1932

Abstract

Alphaviruses are emerging and reemerging viruses that cause disease syndromes ranging from incapacitating arthritis to potentially fatal encephalitis. While infection by arthritogenic and encephalitic alphaviruses results in distinct clinical manifestations, both virus groups induce robust innate and adaptive immune responses. However, differences in cellular tropism, type I interferon induction, immune cell recruitment, and B and T cell responses result in differential disease progression and outcome. In this review, we discuss aspects of immune responses that contribute to protective or pathogenic outcomes after alphavirus infection.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-101220-014952
2022-04-26
2024-06-17
Loading full text...

Full text loading...

/deliver/fulltext/immunol/40/1/annurev-immunol-101220-014952.html?itemId=/content/journals/10.1146/annurev-immunol-101220-014952&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Weaver SC, Barrett AD. 2004. Transmission cycles, host range, evolution and emergence of arboviral disease. Nat. Rev. Microbiol. 2:789–801
    [Google Scholar]
  2. 2. 
    Leung JY, Ng MM, Chu JJ. 2011. Replication of alphaviruses: a review on the entry process of alphaviruses into cells. Adv. Virol. 2011:249640
    [Google Scholar]
  3. 3. 
    Li L, Jose J, Xiang Y, Kuhn RJ, Rossmann MG. 2010. Structural changes of envelope proteins during alphavirus fusion. Nature 468:705–8
    [Google Scholar]
  4. 4. 
    Weaver SC, Winegar R, Manger ID, Forrester NL 2012. Alphaviruses: population genetics and determinants of emergence. Antivir. Res. 94:242–57
    [Google Scholar]
  5. 5. 
    Levi LI, Vignuzzi M. 2019. Arthritogenic alphaviruses: a worldwide emerging threat?. Microorganisms 7:133
    [Google Scholar]
  6. 6. 
    Endy TP 2020. Viral febrile illnesses and emerging pathogens. Hunter's Tropical Medicine and Emerging Infectious Diseases ET Ryan, DR Hill, T Solomon, NE Aronson, TP Endy 325–50 London: Elsevier. , 10th ed..
    [Google Scholar]
  7. 7. 
    Zacks MA, Paessler S. 2010. Encephalitic alphaviruses. Vet. Microbiol. 140:281–86
    [Google Scholar]
  8. 8. 
    Guzmán-Terán C, Calderón-Rangel A, Rodriguez-Morales A, Mattar S. 2020. Venezuelan equine encephalitis virus: the problem is not over for tropical America. Ann. Clin. Microbiol. Antimicrob. 19:19
    [Google Scholar]
  9. 9. 
    Yactayo S, Staples JE, Millot V, Cibrelus L, Ramon-Pardo P. 2016. Epidemiology of chikungunya in the Americas. J. Infect. Dis. 214:S441–45
    [Google Scholar]
  10. 10. 
    Mehta R, Gerardin P, de Brito CAA, Soares CN, Ferreira MLB, Solomon T. 2018. The neurological complications of chikungunya virus: a systematic review. Rev. Med. Virol. 28:e1978
    [Google Scholar]
  11. 11. 
    Atkins GJ. 2013. The pathogenesis of alphaviruses. ISRN Virol 2013:861912
    [Google Scholar]
  12. 12. 
    Ronca SE, Dineley KT, Paessler S. 2016. Neurological sequelae resulting from encephalitic alphavirus infection. Front. Microbiol. 7:959
    [Google Scholar]
  13. 13. 
    Zaid A, Burt FJ, Liu X, Poo YS, Zandi K et al. 2021. Arthritogenic alphaviruses: epidemiological and clinical perspective on emerging arboviruses. Lancet Infect. Dis. 21:e123–33
    [Google Scholar]
  14. 14. 
    Seyler T, Hutin Y, Ramanchandran V, Ramakrishnan R, Manickam P, Murhekar M. 2010. Estimating the burden of disease and the economic cost attributable to chikungunya, Andhra Pradesh, India, 2005–2006. Trans. R. Soc. Trop. Med. Hyg. 104:133–38
    [Google Scholar]
  15. 15. 
    Forrester NL, Wertheim JO, Dugan VG, Auguste AJ, Lin D et al. 2017. Evolution and spread of Venezuelan equine encephalitis complex alphavirus in the Americas. PLOS Negl. Trop. Dis. 11:e0005693
    [Google Scholar]
  16. 16. 
    Cain MD, Salimi H, Gong Y, Yang L, Hamilton SL et al. 2017. Virus entry and replication in the brain precedes blood-brain barrier disruption during intranasal alphavirus infection. J. Neuroimmunol. 308:118–30
    [Google Scholar]
  17. 17. 
    Klein RS, Garber C, Funk KE, Salimi H, Soung A et al. 2019. Neuroinflammation during RNA viral infections. Annu. Rev. Immunol. 37:73–95
    [Google Scholar]
  18. 18. 
    Ronca SE, Smith J, Koma T, Miller MM, Yun N et al. 2017. Mouse model of neurological complications resulting from encephalitic alphavirus infection. Front. Microbiol. 8:188
    [Google Scholar]
  19. 19. 
    Suhrbier A, Jaffar-Bandjee M-C, Gasque P. 2012. Arthritogenic alphaviruses—an overview. Nat. Rev. Rheumatol. 8:420–29
    [Google Scholar]
  20. 20. 
    Haese NN, Broeckel RM, Hawman DW, Heise MT, Morrison TE, Streblow DN. 2016. Animal models of chikungunya virus infection and disease. J. Infect. Dis. 214:S482–87
    [Google Scholar]
  21. 21. 
    Sourisseau M, Schilte C, Casartelli N, Trouillet C, Guivel-Benhassine F et al. 2007. Characterization of reemerging chikungunya virus. PLOS Pathog 3:e89
    [Google Scholar]
  22. 22. 
    Schilte C, Couderc T, Chretien F, Sourisseau M, Gangneux N et al. 2010. Type I IFN controls chikungunya virus via its action on nonhematopoietic cells. J. Exp. Med. 207:429–42
    [Google Scholar]
  23. 23. 
    Matusali G, Colavita F, Bordi L, Lalle E, Ippolito G et al. 2019. Tropism of the chikungunya virus. Viruses 11:175
    [Google Scholar]
  24. 24. 
    Ozden S, Huerre M, Riviere J-P, Coffey LL, Afonso PV et al. 2007. Human muscle satellite cells as targets of chikungunya virus infection. PLOS ONE 2:e527
    [Google Scholar]
  25. 25. 
    Noret M, Herrero L, Rulli N, Rolph M, Smith PN et al. 2012. Interleukin 6, RANKL, and osteoprotegerin expression by chikungunya virus–infected human osteoblasts. J. Infect. Dis. 206:455–57
    [Google Scholar]
  26. 26. 
    Young AR, Locke MC, Cook LE, Hiller BE, Zhang R et al. 2019. Dermal and muscle fibroblasts and skeletal myofibers survive chikungunya virus infection and harbor persistent RNA. PLOS Pathog 15:e1007993
    [Google Scholar]
  27. 27. 
    Lentscher AJ, McCarthy MK, May NA, Davenport BJ, Montgomery SA et al. 2020. Chikungunya virus replication in skeletal muscle cells is required for disease development. J. Clin. Investig. 130:1466–78
    [Google Scholar]
  28. 28. 
    MacDonald GH, Johnston RE. 2000. Role of dendritic cell targeting in Venezuelan equine encephalitis virus pathogenesis. J. Virol. 74:914–22
    [Google Scholar]
  29. 29. 
    Gardner CL, Burke CW, Tesfay MZ, Glass PJ, Klimstra WB, Ryman KD. 2008. Eastern and Venezuelan equine encephalitis viruses differ in their ability to infect dendritic cells and macrophages: impact of altered cell tropism on pathogenesis. J. Virol. 82:10634–46
    [Google Scholar]
  30. 30. 
    Vogel P, Kell WM, Fritz DL, Parker MD, Schoepp RJ 2005. Early events in the pathogenesis of eastern equine encephalitis virus in mice. Am. J. Pathol. 166:159–71
    [Google Scholar]
  31. 31. 
    Trobaugh DW, Gardner CL, Sun C, Haddow AD, Wang E et al. 2014. RNA viruses can hijack vertebrate microRNAs to suppress innate immunity. Nature 506:245–48
    [Google Scholar]
  32. 32. 
    Trobaugh DW, Sun C, Bhalla N, Gardner CL, Dunn MD, Klimstra WB. 2019. Cooperativity between the 3′ untranslated region microRNA binding sites is critical for the virulence of eastern equine encephalitis virus. PLOS Pathog 15:e1007867
    [Google Scholar]
  33. 33. 
