1932

Abstract

The diverse biological activity of interleukin-6 (IL-6) contributes to the maintenance of homeostasis. Emergent infection or tissue injury induces rapid production of IL-6 and activates host defense through augmentation of acute-phase proteins and immune responses. However, excessive IL-6 production and uncontrolled IL-6 receptor signaling are critical to pathogenesis. Over the years, therapeutic agents targeting IL-6 signaling, such as tocilizumab, a humanized anti-IL-6 receptor antibody, have shown remarkable efficacy for rheumatoid arthritis, Castleman disease, and juvenile idiopathic arthritis, and their efficacy in other diseases is continually being reported. Emerging evidence has demonstrated the benefit of tocilizumab for several types of acute inflammatory diseases, including cytokine storms induced by chimeric antigen receptor T cell therapy and coronavirus disease 2019 (COVID-19). Here, we refocus attention on the biology of IL-6 and summarize the distinct pathological roles of IL-6 signaling in several acute and chronic inflammatory diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-101220-023458
2022-04-26
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/immunol/40/1/annurev-immunol-101220-023458.html?itemId=/content/journals/10.1146/annurev-immunol-101220-023458&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Kishimoto T, Ishizaka K. 1973. Regulation of antibody response in vitro: VII. Enhancing soluble factors for IgG and IgE antibody response. J. Immunol. 111:1194–205
    [Google Scholar]
  2. 2. 
    Kishimoto T, Ishizaka K. 1973. Regulation of antibody response in vitro: VI. Carrier-specific helper cells for IgG and IgE antibody response. J. Immunol. 111:720–32
    [Google Scholar]
  3. 3. 
    Kishimoto T, Ishizaka K. 1973. Regulation of antibody response in vitro: V. Effect of carrier-specific helper cells on generation of hapten-specific memory cells of different immunoglobulin classes. J. Immunol. 111:1–9
    [Google Scholar]
  4. 4. 
    Kang S, Narazaki M, Metwally H, Kishimoto T. 2020. Historical overview of the interleukin-6 family cytokine. J. Exp. Med. 217:e20190347 Erratum 2020. J. Exp. Med. 217:5jem.2019034704212020c
    [Google Scholar]
  5. 5. 
    Kang S, Tanaka T, Narazaki M, Kishimoto T 2019. Targeting interleukin-6 signaling in clinic. Immunity 50:1007–23
    [Google Scholar]
  6. 6. 
    Hirano T, Kuritani T, Kishimoto T, Yamamura Y 1977. In vitro immune response of human peripheral lymphocytes: I. The mechanism(s) involved in T cell helper functions in the pokeweed mitogen-induced differentiation and proliferation of B cells. J. Immunol. 119:1235–41
    [Google Scholar]
  7. 7. 
    Howard M, Farrar J, Hilfiker M, Johnson B, Takatsu K et al. 1982. Identification of a T cell-derived B cell growth factor distinct from interleukin 2. J. Exp. Med. 155:914–23
    [Google Scholar]
  8. 8. 
    Hirano T, Yasukawa K, Harada H, Taga T, Watanabe Y et al. 1986. Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature 324:73–76
    [Google Scholar]
  9. 9. 
    Kishimoto T. 1989. The biology of interleukin-6. Blood 74:1–10
    [Google Scholar]
  10. 10. 
    Tanabe O, Akira S, Kamiya T, Wong GG, Hirano T, Kishimoto T. 1988. Genomic structure of the murine IL-6 gene: high degree conservation of potential regulatory sequences between mouse and human. J. Immunol. 141:3875–81
    [Google Scholar]
  11. 11. 
    Kaur S, Bansal Y, Kumar R, Bansal G. 2020. A panoramic review of IL-6: structure, pathophysiological roles and inhibitors. Bioorg. Med. Chem. 28:115327
    [Google Scholar]
  12. 12. 
    Yawata H, Yasukawa K, Natsuka S, Murakami M, Yamasaki K et al. 1993. Structure-function analysis of human IL-6 receptor: dissociation of amino acid residues required for IL-6-binding and for IL-6 signal transduction through gp130. EMBO J 12:1705–12
    [Google Scholar]
  13. 13. 
    Hibi M, Murakami M, Saito M, Hirano T, Taga T, Kishimoto T 1990. Molecular cloning and expression of an IL-6 signal transducer, gp130. Cell 63:1149–57
    [Google Scholar]
  14. 14. 
    Taga T, Hibi M, Hirata Y, Yamasaki K, Yasukawa K et al. 1989. Interleukin-6 triggers the association of its receptor with a possible signal transducer, gp130. Cell 58:573–81
    [Google Scholar]
  15. 15. 
    Yamasaki K, Taga T, Hirata Y, Yawata H, Kawanishi Y et al. 1988. Cloning and expression of the human interleukin-6 (BSF-2/IFNβ 2) receptor. Science 241:825–28
    [Google Scholar]
  16. 16. 
