Wurz H, Hantke K, Rakin A et al. 2008. Hypoxia-independent activation of HIF-1 by Enterobacteriaceae and their siderophores. Gastroenterology 134:756–67
    [Google Scholar]
  56. 56. 
    Holden VI, Lenio S, Kuick R, Ramakrishnan SK, Shah YM, Bachman MA 2014. Bacterial siderophores that evade or overwhelm lipocalin 2 induce hypoxia inducible factor 1α and proinflammatory cytokine secretion in cultured respiratory epithelial cells. Infect. Immun. 82:3826–36
    [Google Scholar]
  57. 57. 
    Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ 2008. The role of butyrate on colonic function. Aliment Pharmacol. Ther. 27:104–19
    [Google Scholar]
  58. 58. 
    Zheng L, Kelly CJ, Battista KD, Schaefer R, Lanis JM et al. 2017. Microbial-derived butyrate promotes epithelial barrier function through IL-10 receptor-dependent repression of claudin-2. J. Immunol. 199:2976–84
    [Google Scholar]
  59. 59. 
    Hirota SA, Fines K, Ng J, Traboulsi D, Lee J et al. 2010. Hypoxia-inducible factor signaling provides protection in Clostridium difficile-induced intestinal injury. Gastroenterology 139:259–69.e3
    [Google Scholar]
  60. 60. 
    Taylor CT, McElwain JC. 2010. Ancient atmospheres and the evolution of oxygen sensing via the hypoxia-inducible factor in metazoans. Physiology 25:272–79
    [Google Scholar]
  61. 61. 
    Wang L, Cui S, Ma L, Kong L, Geng X 2015. Current advances in the novel functions of hypoxia-inducible factor and prolyl hydroxylase in invertebrates. Insect Mol. Biol. 24:634–48
    [Google Scholar]
  62. 62. 
    Zhou D, Haddad GG. 2013. Genetic analysis of hypoxia tolerance and susceptibility in Drosophila and humans. Annu. Rev. Genom. Hum. Genet. 14:25–43
    [Google Scholar]
  63. 63. 
    Bellier A, Chen CS, Kao CY, Cinar HN, Aroian RV 2009. Hypoxia and the hypoxic response pathway protect against pore-forming toxins in C. elegans. . PLOS Pathog 5:e1000689
    [Google Scholar]
  64. 64. 
    Luhachack LG, Visvikis O, Wollenberg AC, Lacy-Hulbert A, Stuart LM, Irazoqui JE 2012. EGL-9 controls C. elegans host defense specificity through prolyl hydroxylation-dependent and -independent HIF-1 pathways. PLOS Pathog 8:e1002798
    [Google Scholar]
  65. 65. 
    Shao Z, Zhang Y, Ye Q, Saldanha JN, Powell-Coffman JA 2010. C. elegans SWAN-1 binds to EGL-9 and regulates HIF-1-mediated resistance to the bacterial pathogen Pseudomonas aeruginosa PAO1. PLOS Pathog 6:e1001075
    [Google Scholar]
  66. 66. 
    Eltzschig HK, Carmeliet P. 2011. Hypoxia and inflammation. N. Engl. J. Med. 364:656–65
    [Google Scholar]
  67. 67. 
    Crotty Alexander LE, Akong-Moore K, Feldstein S, Johansson P, Nguyen A et al. 2013. Myeloid cell HIF-1α regulates asthma airway resistance and eosinophil function. J. Mol. Med. 91:637–44
    [Google Scholar]
  68. 68. 
    Palazon A, Goldrath A, Nizet V, Johnson RS 2014. HIF transcription factors, inflammation, and immunity. Immunity 41:518–28
    [Google Scholar]
  69. 69. 
    Peyssonnaux C, Datta V, Cramer T, Doedens A, Theodorakis EA et al. 2005. HIF-1α expression regulates the bactericidal capacity of phagocytes. J. Clin. Investig. 115:1806–15
    [Google Scholar]
  70. 70. 
    Cramer T, Yamanishi Y, Clausen BE, Forster I, Pawlinski R et al. 2003. HIF-1α is essential for myeloid cell-mediated inflammation. Cell 112:645–57
    [Google Scholar]
  71. 71. 