    Levitt NH, Miller HV, Edelman R. 1979. Interaction of alphaviruses with human peripheral leukocytes: in vitro replication of Venezuelan equine encephalomyelitis virus in monocyte cultures. Infect. Immun. 24:642–46
    [Google Scholar]
  34. 34. 
    Zhang R, Kim AS, Fox JM, Nair S, Basore K et al. 2018. Mxra8 is a receptor for multiple arthritogenic alphaviruses. Nature 557:570–74
    [Google Scholar]
  35. 35. 
    Zhang R, Earnest JT, Kim AS, Winkler ES, Desai P et al. 2019. Expression of the Mxra8 receptor promotes alphavirus infection and pathogenesis in mice and Drosophila. Cell Rep 28:2647–58.e5
    [Google Scholar]
  36. 36. 
    Ma H, Kim AS, Kafai NM, Earnest JT, Shah AP et al. 2020. LDLRAD3 is a receptor for Venezuelan equine encephalitis virus. Nature 588:308–14
    [Google Scholar]
  37. 37. 
    Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P et al. 2015. Proteomics: tissue-based map of the human proteome. Science 347:1260419
    [Google Scholar]
  38. 38. 
    Sjöstedt E, Zhong W, Fagerberg L, Karlsson M, Mitsios N et al. 2020. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science 367:6482eaay5947
    [Google Scholar]
  39. 39. 
    Hum. Protein. Atlas 2021. LDLRAD3. Human Protein Atlas, updated November 18. https://www.proteinatlas.org
  40. 39a. 
    Clark LE, Clark SA, Lin C, Liu J, Coscia Aet al 2022. VLDLR and ApoER2 are receptors for multiple alphaviruses. Nature 602:47580
    [Google Scholar]
  41. 40. 
    Holmes AC, Basore K, Fremont DH, Diamond MS 2020. A molecular understanding of alphavirus entry. PLOS Pathog 16:e1008876
    [Google Scholar]
  42. 41. 
    Gardner CL, Ebel GD, Ryman KD, Klimstra WB. 2011. Heparan sulfate binding by natural eastern equine encephalitis viruses promotes neurovirulence. PNAS 108:16026–31
    [Google Scholar]
  43. 42. 
    Ashbrook AW, Burrack KS, Silva LA, Montgomery SA, Heise MT et al. 2014. Residue 82 of the Chikungunya virus E2 attachment protein modulates viral dissemination and arthritis in mice. J. Virol. 88:12180–92
    [Google Scholar]
  44. 43. 
    Silva LA, Khomandiak S, Ashbrook AW, Weller R, Heise MT et al. 2014. A single-amino-acid polymorphism in Chikungunya virus E2 glycoprotein influences glycosaminoglycan utilization. J. Virol. 88:2385–97
    [Google Scholar]
  45. 44. 
    Byrnes AP, Griffin DE. 2000. Large-plaque mutants of Sindbis virus show reduced binding to heparan sulfate, heightened viremia, and slower clearance from the circulation. J. Virol. 74:644–51
    [Google Scholar]
  46. 45. 
    Wintachai P, Wikan N, Kuadkitkan A, Jaimipuk T, Ubol S et al. 2012. Identification of prohibitin as a Chikungunya virus receptor protein. J. Med. Virol. 84:1757–70
    [Google Scholar]
  47. 46. 
    Linn ML, Eble JA, Lübken C, Slade RW, Heino J et al. 2005. An arthritogenic alphavirus uses the α1β1 integrin collagen receptor. Virology 336:229–39
    [Google Scholar]
  48. 47. 
    Rose PP, Hanna SL, Spiridigliozzi A, Wannissorn N, Beiting DP et al. 2011. Natural resistance-associated macrophage protein is a cellular receptor for Sindbis virus in both insect and mammalian hosts. Cell Host Microbe 10:97–104
    [Google Scholar]
  49. 48. 
    De Caluwé L, Coppens S, Vereecken K, Daled S, Dhaenens M et al. 2021. The CD147 protein complex is involved in entry of chikungunya virus and related alphaviruses in human cells. Front. Microbiol. 12:615165
    [Google Scholar]
  50. 49. 
    Kawasaki T, Kawai T. 2014. Toll-like receptor signaling pathways. Front. Immunol. 5:461
    [Google Scholar]
  51. 50. 
    Hopfner K-P, Hornung V. 2020. Molecular mechanisms and cellular functions of cGAS–STING signalling. Nat. Rev. Mol. Cell Biol. 21:501–21
    [Google Scholar]
  52. 51. 
    Webb LG, Veloz J, Pintado-Silva J, Zhu T, Rangel MV et al. 2020. Chikungunya virus antagonizes cGAS-STING mediated type-I interferon responses by degrading cGAS. PLOS Pathog 16:e1008999
    [Google Scholar]
  53. 52. 
    Her Z, Teng TS, Tan JJ, Teo TH, Kam YW et al. 2015. Loss of TLR3 aggravates CHIKV replication and pathology due to an altered virus-specific neutralizing antibody response. EMBO Mol. Med. 7:24–41
    [Google Scholar]
  54. 53. 
    Dutta SK, Tripathi A. 2017. Association of Toll-like receptor polymorphisms with susceptibility to chikungunya virus infection. Virology 511:207–13
    [Google Scholar]
  55. 54. 
    Rudd PA, Wilson J, Gardner J, Larcher T, Babarit C et al. 2012. Interferon response factors 3 and 7 protect against chikungunya virus hemorrhagic fever and shock. J. Virol. 86:9888–98
    [Google Scholar]
  56. 55. 
    Winkler ES, Shrihari S, Hykes BL Jr., Handley SA, Andhey PS et al. 2020. The intestinal microbiome restricts alphavirus infection and dissemination through a bile acid-type I IFN signaling axis. Cell 182:901–18.e18
    [Google Scholar]
  57. 56. 
    Neighbours LM, Long K, Whitmore AC, Heise MT. 2012. Myd88-dependent Toll-like receptor 7 signaling mediates protection from severe Ross River virus-induced disease in mice. J. Virol. 86:10675–85
    [Google Scholar]
  58. 57. 
    Esen N, Blakely PK, Rainey-Barger EK, Irani DN. 2012. Complexity of the microglial activation pathways that drive innate host responses during lethal alphavirus encephalitis in mice. ASN Neuro 4:207–21
    [Google Scholar]
  59. 58. 
    Hollidge BS, Cohen CA, Akuoku Frimpong J, Badger CV, Dye JM, Schmaljohn CS 2021. Toll-like receptor 4 mediates blood-brain barrier permeability and disease in C3H mice during Venezuelan equine encephalitis virus infection. Virulence 12:430–43
    [Google Scholar]
  60. 59. 
    Swanson KV, Deng M, Ting JP. 2019. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 19:477–89
    [Google Scholar]
  61. 60. 
    de Castro-Jorge LA, de Carvalho RVH, Klein TM, Hiroki CH, Lopes AH et al. 2019. The NLRP3 inflammasome is involved with the pathogenesis of Mayaro virus. PLOS Pathog 15:e1007934
    [Google Scholar]
  62. 61. 
    Chen W, Foo SS, Zaid A, Teng TS, Herrero LJ et al. 2017. Specific inhibition of NLRP3 in chikungunya disease reveals a role for inflammasomes in alphavirus-induced inflammation. Nat. Microbiol. 2:1435–45
    [Google Scholar]
  63. 62. 
    Ekchariyawat P, Hamel R, Bernard E, Wichit S, Surasombatpattana P et al. 2015. Inflammasome signaling pathways exert antiviral effect against Chikungunya virus in human dermal fibroblasts. Infect. Genet. Evol. 32:401–8
    [Google Scholar]
  64. 63. 
    Soares-Schanoski A, Baptista Cruz N, de Castro-Jorge LA, de Carvalho RVH, Santos CA et al. 2019. Systems analysis of subjects acutely infected with the Chikungunya virus. PLOS Pathog 15:e1007880
    [Google Scholar]
  65. 64. 
    Rehwinkel J, Gack MU. 2020. RIG-I-like receptors: their regulation and roles in RNA sensing. Nat. Rev. Immunol. 20:537–51
    [Google Scholar]
  66. 65. 
    Akhrymuk I, Frolov I, Frolova EI 2016. Both RIG-I and MDA5 detect alphavirus replication in concentration-dependent mode. Virology 487:230–41
    [Google Scholar]
  67. 66. 