    Hunter CA, Jones SA. 2015. IL-6 as a keystone cytokine in health and disease. Nat. Immunol. 16:448–57
    [Google Scholar]
  17. 17. 
    Lust JA, Donovan KA, Kline MP, Greipp PR, Kyle RA, Maihle NJ. 1992. Isolation of an mRNA encoding a soluble form of the human interleukin-6 receptor. Cytokine 4:96–100
    [Google Scholar]
  18. 18. 
    Heink S, Yogev N, Garbers C, Herwerth M, Aly L et al. 2017. Trans-presentation of IL-6 by dendritic cells is required for the priming of pathogenic TH17 cells. Nat. Immunol. 18:74–85 Erratum 2017. Nat. Immunol. 18:474
    [Google Scholar]
  19. 19. 
    Garbers C, Heink S, Korn T, Rose-John S. 2018. Interleukin-6: designing specific therapeutics for a complex cytokine. Nat. Rev. Drug Discov. 17:395–412
    [Google Scholar]
  20. 20. 
    Jones SA, Jenkins BJ. 2018. Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat. Rev. Immunol. 18:773–89
    [Google Scholar]
  21. 21. 
    Rose-John S. 2017. The soluble interleukin 6 receptor: advanced therapeutic options in inflammation. Clin. Pharmacol. Ther. 102:591–98
    [Google Scholar]
  22. 22. 
    Akira S, Isshiki H, Sugita T, Tanabe O, Kinoshita S et al. 1990. A nuclear factor for IL-6 expression (NF-IL6) is a member of a C/EBP family. EMBO J 9:1897–906
    [Google Scholar]
  23. 23. 
    Akira S, Nishio Y, Inoue M, Wang XJ, Wei S et al. 1994. Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell 77:63–71
    [Google Scholar]
  24. 24. 
    Naka T, Narazaki M, Hirata M, Matsumoto T, Minamoto S et al. 1997. Structure and function of a new STAT-induced STAT inhibitor. Nature 387:924–29
    [Google Scholar]
  25. 25. 
    Heinrich PC, Behrmann I, Muller-Newen G, Schaper F, Graeve L 1998. Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem. J. 334:Part 2297–314
    [Google Scholar]
  26. 26. 
    Hibi M, Hirano T. 2000. Gab-family adapter molecules in signal transduction of cytokine and growth factor receptors, and T and B cell antigen receptors. Leuk. Lymphoma 37:299–307
    [Google Scholar]
  27. 27. 
    Stahl N, Farruggella TJ, Boulton TG, Zhong Z, Darnell JE Jr., Yancopoulos GD. 1995. Choice of STATs and other substrates specified by modular tyrosine-based motifs in cytokine receptors. Science 267:1349–53
    [Google Scholar]
  28. 28. 
    Ait-Ghezala G, Volmar CH, Frieling J, Paris D, Tweed M et al. 2007. CD40 promotion of amyloid beta production occurs via the NF-κB pathway. Eur. J. Neurosci. 25:1685–95
    [Google Scholar]
  29. 29. 
    Taniguchi K, Moroishi T, de Jong PR, Krawczyk M, Grebbin BM et al. 2017. YAP-IL-6ST autoregulatory loop activated on APC loss controls colonic tumorigenesis. PNAS 114:1643–48
    [Google Scholar]
  30. 30. 
    Heinrich PC, Castell JV, Andus T. 1990. Interleukin-6 and the acute phase response. Biochem. J. 265:621–36
    [Google Scholar]
  31. 31. 
    Siewert E, Bort R, Kluge R, Heinrich PC, Castell J, Jover R. 2000. Hepatic cytochrome P450 down-regulation during aseptic inflammation in the mouse is interleukin 6 dependent. Hepatology 32:49–55
    [Google Scholar]
  32. 32. 
    Nemeth E, Rivera S, Gabayan V, Keller C, Taudorf S et al. 2004. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J. Clin. Investig. 113:1271–76
    [Google Scholar]
  33. 33. 
    Obici L, Perfetti V, Palladini G, Moratti R, Merlini G 2005. Clinical aspects of systemic amyloid diseases. Biochim. Biophys. Acta Proteins Proteom. 1753:11–22
    [Google Scholar]
  34. 34. 
    Peters M, Blinn G, Jostock T, Schirmacher P, Meyer zum Buschenfelde KH et al. 2000. Combined interleukin 6 and soluble interleukin 6 receptor accelerates murine liver regeneration. Gastroenterology 119:1663–71
    [Google Scholar]
  35. 35. 
    Cressman DE, Greenbaum LE, DeAngelis RA, Ciliberto G, Furth EE et al. 1996. Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science 274:1379–83
    [Google Scholar]
  36. 36. 