    Zemans RL, Briones N, Campbell M, McClendon J, Young SK et al. 2011. Neutrophil transmigration triggers repair of the lung epithelium via β-catenin signaling. PNAS 108:15990–95
    [Google Scholar]
  72. 72. 
    Peyssonnaux C, Boutin AT, Zinkernagel AS, Datta V, Nizet V, Johnson RS 2008. Critical role of HIF-1α in keratinocyte defense against bacterial infection. J. Investig. Dermatol. 128:1964–68
    [Google Scholar]
  73. 73. 
    Leire E, Olson J, Isaacs H, Nizet V, Hollands A 2013. Role of hypoxia inducible factor-1 in keratinocyte inflammatory response and neutrophil recruitment. J. Inflamm. 10:28–36
    [Google Scholar]
  74. 74. 
    Owings RA, Boerma M, Wang J, Berbee M, Laderoute KR et al. 2009. Selective deficiency of HIF-1α in myeloid cells influences secondary intention wound healing in mouse skin. In Vivo 23:879–84
    [Google Scholar]
  75. 75. 
    Jann NJ, Schmaler M, Kristian SA, Radek KA, Gallo RL et al. 2009. Neutrophil antimicrobial defense against Staphylococcus aureus is mediated by phagolysosomal but not extracellular trap-associated cathelicidin. J. Leukoc. Biol. 86:1159–69
    [Google Scholar]
  76. 76. 
    Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y et al. 2004. Neutrophil extracellular traps kill bacteria. Science 303:1532–35
    [Google Scholar]
  77. 77. 
    Remijsen Q, Kuijpers TW, Wirawan E, Lippens S, Vandenabeele P, Vanden Berghe T 2011. Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality. Cell Death Differ 18:581–88
    [Google Scholar]
  78. 78. 
    Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I et al. 2007. Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 176:231–41
    [Google Scholar]
  79. 79. 
    Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A 2010. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J. Cell Biol. 191:677–91
    [Google Scholar]
  80. 80. 
    McInturff AM, Cody MJ, Elliott EA, Glenn JW, Rowley JW et al. 2012. Mammalian target of rapamycin regulates neutrophil extracellular trap formation via induction of hypoxia-inducible factor 1 α. Blood 120:3118–25
    [Google Scholar]
  81. 81. 
    Netea MG, Quintin J, van der Meer JW 2011. Trained immunity: a memory for innate host defense. Cell Host Microbe 9:355–61
    [Google Scholar]
  82. 82. 
    Mulder WJM, Ochando J, Joosten LAB, Fayad ZA, Netea MG 2019. Therapeutic targeting of trained immunity. Nat. Rev. Drug Discov. 18:553–66
    [Google Scholar]
  83. 83. 
    Walmsley SR, Chilvers ER, Thompson AA, Vaughan K, Marriott HM et al. 2011. Prolyl hydroxylase 3 (PHD3) is essential for hypoxic regulation of neutrophilic inflammation in humans and mice. J. Clin. Investig. 121:1053–63
    [Google Scholar]
  84. 84. 
    Thompson AA, Elks PM, Marriott HM, Eamsamarng S, Higgins KR et al. 2014. Hypoxia-inducible factor 2α regulates key neutrophil functions in humans, mice, and zebrafish. Blood 123:366–76
    [Google Scholar]
  85. 85. 
    Domblides C, Lartigue L, Faustin B 2018. Metabolic stress in the immune function of T cells, macrophages and dendritic cells. Cells 7:7e7070068
    [Google Scholar]
  86. 86. 
    Haschemi A, Kosma P, Gille L, Evans CR, Burant CF et al. 2012. The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism. Cell Metab 15:813–26
    [Google Scholar]
  87. 87. 
    Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF et al. 2013. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496:238–42
    [Google Scholar]
  88. 88. 
    Takeda N, O'Dea EL, Doedens A, Kim JW, Weidemann A et al. 2010. Differential activation and antagonistic function of HIF-α isoforms in macrophages are essential for NO homeostasis. Genes Dev 24:491–501
    [Google Scholar]
  89. 89. 
    Elia AR, Cappello P, Puppo M, Fraone T, Vanni C et al. 2008. Human dendritic cells differentiated in hypoxia down-modulate antigen uptake and change their chemokine expression profile. J. Leukoc. Biol. 84:1472–82
    [Google Scholar]
  90. 90. 