    Burke CW, Gardner CL, Steffan JJ, Ryman KD, Klimstra WB. 2009. Characteristics of alpha/beta interferon induction after infection of murine fibroblasts with wild-type and mutant alphaviruses. Virology 395:121–32
    [Google Scholar]
  68. 67. 
    Sanchez David RY, Combredet C, Sismeiro O, Dillies MA, Jagla B et al. 2016. Comparative analysis of viral RNA signatures on different RIG-I-like receptors. eLife 5:e11275
    [Google Scholar]
  69. 68. 
    Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT et al. 2011. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472:481–85
    [Google Scholar]
  70. 69. 
    Wollish AC, Ferris MT, Blevins LK, Loo YM, Gale M Jr., Heise MT. 2013. An attenuating mutation in a neurovirulent Sindbis virus strain interacts with the IPS-1 signaling pathway in vivo. Virology 435:269–80
    [Google Scholar]
  71. 70. 
    Schoggins JW, MacDuff DA, Imanaka N, Gainey MD, Shrestha B et al. 2014. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature 505:691–95
    [Google Scholar]
  72. 71. 
    Geng T, Lin T, Yang D, Harrison AG, Vella AT et al. 2021. A critical role for STING signaling in limiting pathogenesis of chikungunya virus. J. Infect. Dis. 223:2186–96
    [Google Scholar]
  73. 72. 
    Thompson CD, Matta B, Barnes BJ. 2018. Therapeutic targeting of IRFs: pathway-dependence or structure-based?. Front. Immunol. 9:2622
    [Google Scholar]
  74. 73. 
    Sato M, Hata N, Asagiri M, Nakaya T, Taniguchi T, Tanaka N 1998. Positive feedback regulation of type I IFN genes by the IFN-inducible transcription factor IRF-7. FEBS Lett 441:106–10
    [Google Scholar]
  75. 74. 
    Michalska A, Blaszczyk K, Wesoly J, Bluyssen HAR. 2018. A positive feedback amplifier circuit that regulates interferon (IFN)-stimulated gene expression and controls type I and type II IFN responses. Front. Immunol. 9:1135
    [Google Scholar]
  76. 75. 
    Nair S, Poddar S, Shimak RM, Diamond MS. 2017. Interferon regulatory factor 1 protects against chikungunya virus-induced immunopathology by restricting infection in muscle cells. J. Virol. 91:e01419–17
    [Google Scholar]
  77. 76. 
    Grieder FB, Vogel SN. 1999. Role of interferon and interferon regulatory factors in early protection against Venezuelan equine encephalitis virus infection. Virology 257:106–18
    [Google Scholar]
  78. 77. 
    Schilte C, Buckwalter MR, Laird ME, Diamond MS, Schwartz O, Albert ML. 2012. Cutting edge: independent roles for IRF-3 and IRF-7 in hematopoietic and nonhematopoietic cells during host response to chikungunya infection. J. Immunol. 188:2967
    [Google Scholar]
  79. 78. 
    Bhalla N, Gardner CL, Downs SN, Dunn M, Sun C, Klimstra WB 2019. Macromolecular synthesis shutoff resistance by myeloid cells is critical to IRF7-dependent systemic interferon alpha/beta induction after alphavirus infection. J. Virol. 93:e00872–19
    [Google Scholar]
  80. 79. 
    Esen N, Rainey-Barger EK, Huber AK, Blakely PK, Irani DN. 2014. Type-I interferons suppress microglial production of the lymphoid chemokine, CXCL13. Glia 62:1452–62
    [Google Scholar]
  81. 80. 
    Peltier DC, Lazear HM, Farmer JR, Diamond MS, Miller DJ. 2013. Neurotropic arboviruses induce interferon regulatory factor 3-mediated neuronal responses that are cytoprotective, interferon independent, and inhibited by Western equine encephalitis virus capsid. J. Virol. 87:1821–33
    [Google Scholar]
  82. 81. 
    Li MM, Bozzacco L, Hoffmann HH, Breton G, Loschko J et al. 2016. Interferon regulatory factor 2 protects mice from lethal viral neuroinvasion. J. Exp. Med. 213:2931–47
    [Google Scholar]
  83. 82. 
    Schoneboom BA, Lee JS, Grieder FB. 2000. Early expression of IFN-alpha/beta and iNOS in the brains of Venezuelan equine encephalitis virus-infected mice. J. Interferon Cytokine Res. 20:205–15
    [Google Scholar]
  84. 83. 
    Lukaszewski RA, Brooks TJ. 2000. Pegylated alpha interferon is an effective treatment for virulent Venezuelan equine encephalitis virus and has profound effects on the host immune response to infection. J. Virol. 74:5006–15
    [Google Scholar]
  85. 84. 
    Gardner J, Anraku I, Le TT, Larcher T, Major L et al. 2010. Chikungunya virus arthritis in adult wild-type mice. J. Virol. 84:8021–32
    [Google Scholar]
  86. 85. 
    Ryman KD, Klimstra WB, Nguyen KB, Biron CA, Johnston RE. 2000. Alpha/beta interferon protects adult mice from fatal Sindbis virus infection and is an important determinant of cell and tissue tropism. J. Virol. 74:3366–78
    [Google Scholar]
  87. 86. 
    Couderc T, Chrétien F, Schilte C, Disson O, Brigitte M et al. 2008. A mouse model for Chikungunya: young age and inefficient type-I interferon signaling are risk factors for severe disease. PLOS Pathog 4:e29
    [Google Scholar]
  88. 87. 
    Cook LE, Locke MC, Young AR, Monte K, Hedberg ML et al. 2019. Distinct roles of interferon alpha and beta in controlling chikungunya virus replication and modulating neutrophil-mediated inflammation. J. Virol. 94:e00841–19
    [Google Scholar]
  89. 88. 
    Ng CT, Sullivan BM, Teijaro JR, Lee AM, Welch M et al. 2015. Blockade of interferon beta, but not interferon alpha, signaling controls persistent viral infection. Cell Host Microbe 17:653–61
    [Google Scholar]
  90. 89. 
    Schoggins JW. 2019. Interferon-stimulated genes: What do they all do?. Annu. Rev. Virol. 6:567–84
    [Google Scholar]
  91. 90. 
    Sadler AJ, Williams BR. 2008. Interferon-inducible antiviral effectors. Nat. Rev. Immunol. 8:559–68
    [Google Scholar]
  92. 91. 
    Li Y, Banerjee S, Wang Y, Goldstein SA, Dong B et al. 2016. Activation of RNase L is dependent on OAS3 expression during infection with diverse human viruses. PNAS 113:2241–46
    [Google Scholar]
  93. 92. 
    Barry G, Breakwell L, Fragkoudis R, Attarzadeh-Yazdi G, Rodriguez-Andres J et al. 2009. PKR acts early in infection to suppress Semliki Forest virus production and strongly enhances the type I interferon response. J. Gen. Virol. 90:1382–91
    [Google Scholar]
  94. 93. 
    White LK, Sali T, Alvarado D, Gatti E, Pierre P et al. 2011. Chikungunya virus induces IPS-1-dependent innate immune activation and protein kinase R-independent translational shutoff. J. Virol. 85:606–20
    [Google Scholar]
  95. 94. 
    Gorchakov R, Frolova E, Williams BR, Rice CM, Frolov I 2004. PKR-dependent and -independent mechanisms are involved in translational shutoff during Sindbis virus infection. J. Virol. 78:8455–67
    [Google Scholar]
  96. 95. 
    Clavarino G, Cláudio N, Couderc T, Dalet A, Judith D et al. 2012. Induction of GADD34 is necessary for dsRNA-dependent interferon-β production and participates in the control of Chikungunya virus infection. PLOS Pathog 8:e1002708
    [Google Scholar]
  97. 96. 
    Brush MH, Weiser DC, Shenolikar S. 2003. Growth arrest and DNA damage-inducible protein GADD34 targets protein phosphatase 1 alpha to the endoplasmic reticulum and promotes dephosphorylation of the alpha subunit of eukaryotic translation initiation factor 2. Mol. Cell. Biol. 23:1292–303
    [Google Scholar]
  98. 97. 
    Bréhin AC, Casadémont I, Frenkiel MP, Julier C, Sakuntabhai A, Desprès P. 2009. The large form of human 2′,5′-oligoadenylate synthetase (OAS3) exerts antiviral effect against Chikungunya virus. Virology 384:216–22
    [Google Scholar]
  99. 98. 