    Mancino A, Schioppa T, Larghi P, Pasqualini F, Nebuloni M et al. 2008. Divergent effects of hypoxia on dendritic cell functions. Blood 112:3723–34
    [Google Scholar]
  91. 91. 
    Ricciardi A, Elia AR, Cappello P, Puppo M, Vanni C et al. 2008. Transcriptome of hypoxic immature dendritic cells: modulation of chemokine/receptor expression. Mol. Cancer Res. 6:175–85
    [Google Scholar]
  92. 92. 
    Flück K, Breves G, Fandrey J, Winning S 2016. Hypoxia-inducible factor 1 in dendritic cells is crucial for the activation of protective regulatory T cells in murine colitis. Mucosal Immunol 9:379–90
    [Google Scholar]
  93. 93. 
    Liu J, Zhang X, Chen K, Cheng Y, Liu S et al. 2019. CCR7 chemokine receptor-inducible lnc-Dpf3 restrains dendritic cell migration by inhibiting HIF-1α-mediated glycolysis. Immunity 50:600–15
    [Google Scholar]
  94. 94. 
    Bagadia P, Huang X, Liu T, Murphy KM 2019. Shared transcriptional control of innate lymphoid cell and dendritic cell development. Annu. Rev. Cell Dev. Biol. 15:16–42
    [Google Scholar]
  95. 95. 
    Li Q, Li D, Zhang X, Wan Q, Zhang W et al. 2018. E3 ligase VHL promotes group 2 innate lymphoid cell maturation and function via glycolysis inhibition and induction of interleukin-33 receptor. Immunity 48:258–70
    [Google Scholar]
  96. 96. 
    Allaire JM, Crowley SM, Law HT, Chang SY, Ko HJ, Vallance BA 2018. The intestinal epithelium: central coordinator of mucosal immunity. Trends Immunol 39:677–96
    [Google Scholar]
  97. 97. 
    Koch S, Nusrat A. 2012. The life and death of epithelia during inflammation: lessons learned from the gut. Annu. Rev. Pathol. 7:35–60
    [Google Scholar]
  98. 98. 
    Diamond JM. 1977. Twenty-first Bowditch lecture. The epithelial junction: bridge, gate, and fence. Physiologist 20:8–10
    [Google Scholar]
  99. 99. 
    Cummins EP, Crean D. 2017. Hypoxia and inflammatory bowel disease. Microbes Infect 19:210–21
    [Google Scholar]
  100. 100. 
    Flück K, Fandrey J. 2016. Oxygen sensing in intestinal mucosal inflammation. Pflugers Arch 468:77–84
    [Google Scholar]
  101. 101. 
    Glover LE, Colgan SP. 2017. Epithelial barrier regulation by hypoxia-inducible factor. Ann. Am. Thorac. Soc. 14:S233–36
    [Google Scholar]
  102. 102. 
    Linden SK, Sutton P, Karlsson NG, Korolik V, McGuckin MA 2008. Mucins in the mucosal barrier to infection. Mucosal Immunol 1:183–97
    [Google Scholar]
  103. 103. 
    Atuma C, Strugala V, Allen A, Holm L 2001. The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am. J. Physiol. Gastrointest. Liver Physiol. 280:G922–29
    [Google Scholar]
  104. 104. 
    Strugala V, Allen A, Dettmar PW, Pearson JP 2003. Colonic mucin: methods of measuring mucus thickness. Proc. Nutr. Soc. 62:237–43
    [Google Scholar]
  105. 105. 
    Young HW, Williams OW, Chandra D, Bellinghausen LK, Perez G et al. 2007. Central role of Muc5ac expression in mucous metaplasia and its regulation by conserved 5′ elements. Am. J. Respir. Cell Mol. Biol. 37:273–90
    [Google Scholar]
  106. 106. 
    Louis NA, Hamilton KE, Canny G, Shekels LL, Ho SB, Colgan SP 2006. Selective induction of mucin-3 by hypoxia in intestinal epithelia. J. Cell Biochem. 99:1616–27
    [Google Scholar]
  107. 107. 
    Antoni L, Nuding S, Weller D, Gersemann M, Ott G et al. 2013. Human colonic mucus is a reservoir for antimicrobial peptides. J. Crohns Colitis 7:e652–64
    [Google Scholar]
  108. 108. 
    Ganz T. 2003. Defensins: antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 3:710–20
    [Google Scholar]
  109. 109. 
    Pazgier M, Hoover DM, Yang D, Lu W, Lubkowski J 2006. Human β-defensins. Cell Mol. Life Sci. 63:1294–313
    [Google Scholar]
  110. 110. 
    Zheng L, Kelly CJ, Colgan SP 2015. Physiologic hypoxia and oxygen homeostasis in the healthy intestine. A Review in the Theme: Cellular Responses to Hypoxia. Am. J. Physiol. Cell Physiol. 309:C350–60
    [Google Scholar]
  111. 111. 
    Kelly CJ, Glover LE, Campbell EL, Kominsky DJ, Ehrentraut SF et al. 2013. Fundamental role for HIF-1α in constitutive expression of human β defensin-1. Mucosal Immunol 6:1110–18
    [Google Scholar]
  112. 112. 
    Peyrin-Biroulet L, Beisner J, Wang G, Nuding S, Oommen ST et al. 2010. Peroxisome proliferator-activated receptor gamma activation is required for maintenance of innate antimicrobial immunity in the colon. PNAS 107:8772–77
    [Google Scholar]
  113. 113. 
    Kocsis AK, Lakatos PL, Somogyvari F, Fuszek P, Papp J et al. 2008. Association of beta-defensin 1 single nucleotide polymorphisms with Crohn's disease. Scand. J. Gastroenterol. 43:299–307
    [Google Scholar]
  114. 114. 
    Wehkamp J, Harder J, Weichenthal M, Mueller O, Herrlinger KR et al. 2003. Inducible and constitutive beta-defensins are differentially expressed in Crohn's disease and ulcerative colitis. Inflamm. Bowel Dis. 9:215–23
    [Google Scholar]
  115. 115. 
    Schaefer AS, Richter GM, Nothnagel M, Laine ML, Ruhling A et al. 2010. A 3′ UTR transition within DEFB1 is associated with chronic and aggressive periodontitis. Genes Immun 11:45–54
    [Google Scholar]
  116. 116. 
    Jurevic RJ, Bai M, Chadwick RB, White TC, Dale BA 2003. Single-nucleotide polymorphisms (SNPs) in human β-defensin 1: high-throughput SNP assays and association with Candida carriage in type I diabetics and nondiabetic controls. J. Clin. Microbiol. 41:90–96
    [Google Scholar]
  117. 117. 
    Okumura CY, Hollands A, Tran DN, Olson J, Dahesh S et al. 2012. A new pharmacological agent (AKB-4924) stabilizes hypoxia inducible factor-1 (HIF-1) and increases skin innate defenses against bacterial infection. J. Mol. Med. 90:1079–89
    [Google Scholar]
  118. 118. 
    Levine B. 2005. Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell 120:159–62
    [Google Scholar]
  119. 119. 
    Levine B, Mizushima N, Virgin HW 2011. Autophagy in immunity and inflammation. Nature 469:323–35
    [Google Scholar]
  120. 120. 
    Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D et al. 2009. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol. Cell. Biol. 29:2570–81
    [Google Scholar]
  121. 121. 
    Majmundar AJ, Wong WJ, Simon MC 2010. Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell 40:294–309
    [Google Scholar]
  122. 122. 
    Hampe J, Franke A, Rosenstiel P, Till A, Teuber M et al. 2007. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat. Genet 39:207–11
    [Google Scholar]
  123. 123. 
    Rioux JD, Xavier RJ, Taylor KD, Silverberg MS, Goyette P et al. 2007. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat. Genet. 39:596–604
    [Google Scholar]
  124. 124. 
    McCarroll SA, Huett A, Kuballa P, Chilewski SD, Landry A et al. 2008. Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn's disease. Nat. Genet. 40:1107–12
    [Google Scholar]
  125. 125. 
    Parkes M, Barrett JC, Prescott NJ, Tremelling M, Anderson CA et al. 2007. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility. Nat. Genet. 39:830–32
    [Google Scholar]
  126. 126. 
    Benjamin JL, Sumpter R Jr., Levine B, Hooper LV 2013. Intestinal epithelial autophagy is essential for host defense against invasive bacteria. Cell Host Microbe 13:723–34
    [Google Scholar]
  127. 127. 