    Ryman KD, White LJ, Johnston RE, Klimstra WB. 2002. Effects of PKR/RNase L-dependent and alternative antiviral pathways on alphavirus replication and pathogenesis. Viral Immunol 15:53–76
    [Google Scholar]
  100. 99. 
    Nguyen LH, Espert L, Mechti N, Wilson DM3rd. 2001. The human interferon- and estrogen-regulated ISG20/HEM45 gene product degrades single-stranded RNA and DNA in vitro. Biochemistry 40:7174–79
    [Google Scholar]
  101. 100. 
    Weiss CM, Trobaugh DW, Sun C, Lucas TM, Diamond MS et al. 2018. The interferon-induced exonuclease ISG20 exerts antiviral activity through upregulation of type I interferon response proteins. mSphere 3:e00209–18
    [Google Scholar]
  102. 101. 
    Zhang Y, Burke CW, Ryman KD, Klimstra WB. 2007. Identification and characterization of interferon-induced proteins that inhibit alphavirus replication. J. Virol. 81:11246–55
    [Google Scholar]
  103. 102. 
    Jones PH, Maric M, Madison MN, Maury W, Roller RJ, Okeoma CM 2013. BST-2/tetherin-mediated restriction of chikungunya (CHIKV) VLP budding is counteracted by CHIKV non-structural protein 1 (nsP1). Virology 438:37–49
    [Google Scholar]
  104. 103. 
    Ooi YS, Dubé M, Kielian M. 2015. BST2/tetherin inhibition of alphavirus exit. Viruses 7:2147–67
    [Google Scholar]
  105. 104. 
    Mahauad-Fernandez WD, Jones PH, Okeoma CM 2014. Critical role for bone marrow stromal antigen 2 in acute Chikungunya virus infection. J. Gen. Virol. 95:2450–61
    [Google Scholar]
  106. 105. 
    Atasheva S, Akhrymuk M, Frolova EI, Frolov I. 2012. New PARP gene with an anti-alphavirus function. J. Virol. 86:8147–60
    [Google Scholar]
  107. 106. 
    Teng TS, Foo SS, Simamarta D, Lum FM, Teo TH et al. 2012. Viperin restricts chikungunya virus replication and pathology. J. Clin. Investig. 122:4447–60
    [Google Scholar]
  108. 107. 
    Carissimo G, Teo TH, Chan YH, Lee CY, Lee B et al. 2019. Viperin controls chikungunya virus-specific pathogenic T cell IFNγ Th1 stimulation in mice. Life Sci. Alliance 2:e201900298
    [Google Scholar]
  109. 108. 
    Poddar S, Hyde JL, Gorman MJ, Farzan M, Diamond MS 2016. The interferon-stimulated gene IFITM3 restricts infection and pathogenesis of arthritogenic and encephalitic alphaviruses. J. Virol. 90:8780–94
    [Google Scholar]
  110. 109. 
    Franz S, Pott F, Zillinger T, Schüler C, Dapa S et al. 2021. Human IFITM3 restricts chikungunya virus and Mayaro virus infection and is susceptible to virus-mediated counteraction. Life Sci. Alliance 4:e202000909
    [Google Scholar]
  111. 110. 
    Xu D, Holko M, Sadler AJ, Scott B, Higashiyama S et al. 2009. Promyelocytic leukemia zinc finger protein regulates interferon-mediated innate immunity. Immunity 30:802–16
    [Google Scholar]
  112. 111. 
    Li MMH, Lau Z, Cheung P, Aguilar EG, Schneider WM et al. 2017. TRIM25 enhances the antiviral action of zinc-finger antiviral protein (ZAP). PLOS Pathog 13:e1006145
    [Google Scholar]
  113. 112. 
    Bick MJ, Carroll JW, Gao G, Goff SP, Rice CM, MacDonald MR 2003. Expression of the zinc-finger antiviral protein inhibits alphavirus replication. J. Virol. 77:11555–62
    [Google Scholar]
  114. 113. 
    Karki S, Li MM, Schoggins JW, Tian S, Rice CM, MacDonald MR 2012. Multiple interferon stimulated genes synergize with the zinc finger antiviral protein to mediate anti-alphavirus activity. PLOS ONE 7:e37398
    [Google Scholar]
  115. 114. 
    MacDonald MR, Machlin ES, Albin OR, Levy DE 2007. The zinc finger antiviral protein acts synergistically with an interferon-induced factor for maximal activity against alphaviruses. J. Virol. 81:13509–18
    [Google Scholar]
  116. 115. 
    Werneke SW, Schilte C, Rohatgi A, Monte KJ, Michault A et al. 2011. ISG15 is critical in the control of Chikungunya virus infection independent of UbE1L mediated conjugation. PLOS Pathog 7:e1002322
    [Google Scholar]
  117. 116. 
    Lenschow DJ, Giannakopoulos NV, Gunn LJ, Johnston C, O'Guin AK et al. 2005. Identification of interferon-stimulated gene 15 as an antiviral molecule during Sindbis virus infection in vivo. J. Virol. 79:13974–83
    [Google Scholar]
  118. 117. 
    Lenschow DJ, Lai C, Frias-Staheli N, Giannakopoulos NV, Lutz A et al. 2007. IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses. PNAS 104:1371–76
    [Google Scholar]
  119. 118. 
    Hidmark AS, McInerney GM, Nordström EK, Douagi I, Werner KM et al. 2005. Early alpha/beta interferon production by myeloid dendritic cells in response to UV-inactivated virus requires viral entry and interferon regulatory factor 3 but not MyD88. J. Virol. 79:10376–85
    [Google Scholar]
  120. 119. 
    Gardner JP, Frolov I, Perri S, Ji Y, MacKichan ML et al. 2000. Infection of human dendritic cells by a Sindbis virus replicon vector is determined by a single amino acid substitution in the E2 glycoprotein. J. Virol. 74:11849–57
    [Google Scholar]
  121. 120. 
    Shabman RS, Morrison TE, Moore C, White L, Suthar MS et al. 2007. Differential induction of type I interferon responses in myeloid dendritic cells by mosquito and mammalian-cell-derived alphaviruses. J. Virol. 81:237–47
    [Google Scholar]
  122. 121. 
    Cavalheiro MG, Costa LS, Campos HS, Alves LS, Assunção-Miranda I, Poian AT 2016. Macrophages as target cells for Mayaro virus infection: involvement of reactive oxygen species in the inflammatory response during virus replication. An. Acad. Bras Cienc. 88:1485–99
    [Google Scholar]
  123. 122. 
    Labadie K, Larcher T, Joubert C, Mannioui A, Delache B et al. 2010. Chikungunya disease in nonhuman primates involves long-term viral persistence in macrophages. J. Clin. Investig. 120:894–906
    [Google Scholar]
  124. 123. 
    Swiecki M, Colonna M. 2015. The multifaceted biology of plasmacytoid dendritic cells. Nat. Rev. Immunol. 15:471–85
    [Google Scholar]
  125. 124. 
    Webster B, Werneke SW, Zafirova B, This S, Coléon S et al. 2018. Plasmacytoid dendritic cells control dengue and Chikungunya virus infections via IRF7-regulated interferon responses. eLife 7:e34273
    [Google Scholar]
  126. 125. 
    Haist KC, Carpentier KS, Davenport BJ, Morrison TE. 2021. Plasmacytoid dendritic cells mediate control of Ross River virus infection via a type I interferon-dependent, MAVS-independent mechanism. J. Virol. 95:e01538–20
    [Google Scholar]
  127. 126. 
    Herrero LJ, Sheng KC, Jian P, Taylor A, Her Z et al. 2013. Macrophage migration inhibitory factor receptor CD74 mediates alphavirus-induced arthritis and myositis in murine models of alphavirus infection. Arthritis Rheum 65:2724–36
    [Google Scholar]
  128. 127. 
    Rulli NE, Rolph MS, Srikiatkhachorn A, Anantapreecha S, Guglielmotti A, Mahalingam S 2011. Protection from arthritis and myositis in a mouse model of acute chikungunya virus disease by bindarit, an inhibitor of monocyte chemotactic protein-1 synthesis. J. Infect. Dis. 204:1026–30
    [Google Scholar]
  129. 128. 
    Sharma A, Bhattacharya B, Puri RK, Maheshwari RK. 2008. Venezuelan equine encephalitis virus infection causes modulation of inflammatory and immune response genes in mouse brain. BMC Genom. 9:289
    [Google Scholar]
  130. 129. 
    Sharma A, Maheshwari RK. 2009. Oligonucleotide array analysis of Toll-like receptors and associated signalling genes in Venezuelan equine encephalitis virus-infected mouse brain. J. Gen. Virol. 90:1836–47
    [Google Scholar]
  131. 130. 