    Conway KL, Kuballa P, Song JH, Patel KK, Castoreno AB et al. 2013. Atg16l1 is required for autophagy in intestinal epithelial cells and protection of mice from Salmonella infection. Gastroenterology 145:1347–57
    [Google Scholar]
  128. 128. 
    Brazil JC, Quiros M, Nusrat A, Parkos CA 2019. Innate immune cell-epithelial crosstalk during wound repair. J. Clin. Investig. 130:124618
    [Google Scholar]
  129. 129. 
    Buckley A, Turner JR. 2018. Cell biology of tight junction barrier regulation and mucosal disease. Cold Spring Harb. Perspect. Biol. 10:a029314
    [Google Scholar]
  130. 130. 
    Suzuki T. 2013. Regulation of intestinal epithelial permeability by tight junctions. Cell Mol. Life Sci. 70:631–59
    [Google Scholar]
  131. 131. 
    Blevins CH, Iyer PG, Vela MF, Katzka DA 2018. The esophageal epithelial barrier in health and disease. Clin. Gastroenterol. Hepatol. 16:608–17
    [Google Scholar]
  132. 132. 
    Basler K, Bergmann S, Heisig M, Naegel A, Zorn-Kruppa M, Brandner JM 2016. The role of tight junctions in skin barrier function and dermal absorption. J. Control. Release 242:105–18
    [Google Scholar]
  133. 133. 
    Madison KC. 2003. Barrier function of the skin: “la raison d'être” of the epidermis. J. Invest. Dermatol. 121:231–41
    [Google Scholar]
  134. 134. 
    Georas SN, Rezaee F. 2014. Epithelial barrier function: at the front line of asthma immunology and allergic airway inflammation. J. Allergy Clin. Immunol. 134:509–20
    [Google Scholar]
  135. 135. 
    Manresa MC, Taylor CT. 2017. Hypoxia inducible factor (HIF) hydroxylases as regulators of intestinal epithelial barrier function. Cell Mol. Gastroenterol. Hepatol. 3:303–15
    [Google Scholar]
  136. 136. 
    Saeedi BJ, Kao DJ, Kitzenberg DA, Dobrinskikh E, Schwisow KD et al. 2015. HIF-dependent regulation of claudin-1 is central to intestinal epithelial tight junction integrity. Mol. Biol. Cell 26:2252–62
    [Google Scholar]
  137. 137. 
    Tambuwala MM, Cummins EP, Lenihan CR, Kiss J, Stauch M et al. 2010. Loss of prolyl hydroxylase-1 protects against colitis through reduced epithelial cell apoptosis and increased barrier function. Gastroenterology 2010:30
    [Google Scholar]
  138. 138. 
    Jiang X, Tian W, Tu AB, Pasupneti S, Shuffle E et al. 2019. Endothelial hypoxia-inducible factor-2α is required for the maintenance of airway microvasculature. Circulation 139:502–17
    [Google Scholar]
  139. 139. 
    McClendon J, Jansing NL, Redente EF, Gandjeva A, Ito Y et al. 2017. Hypoxia-inducible factor 1α signaling promotes repair of the alveolar epithelium after acute lung injury. Am. J. Pathol. 187:1772–86
    [Google Scholar]
  140. 140. 
    Olson N, Hristova M, Heintz NH, Lounsbury KM, van der Vliet A 2011. Activation of hypoxia-inducible factor-1 protects airway epithelium against oxidant-induced barrier dysfunction. Am. J. Physiol. Lung. Cell Mol. Physiol. 301:L993–1002
    [Google Scholar]
  141. 141. 
    Tojo K, Tamada N, Nagamine Y, Yazawa T, Ota S, Goto T 2018. Enhancement of glycolysis by inhibition of oxygen-sensing prolyl hydroxylases protects alveolar epithelial cells from acute lung injury. FASEB J 32:2258–68
    [Google Scholar]
  142. 142. 
    Manresa MC, Smith L, Casals-Diaz L, Fagundes RR, Brown E et al. 2019. Pharmacologic inhibition of hypoxia-inducible factor (HIF)-hydroxylases ameliorates allergic contact dermatitis. Allergy 74:753–66
    [Google Scholar]
  143. 143. 
    Riera Romo M, Perez-Martinez D, Castillo Ferrer C 2016. Innate immunity in vertebrates: an overview. Immunology 148:125–39
    [Google Scholar]
  144. 144. 
    Birchenough GM, Johansson ME, Gustafsson JK, Bergstrom JH, Hansson GC 2015. New developments in goblet cell mucus secretion and function. Mucosal Immunol 8:712–19
    [Google Scholar]
  145. 145. 
    Sands BE, Podolsky DK. 1996. The trefoil peptide family. Annu. Rev. Physiol. 58:253–73
    [Google Scholar]
  146. 146. 
    Ostaff MJ, Stange EF, Wehkamp J 2013. Antimicrobial peptides and gut microbiota in homeostasis and pathology. EMBO Mol. Med. 5:1465–83
    [Google Scholar]
  147. 147. 
    Zhang LJ, Gallo RL. 2016. Antimicrobial peptides. Curr. Biol. 26:R14–19
    [Google Scholar]
  148. 148. 
    Viswanathan VK, Hodges K, Hecht G 2009. Enteric infection meets intestinal function: how bacterial pathogens cause diarrhoea. Nat. Rev. Microbiol. 7:110–19
    [Google Scholar]
  149. 149. 
    Han S, Mallampalli RK. 2015. The role of surfactant in lung disease and host defense against pulmonary infections. Ann. Am. Thorac. Soc. 12:765–74
    [Google Scholar]
  150. 150. 
    Sakamoto K, Hashimoto N, Kondoh Y, Imaizumi K, Aoyama D et al. 2012. Differential modulation of surfactant protein D under acute and persistent hypoxia in acute lung injury. Am. J. Physiol. Lung. Cell Mol. Physiol. 303:L43–53
    [Google Scholar]
  151. 151. 
    Schaible B, Schaffer K, Taylor CT 2010. Hypoxia, innate immunity and infection in the lung. Respir. Physiol. Neurobiol. 174:235–43 https://doi.org/10.1016/j.resp.2010.08.006
    [Crossref] [Google Scholar]
  152. 152. 
    Albenberg L, Esipova TV, Judge CP, Bittinger K, Chen J et al. 2014. Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota. Gastroenterology 18:1055–63
    [Google Scholar]
  153. 153. 
    Haase VH. 2017. HIF-prolyl hydroxylases as therapeutic targets in erythropoiesis and iron metabolism. Hemodial. Int. 21:S110–24
    [Google Scholar]
  154. 154. 
    Tambuwala MM, Manresa MC, Cummins EP, Aversa V, Coulter IS, Taylor CT 2015. Targeted delivery of the hydroxylase inhibitor DMOG provides enhanced efficacy with reduced systemic exposure in a murine model of colitis. J. Control. Release 217:221–27
    [Google Scholar]
  155. 155. 
    Lee JW, Ko J, Ju C, Eltzschig HK 2019. Hypoxia signaling in human diseases and therapeutic targets. Exp. Mol. Med. 51:68
    [Google Scholar]
  156. 156. 
    Cummins EP, Seeballuck F, Keely SJ, Mangan NE, Callanan JJ et al. 2008. The hydroxylase inhibitor dimethyloxalylglycine is protective in a murine model of colitis. Gastroenterology 134:156–65
    [Google Scholar]
  157. 157. 
    Robinson A, Keely S, Karhausen J, Gerich ME, Furuta GT, Colgan SP 2008. Mucosal protection by hypoxia-inducible factor prolyl hydroxylase inhibition. Gastroenterology 134:145–55
    [Google Scholar]
  158. 158. 
    Hindryckx P, De Vos M, Jacques P, Ferdinande L, Peeters H et al. 2010. Hydroxylase inhibition abrogates TNF-α–induced intestinal epithelial damage by hypoxia-inducible factor-1–dependent repression of FADD. J. Immunol. 185:6306–16
    [Google Scholar]
  159. 159. 
    Keely S, Campbell EL, Baird AW, Hansbro PM, Shalwitz RA et al. 2014. Contribution of epithelial innate immunity to systemic protection afforded by prolyl hydroxylase inhibition in murine colitis. Mucosal Immunol 7:114–23
    [Google Scholar]
  160. 160. 