    Zaid A, Tharmarajah K, Mostafavi H, Freitas JR, Sheng KC et al. 2020. Modulation of monocyte-driven myositis in alphavirus infection reveals a role for CX3CR1+ macrophages in tissue repair. mBio 11:e03353–19
    [Google Scholar]
  132. 131. 
    Lin T, Geng T, Harrison AG, Yang D, Vella AT et al. 2020. CXCL10 signaling contributes to the pathogenesis of arthritogenic alphaviruses. Viruses 12:1252
    [Google Scholar]
  133. 132. 
    Deshmane SL, Kremlev S, Amini S, Sawaya BE 2009. Monocyte chemoattractant protein-1 (MCP-1): an overview. J. Interferon Cytokine Res. 29:313–26
    [Google Scholar]
  134. 133. 
    Gregory JL, Morand EF, McKeown SJ, Ralph JA, Hall P et al. 2006. Macrophage migration inhibitory factor induces macrophage recruitment via CC chemokine ligand 2. J. Immunol. 177:8072–79
    [Google Scholar]
  135. 134. 
    Selvi E, Tripodi SA, Catenaccio M, Lorenzini S, Chindamo D et al. 2003. Expression of macrophage migration inhibitory factor in diffuse systemic sclerosis. Ann. Rheum. Dis. 62:460–64
    [Google Scholar]
  136. 135. 
    Lidbury BA, Rulli NE, Suhrbier A, Smith PN, McColl SR et al. 2008. Macrophage-derived proinflammatory factors contribute to the development of arthritis and myositis after infection with an arthrogenic alphavirus. J. Infect. Dis. 197:1585–93
    [Google Scholar]
  137. 136. 
    Assunção-Miranda I, Bozza MT, Da Poian AT. 2010. Pro-inflammatory response resulting from Sindbis virus infection of human macrophages: implications for the pathogenesis of viral arthritis. J. Med. Virol. 82:164–74
    [Google Scholar]
  138. 137. 
    Haist KC, Burrack KS, Davenport BJ, Morrison TE. 2017. Inflammatory monocytes mediate control of acute alphavirus infection in mice. PLOS Pathog 13:e1006748
    [Google Scholar]
  139. 138. 
    Rulli NE, Guglielmotti A, Mangano G, Rolph MS, Apicella C et al. 2009. Amelioration of alphavirus-induced arthritis and myositis in a mouse model by treatment with bindarit, an inhibitor of monocyte chemotactic proteins. Arthritis Rheum 60:2513–23
    [Google Scholar]
  140. 139. 
    Poo YS, Nakaya H, Gardner J, Larcher T, Schroder WA et al. 2014. CCR2 deficiency promotes exacerbated chronic erosive neutrophil-dominated chikungunya virus arthritis. J. Virol. 88:6862–72
    [Google Scholar]
  141. 140. 
    Chen W, Foo SS, Taylor A, Lulla A, Merits A et al. 2015. Bindarit, an inhibitor of monocyte chemotactic protein synthesis, protects against bone loss induced by chikungunya virus infection. J. Virol. 89:581–93
    [Google Scholar]
  142. 141. 
    Stoermer KA, Burrack A, Oko L, Montgomery SA, Borst LB et al. 2012. Genetic ablation of arginase 1 in macrophages and neutrophils enhances clearance of an arthritogenic alphavirus. J. Immunol. 189:4047–59
    [Google Scholar]
  143. 142. 
    Salimi H, Klein RS 2019. Disruption of the blood-brain barrier during neuroinflammatory and neuroinfectious diseases. Neuroimmune Diseases: From Cells to the Living Brain H Mitoma, M Manto 195–234 Cham, Switz: Springer Int.
    [Google Scholar]
  144. 143. 
    Pan W, Stone KP, Hsuchou H, Manda VK, Zhang Y, Kastin AJ. 2011. Cytokine signaling modulates blood-brain barrier function. Curr. Pharm. Des. 17:3729–40
    [Google Scholar]
  145. 144. 
    Wang Y, Jin S, Sonobe Y, Cheng Y, Horiuchi H et al. 2014. Interleukin-1β induces blood-brain barrier disruption by downregulating Sonic hedgehog in astrocytes. PLOS ONE 9:e110024
    [Google Scholar]
  146. 145. 
    Smith DR, Schmaljohn CS, Badger C, Ostrowski K, Zeng X et al. 2020. Comparative pathology study of Venezuelan, eastern, and western equine encephalitis viruses in non-human primates. Antivir. Res. 182:104875
    [Google Scholar]
  147. 146. 
    Smyth MJ, Cretney E, Kelly JM, Westwood JA, Street SE et al. 2005. Activation of NK cell cytotoxicity. Mol. Immunol. 42:501–10
    [Google Scholar]
  148. 147. 
    Brandstadter JD, Yang Y. 2011. Natural killer cell responses to viral infection. J. Innate Immun. 3:274–79
    [Google Scholar]
  149. 148. 
    Hazelton RA, Hughes C, Aaskov JG. 1985. The inflammatory response in the synovium of a patient with Ross River arbovirus infection. Aust. N. Z. J. Med. 15:336–39
    [Google Scholar]
  150. 149. 
    Petitdemange C, Becquart P, Wauquier N, Béziat V, Debré P et al. 2011. Unconventional repertoire profile is imprinted during acute chikungunya infection for natural killer cells polarization toward cytotoxicity. PLOS Pathog 7:e1002268
    [Google Scholar]
  151. 150. 
    Hoarau J-J, Jaffar Bandjee M-C, Krejbich Trotot P, Das T, Li-Pat-Yuen G et al. 2010. Persistent chronic inflammation and infection by chikungunya arthritogenic alphavirus in spite of a robust host immune response. J. Immunol. 184:5914
    [Google Scholar]
  152. 151. 
    Schanoski AS, Le TT, Kaiserman D, Rowe C, Prow NA et al. 2019. Granzyme A in chikungunya and other arboviral infections. Front. Immunol. 10:3083
    [Google Scholar]
  153. 152. 
    Alsharifi M, Lobigs M, Simon MM, Kersten A, Müller K et al. 2006. NK cell-mediated immunopathology during an acute viral infection of the CNS. Eur. J. Immunol. 36:887–96
    [Google Scholar]
  154. 153. 
    Griffin DE, Hess JL 1986. Cells with natural killer activity in the cerebrospinal fluid of normal mice and athymic nude mice with acute Sindbis virus encephalitis. J. Immunol. 136:1841–45
    [Google Scholar]
  155. 154. 
    Teo TH, Her Z, Tan JJ, Lum FM, Lee WW et al. 2015. Caribbean and La Réunion chikungunya virus isolates differ in their capacity to induce proinflammatory Th1 and NK cell responses and acute joint pathology. J. Virol. 89:7955–69
    [Google Scholar]
  156. 155. 
    Taylor K, Kolokoltsova O, Patterson M, Poussard A, Smith J et al. 2012. Natural killer cell mediated pathogenesis determines outcome of central nervous system infection with Venezuelan equine encephalitis virus in C3H/HeN mice. Vaccine 30:4095–105
    [Google Scholar]
  157. 156. 
    Hayday AC. 2000. γδ cells: a right time and a right place for a conserved third way of protection. Annu. Rev. Immunol. 18:975–1026
    [Google Scholar]
  158. 157. 
    Born W, Cady C, Jones-Carson J, Mukasa A, Lahn M, O'Brien R. 1999. Immunoregulatory functions of gamma delta T cells. Adv. Immunol. 71:77–144
    [Google Scholar]
  159. 158. 
    Carding SR, Egan PJ. 2002. γδ T cells: functional plasticity and heterogeneity. Nat. Rev. Immunol. 2:336–45
    [Google Scholar]
  160. 159. 
    Long KM, Ferris MT, Whitmore AC, Montgomery SA, Thurlow LR et al. 2016. Gamma delta T cells play a protective role in chikungunya virus-induced disease. J. Virol. 90:433–43
    [Google Scholar]
  161. 160. 
    Fu YX, Roark CE, Kelly K, Drevets D, Campbell P et al. 1994. Immune protection and control of inflammatory tissue necrosis by gamma delta T cells. J. Immunol. 153:3101
    [Google Scholar]
  162. 161. 
    Poh CM, Chan Y-H, Ng LFP. 2020. Role of T cells in chikungunya virus infection and utilizing their potential in anti-viral immunity. Front. Immunol. 11:287
    [Google Scholar]
  163. 162. 