    Soucy TA, Smith PG, Milhollen MA, Berger AJ, Gavin JM et al. 2009. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 458:732–36
    [Google Scholar]
  161. 161. 
    Curtis VF, Ehrentraut SF, Campbell EL, Glover LE, Bayless AJ et al. 2015. Stabilization of HIF through inhibition of Cullin-2 neddylation is protective in mucosal inflammatory responses. FASEB J 29:208–15
    [Google Scholar]
  162. 162. 
    Ehrentraut SF, Curtis VF, Wang RX, Saeedi BJ, Ehrentraut H et al. 2016. Perturbation of neddylation-dependent NF-κB responses in the intestinal epithelium drives apoptosis and inhibits resolution of mucosal inflammation. Mol. Biol. Cell 27:3687–94
    [Google Scholar]
  163. 163. 
    Chen W, Hill H, Christie A, Kim MS, Holloman E et al. 2016. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature 539:112–17
    [Google Scholar]
  164. 164. 
    Xu R, Wang K, Rizzi JP, Huang H, Grina JA et al. 2019. 3-[(1S,2S,3R)-2,3-Difluoro-1-hydroxy-7-methylsulfonylindan-4-yl]oxy-5-fluorobenzonitrile (PT2977), a hypoxia-inducible factor 2α (HIF-2α) inhibitor for the treatment of clear cell renal cell carcinoma. J. Med. Chem. 62:6876–93
    [Google Scholar]
  165. 165. 
    Xue X, Ramakrishnan S, Anderson E, Taylor M, Zimmermann EM et al. 2013. Endothelial PAS domain protein 1 activates the inflammatory response in the intestinal epithelium to promote colitis in mice. Gastroenterology 145:831–41
    [Google Scholar]
  166. 166. 
    Hindryckx P, Laukens D, De Vos M 2011. Boosting the hypoxia-induced adaptive response in inflammatory bowel disease: a novel concept of treatment. Inflamm. Bowel Dis. 17:2019–22
    [Google Scholar]
  167. 167. 
    Taniguchi CM, Miao YR, Diep AN, Wu C, Rankin EB et al. 2014. PHD inhibition mitigates and protects against radiation-induced gastrointestinal toxicity via HIF2. Sci. Transl. Med. 6:236–42
    [Google Scholar]
  168. 168. 
    Marchbank T, Mahmood A, Harten S, Maxwell PH, Playford RJ 2011. Dimethyloxalyglycine stimulates the early stages of gastrointestinal repair processes through VEGF-dependent mechanisms. Lab. Invest. 91:1684–94 https://doi.org/10.1038/labinvest.2011.129
    [Crossref] [Google Scholar]
  169. 169. 
    Schaible B, McClean S, Selfridge A, Broquet A, Asehnoune K et al. 2013. Hypoxia modulates infection of epithelial cells by Pseudomonas aeruginosa. . PLOS ONE 8:e56491
    [Google Scholar]
  170. 170. 
    Shang L, Kang W, Li S, Ge S 2019. Prolyl hydroxylase inhibitor DMOG suppressed inflammatory cytokine production in human gingival fibroblasts stimulated with Fusobacterium nucleatum. Clin. Oral. Investig 23:3123–32
    [Google Scholar]
  171. 171. 
    Hirai K, Furusho H, Hirota K, Sasaki H 2018. Activation of hypoxia-inducible factor 1 attenuates periapical inflammation and bone loss. Int. J. Oral. Sci. 10:12–20
    [Google Scholar]
  172. 172. 
    Laitakari A, Ollonen T, Kietzmann T, Walkinshaw G, Mennerich D et al. 2019. Systemic inactivation of hypoxia-inducible factor prolyl 4-hydroxylase 2 in mice protects from alcohol-induced fatty liver disease. Redox Biol 22:101145
    [Google Scholar]
  173. 173. 
    Gupta R, Chaudhary AR, Shah BN, Jadhav AV, Zambad SP et al. 2014. Therapeutic treatment with a novel hypoxia-inducible factor hydroxylase inhibitor (TRC160334) ameliorates murine colitis. Clin. Exp. Gastroenterol. 7:13–23
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-100819-121537
Loading
/content/journals/10.1146/annurev-immunol-100819-121537
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error