    Born WK, Reardon CL, O'Brien RL. 2006. The function of γδ T cells in innate immunity. Curr. Opin. Immunol. 18:31–38
    [Google Scholar]
  164. 163. 
    Paessler S, Yun NE, Judy BM, Dziuba N, Zacks MA et al. 2007. Alpha-beta T cells provide protection against lethal encephalitis in the murine model of VEEV infection. Virology 367:307–23
    [Google Scholar]
  165. 164. 
    Morrison TE, Oko L, Montgomery SA, Whitmore AC, Lotstein AR et al. 2011. A mouse model of chikungunya virus-induced musculoskeletal inflammatory disease: evidence of arthritis, tenosynovitis, myositis, and persistence. Am. J. Pathol. 178:32–40
    [Google Scholar]
  166. 165. 
    Torres-Ruesta A, Teo T-H, Chan Y-H, Rénia L, Ng LFP 2020. Pathogenic Th1 responses in CHIKV-induced inflammation and their modulation upon Plasmodium parasites co-infection. Immunol. Rev. 294:80–91
    [Google Scholar]
  167. 166. 
    Wauquier N, Becquart P, Nkoghe D, Padilla C, Ndjoyi-Mbiguino A, Leroy EM. 2011. The acute phase of Chikungunya virus infection in humans is associated with strong innate immunity and T CD8 cell activation. J. Infect. Dis. 204:115–23
    [Google Scholar]
  168. 167. 
    Dias CNS, Gois BM, Lima VS, Guerra-Gomes IC, Araújo JMG et al. 2018. Human CD8 T-cell activation in acute and chronic chikungunya infection. Immunology 155:499–504
    [Google Scholar]
  169. 168. 
    Davenport BJ, Bullock C, McCarthy MK, Hawman DW, Murphy KM et al. 2020. Chikungunya virus evades antiviral CD8+ T cell responses to establish persistent infection in joint-associated tissues. J. Virol. 94:e02036–19
    [Google Scholar]
  170. 169. 
    Miner JJ, Aw-Yeang HX, Fox JM, Taffner S, Malkova ON et al. 2015. Chikungunya viral arthritis in the United States: a mimic of seronegative rheumatoid arthritis. Arthritis Rheumatol 67:1214–20
    [Google Scholar]
  171. 170. 
    Hoarau J-J, Gay F, Pellé O, Samri A, Jaffar-Bandjee M-C et al. 2013. Identical strength of the T cell responses against E2, nsP1 and capsid CHIKV proteins in recovered and chronic patients after the epidemics of 2005–2006 in La Reunion Island. PLOS ONE 8:e84695
    [Google Scholar]
  172. 171. 
    Kägi D, Hengartner H. 1996. Different roles for cytotoxic T cells in the control of infections with cytopathic versus noncytopathic viruses. Curr. Opin. Immunol. 8:472–77
    [Google Scholar]
  173. 172. 
    Fazakerley JK, Pathak S, Scallan M, Amor S, Dyson H 1993. Replication of the A7(74) strain of Semliki Forest virus is restricted in neurons. Virology 195:627–37
    [Google Scholar]
  174. 173. 
    Subak-Sharpe I, Dyson H, Fazakerley J 1993. In vivo depletion of CD8+ T cells prevents lesions of demyelination in Semliki Forest virus infection. J. Virol. 67:7629–33
    [Google Scholar]
  175. 174. 
    Fazakerley JK, Webb HE. 1987. Semliki Forest virus-induced, immune-mediated demyelination: adoptive transfer studies and viral persistence in nude mice. J. Gen. Virol. 68:Part 2377–85
    [Google Scholar]
  176. 175. 
    Griffin DE. 2010. Recovery from viral encephalomyelitis: immune-mediated noncytolytic virus clearance from neurons. Immunol. Res. 47:123–33
    [Google Scholar]
  177. 176. 
    Kimura T, Griffin DE. 2000. The role of CD8+ T cells and major histocompatibility complex class I expression in the central nervous system of mice infected with neurovirulent Sindbis virus. J. Virol. 74:6117–25
    [Google Scholar]
  178. 177. 
    Brooke CB, Deming DJ, Whitmore AC, White LJ, Johnston RE. 2010. T cells facilitate recovery from Venezuelan equine encephalitis virus-induced encephalomyelitis in the absence of antibody. J. Virol. 84:4556–68
    [Google Scholar]
  179. 178. 
    Yun NE, Peng BH, Bertke AS, Borisevich V, Smith JK et al. 2009. CD4+ T cells provide protection against acute lethal encephalitis caused by Venezuelan equine encephalitis virus. Vaccine 27:4064–73
    [Google Scholar]
  180. 179. 
    Wesselingh SL, Levine B, Fox RJ, Choi S, Griffin DE 1994. Intracerebral cytokine mRNA expression during fatal and nonfatal alphavirus encephalitis suggests a predominant type 2 T cell response. J. Immunol. 152:1289–97
    [Google Scholar]
  181. 180. 
    Binder GK, Griffin DE. 2001. Interferon-γ-mediated site-specific clearance of alphavirus from CNS neurons. Science 293:303–6
    [Google Scholar]
  182. 181. 
    Tau G, Rothman P. 1999. Biologic functions of the IFN-γ receptors. Allergy 54:1233
    [Google Scholar]
  183. 182. 
    Lampson LA. 1995. Interpreting MHC class I expression and class I/class II reciprocity in the CNS: reconciling divergent findings. Microsc. Res. Tech. 32:267–85
    [Google Scholar]
  184. 183. 
    Mucke L, Oldstone M. 1992. The expression of major histocompatibility complex (MHC) class I antigens in the brain differs markedly in acute and persistent infections with lymphocytic choriomeningitis virus (LCMV). J. Neuroimmunol. 36:193–98
    [Google Scholar]
  185. 184. 
    Burdeinick-Kerr R, Wind J, Griffin DE. 2007. Synergistic roles of antibody and interferon in noncytolytic clearance of Sindbis virus from different regions of the central nervous system. J. Virol. 81:5628–36
    [Google Scholar]
  186. 185. 
    Teo T-H, Lum F-M, Claser C, Lulla V, Lulla A et al. 2013. A pathogenic role for CD4+ T cells during chikungunya virus infection in mice. J. Immunol. 190:259
    [Google Scholar]
  187. 186. 
    Webb EM, Azar SR, Haller SL, Langsjoen RM, Cuthbert CE et al. 2019. Effects of Chikungunya virus immunity on Mayaro virus disease and epidemic potential. Sci. Rep. 9:20399
    [Google Scholar]
  188. 187. 
    Choi H, Kudchodkar SB, Reuschel EL, Asija K, Borole P et al. 2019. Protective immunity by an engineered DNA vaccine for Mayaro virus. PLOS Negl. Trop. Dis. 13:e0007042
    [Google Scholar]
  189. 188. 
    Chu H, Das SC, Fuchs JF, Suresh M, Weaver SC et al. 2013. Deciphering the protective role of adaptive immunity to CHIKV/IRES a novel candidate vaccine against Chikungunya in the A129 mouse model. Vaccine 31:3353–60
    [Google Scholar]
  190. 189. 
    Hawman DW, Stoermer KA, Montgomery SA, Pal P, Oko L et al. 2013. Chronic joint disease caused by persistent Chikungunya virus infection is controlled by the adaptive immune response. J. Virol. 87:13878–88
    [Google Scholar]
  191. 190. 
    Messaoudi I, Vomaske J, Totonchy T, Kreklywich CN, Haberthur K et al. 2013. Chikungunya virus infection results in higher and persistent viral replication in aged rhesus macaques due to defects in anti-viral immunity. PLOS Negl. Trop. Dis. 7:e2343
    [Google Scholar]
  192. 191. 
    Burrack KS, Montgomery SA, Homann D, Morrison TE 2015. CD8+ T cells control Ross River virus infection in musculoskeletal tissues of infected mice. J. Immunol. 194:678
    [Google Scholar]
  193. 192. 
    Fraser J. 1986. Epidemic polyarthritis and Ross River virus disease. Clinics Rheum. Dis. 12:369–88
    [Google Scholar]
  194. 193. 
    Rosendahl Huber S, van Beek J, de Jonge J, Luytjes W, van Baarle D 2014. T cell responses to viral infections—opportunities for peptide vaccination. Front. Immunol. 5:171
    [Google Scholar]
  195. 194. 
    Irani DN, Griffin DE. 1991. Isolation of brain parenchymal lymphocytes for flow cytometric analysis: application to acute viral encephalitis. J. Immunol. Methods 139:223–31
    [Google Scholar]
  196. 195. 
    Rowell JF, Griffin DE. 2002. Contribution of T cells to mortality in neurovirulent Sindbis virus encephalomyelitis. J. Neuroimmunol. 127:106–14
    [Google Scholar]
  197. 196. 
    Boehm U, Klamp T, Groot M, Howard J 1997. Cellular responses to interferon-γ. Annu. Rev. Immunol. 15:749–95
    [Google Scholar]
  198. 197. 
    Abbas AK, Murphy KM, Sher A 1996. Functional diversity of helper T lymphocytes. Nature 383:787–93
    [Google Scholar]
  199. 198. 
    Schroder K, Hertzog PJ, Ravasi T, Hume DA 2004. Interferon-γ: an overview of signals, mechanisms and functions. J. Leukoc. Biol. 75:163–89
    [Google Scholar]
  200. 199. 
    Sallusto F, Lanzavecchia A, Mackay CR. 1998. Chemokines and chemokine receptors in T-cell priming and Th1/Th2-mediated responses. Immunol. Today 19:568–74
    [Google Scholar]
  201. 200. 
    Poo YS, Rudd PA, Gardner J, Wilson JA, Larcher T et al. 2014. Multiple immune factors are involved in controlling acute and chronic chikungunya virus infection. PLOS Negl. Trop. Dis. 8:e3354
    [Google Scholar]
  202. 201. 
    Teo TH, Chan YH, Lee WW, Lum FM, Amrun SN et al. 2017. Fingolimod treatment abrogates chikungunya virus-induced arthralgia. Sci. Transl. Med. 9:eaal1333
    [Google Scholar]
  203. 202. 
    Miner JJ, Cook LE, Hong JP, Smith AM, Richner JM et al. 2017. Therapy with CTLA4-Ig and an antiviral monoclonal antibody controls chikungunya virus arthritis. Sci. Transl. Med. 9:eaah3438
    [Google Scholar]
  204. 203. 
    Fros JJ, Liu WJ, Prow NA, Geertsema C, Ligtenberg M et al. 2010. Chikungunya virus nonstructural protein 2 inhibits type I/II interferon-stimulated JAK-STAT signaling. J. Virol. 84:10877–87
    [Google Scholar]
  205. 204. 
    Hidalgo L, Einecke G, Allanach K, Halloran P 2008. The transcriptome of human cytotoxic T cells: similarities and disparities among allostimulated CD4+ CTL, CD8+ CTL and NK cells. Am. J. Transplant. 8:627–36
    [Google Scholar]
  206. 205. 
    Wilson JA, Prow NA, Schroder WA, Ellis JJ, Cumming HE et al. 2017. RNA-seq analysis of chikungunya virus infection and identification of granzyme A as a major promoter of arthritic inflammation. PLOS Pathog 13:e1006155
    [Google Scholar]
  207. 206. 
    Kulcsar KA, Baxter VK, Abraham R, Nelson A, Griffin DE, Dermody TS 2015. Distinct immune responses in resistant and susceptible strains of mice during neurovirulent alphavirus encephalomyelitis. J. Virol. 89:8280–91
    [Google Scholar]
  208. 207. 
    Spellberg B, Edwards JE Jr. 2001. Type 1/type 2 immunity in infectious diseases. Clin. Infect. Dis. 32:76–102
    [Google Scholar]
  209. 208. 
    Tanabe IS, Tanabe EL, Santos EC, Martins WV, Araújo IM et al. 2018. Cellular and molecular immune response to chikungunya virus infection. Front. Cell. Infect. Microbiol. 8:345
    [Google Scholar]
  210. 209. 
    Venugopalan A, Ghorpade RP, Chopra A. 2014. Cytokines in acute chikungunya. PLOS ONE 9:e111305
    [Google Scholar]
  211. 210. 
    Chow A, Her Z, Ong EK, Chen J-M, Dimatatac F et al. 2011. Persistent arthralgia induced by Chikungunya virus infection is associated with interleukin-6 and granulocyte macrophage colony-stimulating factor. J. Infect. Dis. 203:149–57
    [Google Scholar]
  212. 211. 
    Chaaitanya IK, Muruganandam N, Sundaram SG, Kawalekar O, Sugunan AP et al. 2011. Role of proinflammatory cytokines and chemokines in chronic arthropathy in CHIKV infection. Viral Immunol 24:265–71
    [Google Scholar]
  213. 212. 
    Patil DR, Hundekar SL, Arankalle VA. 2012. Expression profile of immune response genes during acute myopathy induced by chikungunya virus in a mouse model. Microbes Infect 14:457–69
    [Google Scholar]
  214. 213. 
    Khan M, Dhanwani R, Rao PVL, Parida M. 2012. Subunit vaccine formulations based on recombinant envelope proteins of Chikungunya virus elicit balanced Th1/Th2 response and virus-neutralizing antibodies in mice. Virus Res 167:236–46
    [Google Scholar]
  215. 214. 
    Chen W, Foo SS, Sims NA, Herrero LJ, Walsh NC, Mahalingam S. 2015. Arthritogenic alphaviruses: new insights into arthritis and bone pathology. Trends Microbiol 23:35–43
    [Google Scholar]
  216. 215. 
    Sandquist I, Kolls J. 2018. Update on regulation and effector functions of Th17 cells. F1000Research 7:205
    [Google Scholar]
  217. 216. 
    Amdekar S, Parashar D, Alagarasu K 2017. Chikungunya virus-induced arthritis: role of host and viral factors in the pathogenesis. Viral Immunol 30:691–702
    [Google Scholar]
  218. 217. 
    Baxter VK, Griffin DE 2020. Interferon-gamma modulation of the local T cell response to alphavirus encephalomyelitis. Viruses 12:113
    [Google Scholar]
  219. 218. 
    Komiyama Y, Nakae S, Matsuki T, Nambu A, Ishigame H et al. 2006. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J. Immunol. 177:566–73
    [Google Scholar]
  220. 219. 
    Wang T, Lee M-H, Choi E, Pardo-Villamizar CA, Lee SB et al. 2012. Granzyme B-induced neurotoxicity is mediated via activation of PAR-1 receptor and Kv1. 3 channel. PLOS ONE 7:8e43950
    [Google Scholar]
  221. 220. 
    Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R et al. 2007. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat. Med. 13:1173–75
    [Google Scholar]
  222. 221. 
    Wang D-D, Zhao Y-F, Wang G-Y, Sun B, Kong Q-F et al. 2009. IL-17 potentiates neuronal injury induced by oxygen–glucose deprivation and affects neuronal IL-17 receptor expression. J. Neuroimmunol. 212:17–25
    [Google Scholar]
  223. 222. 
    Lee GR. 2018. The balance of Th17 versus Treg cells in autoimmunity. Int. J. Mol. Sci. 19:730
    [Google Scholar]
  224. 223. 
    Bettelli E, Carrier Y, Gao W, Korn T, Strom TB et al. 2006. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–38
    [Google Scholar]
  225. 224. 
    Lee WW, Teo T-H, Her Z, Lum F-M, Kam Y-W et al. 2015. Expanding regulatory T cells alleviates chikungunya virus-induced pathology in mice. J. Virol. 89:7893–904
    [Google Scholar]
  226. 225. 
    Coimbra TLM, Santos CL, Suzuki A, Petrella S, Bisordi I et al. 2007. Mayaro virus: imported cases of human infection in São Paulo state, Brazil. Rev. Inst. Med. Trop. São Paulo 49:221–24
    [Google Scholar]
  227. 226. 
    Danillo Lucas Alves E, Fonseca BAL. 2018. Characterization of the immune response following in vitro mayaro and chikungunya viruses (Alphavirus, Togaviridae) infection of mononuclear cells. Virus Res 256:166–73
    [Google Scholar]
  228. 227. 
    Figueiredo CM, Neris RLS, Gavino-Leopoldino D, Silva MOL, Almeida JS et al. 2019. Mayaro virus replication restriction and induction of muscular inflammation in mice are dependent on age, type-I interferon response, and adaptive immunity. Front. Microbiol. 10:2246
    [Google Scholar]
  229. 228. 
    Kulcsar KA, Griffin DE. 2016. T cell-derived interleukin-10 is an important regulator of the Th17 response during lethal alphavirus encephalomyelitis. J. Neuroimmunol. 295–296:60–67
    [Google Scholar]
  230. 229. 
    Metcalf TU, Griffin DE. 2011. Alphavirus-induced encephalomyelitis: antibody-secreting cells and viral clearance from the nervous system. J. Virol. 85:11490–501
    [Google Scholar]
  231. 230. 
    Hawman DW, Fox JM, Ashbrook AW, May NA, Schroeder KMS et al. 2016. Pathogenic chikungunya virus evades B cell responses to establish persistence. Cell Rep 16:1326–38
    [Google Scholar]
  232. 231. 
    Fox JM, Diamond MS. 2016. Immune-mediated protection and pathogenesis of chikungunya virus. J. Immunol. 197:4210–18
    [Google Scholar]
  233. 232. 
    Kim AS, Austin SK, Gardner CL, Zuiani A, Reed DS et al. 2019. Protective antibodies against Eastern equine encephalitis virus bind to epitopes in domains A and B of the E2 glycoprotein. Nat. Microbiol. 4:187–97
    [Google Scholar]
  234. 233. 
    Williamson LE, Gilliland T Jr., Yadav PK, Binshtein E, Bombardi R et al. 2020. Human antibodies protect against aerosolized eastern equine encephalitis virus infection. Cell 183:1884–900.e23
    [Google Scholar]
  235. 234. 
    Fox JM, Long F, Edeling MA, Lin H, Van Duijl-Richter MKS et al. 2015. Broadly neutralizing alphavirus antibodies bind an epitope on E2 and inhibit entry and egress. Cell 163:1095–107
    [Google Scholar]
  236. 235. 
    Earnest JT, Basore K, Roy V, Bailey AL, Wang D et al. 2019. Neutralizing antibodies against Mayaro virus require Fc effector functions for protective activity. J. Exp. Med. 216:2282–301
    [Google Scholar]
  237. 236. 
    Hunt AR, Bowen RA, Frederickson S, Maruyama T, Roehrig JT, Blair CD. 2011. Treatment of mice with human monoclonal antibody 24 h after lethal aerosol challenge with virulent Venezuelan equine encephalitis virus prevents disease but not infection. Virology 414:146–52
    [Google Scholar]
  238. 237. 
    Hunt AR, Frederickson S, Hinkel C, Bowdish KS, Roehrig JT. 2006. A humanized murine monoclonal antibody protects mice either before or after challenge with virulent Venezuelan equine encephalomyelitis virus. J. Gen. Virol. 87:2467–76
    [Google Scholar]
  239. 238. 
    Pal P, Dowd KA, Brien JD, Edeling MA, Gorlatov S et al. 2013. Development of a highly protective combination monoclonal antibody therapy against chikungunya virus. PLOS Pathog 9:e1003312
    [Google Scholar]
  240. 239. 
    Powell LA, Fox JM, Kose N, Kim AS, Majedi M et al. 2020. Human monoclonal antibodies against Ross River virus target epitopes within the E2 protein and protect against disease. PLOS Pathog 16:e1008517
    [Google Scholar]
  241. 240. 
    Stanley J, Cooper SJ, Griffin DE 1986. Monoclonal antibody cure and prophylaxis of lethal Sindbis virus encephalitis in mice. J. Virol. 58:107–15
    [Google Scholar]
  242. 241. 
    Lam S, Nyo M, Phuektes P, Yew CW, Tan YJ, Chu JJH. 2015. A potent neutralizing IgM mAb targeting the N218 epitope on E2 protein protects against Chikungunya virus pathogenesis. mAbs 7:61178–94
    [Google Scholar]
  243. 242. 
    Smith SA, Silva LA, Fox JM, Flyak AI, Kose N et al. 2015. Isolation and characterization of broad and ultrapotent human monoclonal antibodies with therapeutic activity against chikungunya virus. Cell Host Microbe 18:86–95
    [Google Scholar]
  244. 243. 
    Jin J, Liss NM, Chen D-H, Liao M, Fox JM et al. 2015. Neutralizing monoclonal antibodies block chikungunya virus entry and release by targeting an epitope critical to viral pathogenesis. Cell Rep 13:2553–64
    [Google Scholar]
  245. 244. 
    Petitdemange C, Wauquier N, Vieillard V. 2015. Control of immunopathology during chikungunya virus infection. J. Allergy Clin. Immunol. 135:846–55
    [Google Scholar]
  246. 245. 
    Kumar R, Shrivastava T, Samal S, Ahmed S, Parray HA 2020. Antibody-based therapeutic interventions: possible strategy to counter chikungunya viral infection. Appl. Microbiol. Biotechnol. 104:3209–28
    [Google Scholar]
  247. 246. 
    Malvy D, Ezzedine K, Mamani-Matsuda M, Autran B, Tolou H et al. 2009. Destructive arthritis in a patient with chikungunya virus infection with persistent specific IgM antibodies. BMC Infect. Dis. 9:200
    [Google Scholar]
  248. 247. 
    Schilte C, Staikovsky F, Couderc T, Madec Y, Carpentier F et al. 2013. Chikungunya virus-associated long-term arthralgia: a 36-month prospective longitudinal study. PLOS Negl. Trop. Dis. 7:e2137
    [Google Scholar]
  249. 248. 
    Lum FM, Teo TH, Lee WW, Kam YW, Rénia L, Ng LF 2013. An essential role of antibodies in the control of Chikungunya virus infection. J. Immunol. 190:6295–302
    [Google Scholar]
  250. 249. 
    Kam Y-W, Simarmata D, Chow A, Her Z, Teng T-S et al. 2012. Early appearance of neutralizing immunoglobulin G3 antibodies is associated with chikungunya virus clearance and long-term clinical protection. J. Infect. Dis. 205:1147–54
    [Google Scholar]
  251. 250. 
    Fragkoudis R, Dixon-Ballany CM, Zagrajek AK Kedzierski L, Fazakerley JK. 2018. Following acute encephalitis, Semliki Forest virus is undetectable in the brain by infectivity assays but functional virus RNA capable of generating infectious virus persists for life. Viruses 10:273
    [Google Scholar]
  252. 251. 
    Griffin D, Levine B, Tyor W, Ubol S, Desprès P 1997. The role of antibody in recovery from alphavirus encephalitis. Immunol. Rev. 159:155–61
    [Google Scholar]
  253. 252. 
    Levine B, Griffin DE. 1992. Persistence of viral RNA in mouse brains after recovery from acute alphavirus encephalitis. J. Virol. 66:6429–35
    [Google Scholar]
  254. 253. 
    McCarthy MK, Reynoso GV, Winkler ES, Mack M, Diamond MS et al. 2020. MyD88-dependent influx of monocytes and neutrophils impairs lymph node B cell responses to chikungunya virus infection via Irf5, Nos2 and Nox2. PLOS Pathog 16:e1008292
    [Google Scholar]
  255. 254. 
    Tsetsarkin KA, Vanlandingham DL, McGee CE, Higgs S. 2007. A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLOS Pathog 3:e201
    [Google Scholar]
  256. 255. 
    Chen GL, Coates EE, Plummer SH, Carter CA, Berkowitz N et al. 2020. Effect of a chikungunya virus-like particle vaccine on safety and tolerability outcomes: a randomized clinical trial. JAMA 323:1369–77
    [Google Scholar]
  257. 256. 
    Wressnigg N, Hochreiter R, Zoihsl O, Fritzer A, Bézay N et al. 2020. Single-shot live-attenuated chikungunya vaccine in healthy adults: a phase 1, randomised controlled trial. Lancet Infect. Dis. 20:1193–203
    [Google Scholar]
  258. 257. 
    Ko S-Y, Akahata W, Yang ES, Kong W-P, Burke CW et al. 2019. A virus-like particle vaccine prevents equine encephalitis virus infection in nonhuman primates. Sci. Transl. Med. 11:eaav3113
    [Google Scholar]
  259. 258. 
    Henss L, Yue C, Von Rhein C, Tschismarov R, Lewis-Ximenez LL et al. 2020. Analysis of humoral immune responses in chikungunya virus (CHIKV)-infected patients and individuals vaccinated with a candidate CHIKV vaccine. J. Infect. Dis. 221:1713–23
    [Google Scholar]
  260. 259. 
    Subudhi BB, Chattopadhyay S, Mishra P, Kumar A. 2018. Current strategies for inhibition of chikungunya infection. Viruses 10:235
    [Google Scholar]
  261. 260. 
    Chung DH, Jonsson CB, Tower NA, Chu YK, Sahin E et al. 2014. Discovery of a novel compound with anti-Venezuelan equine encephalitis virus activity that targets the nonstructural protein 2. PLOS Pathog 10:e1004213
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-101220-014952
Loading
/content/journals/10.1146/annurev-immunol-101220-014952
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error