    Tschaharganeh DF, Chen X, Latzko P, Malz M, Gaida MM et al. 2013. Yes-associated protein up-regulates Jagged-1 and activates the Notch pathway in human hepatocellular carcinoma. Gastroenterology 144:1530–42.e12
    [Google Scholar]
  37. 37. 
    Wong VW, Yu J, Cheng AS, Wong GL, Chan HY et al. 2009. High serum interleukin-6 level predicts future hepatocellular carcinoma development in patients with chronic hepatitis B. Int. J. Cancer 124:2766–70
    [Google Scholar]
  38. 38. 
    Kawano M, Hirano T, Matsuda T, Taga T, Horii Y et al. 1988. Autocrine generation and requirement of BSF-2/IL-6 for human multiple myelomas. Nature 332:83–85
    [Google Scholar]
  39. 39. 
    Chihara N, Aranami T, Sato W, Miyazaki Y, Miyake S et al. 2011. Interleukin 6 signaling promotes anti-aquaporin 4 autoantibody production from plasmablasts in neuromyelitis optica. PNAS 108:3701–6
    [Google Scholar]
  40. 40. 
    Bettelli E, Carrier Y, Gao W, Korn T, Strom TB et al. 2006. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–38
    [Google Scholar]
  41. 41. 
    Kimura A, Kishimoto T. 2010. IL-6: regulator of Treg/Th17 balance. Eur. J. Immunol. 40:1830–35
    [Google Scholar]
  42. 42. 
    Liao W, Lin JX, Wang L, Li P, Leonard WJ 2011. Modulation of cytokine receptors by IL-2 broadly regulates differentiation into helper T cell lineages. Nat. Immunol. 12:551–59
    [Google Scholar]
  43. 43. 
    Ma CS, Deenick EK, Batten M, Tangye SG. 2012. The origins, function, and regulation of T follicular helper cells. J. Exp. Med. 209:1241–53
    [Google Scholar]
  44. 44. 
    Harker JA, Lewis GM, Mack L, Zuniga EI 2011. Late interleukin-6 escalates T follicular helper cell responses and controls a chronic viral infection. Science 334:825–29
    [Google Scholar]
  45. 45. 
    Okada M, Kitahara M, Kishimoto S, Matsuda T, Hirano T, Kishimoto T. 1988. IL-6/BSF-2 functions as a killer helper factor in the in vitro induction of cytotoxic T cells. J. Immunol. 141:1543–49
    [Google Scholar]
  46. 46. 
    Hashizume M, Hayakawa N, Mihara M. 2008. IL-6 trans-signalling directly induces RANKL on fibroblast-like synovial cells and is involved in RANKL induction by TNF-α and IL-17. Rheumatology 47:1635–40
    [Google Scholar]
  47. 47. 
    De Benedetti F, Rucci N, Del Fattore A, Peruzzi B, Paro R et al. 2006. Impaired skeletal development in interleukin-6-transgenic mice: a model for the impact of chronic inflammation on the growing skeletal system. Arthritis Rheum 54:3551–63
    [Google Scholar]
  48. 48. 
    Nakahara H, Song J, Sugimoto M, Hagihara K, Kishimoto T et al. 2003. Anti-interleukin-6 receptor antibody therapy reduces vascular endothelial growth factor production in rheumatoid arthritis. Arthritis Rheum 48:1521–29
    [Google Scholar]
  49. 49. 
    Poplutz MK, Wessels I, Rink L, Uciechowski P. 2014. Regulation of the interleukin-6 gene expression during monocytic differentiation of HL-60 cells by chromatin remodeling and methylation. Immunobiology 219:619–26
    [Google Scholar]
  50. 50. 
    Fishman D, Faulds G, Jeffery R, Mohamed-Ali V, Yudkin JS et al. 1998. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J. Clin. Investig. 102:1369–76
    [Google Scholar]
  51. 51. 
    Hou H, Wang C, Sun F, Zhao L, Dun A, Sun Z 2015. Association of interleukin-6 gene polymorphism with coronary artery disease: an updated systematic review and cumulative meta-analysis. Inflamm. Res. 64:707–20
    [Google Scholar]
  52. 52. 
    Akira S, Kishimoto T 1992. IL-6 and NF-IL6 in acute-phase response and viral infection. Immunol. Rev. 127:25–50
    [Google Scholar]
  53. 53. 
    Akira S. 1997. IL-6-regulated transcription factors. Int. J. Biochem. Cell Biol. 29:1401–18
    [Google Scholar]
  54. 54. 
    Ballard DW, Bohnlein E, Lowenthal JW, Wano Y, Franza BR, Greene WC. 1988. HTLV-I tax induces cellular proteins that activate the kappa B element in the IL-2 receptor alpha gene. Science 241:1652–55
    [Google Scholar]
  55. 55. 
    Scala G, Ruocco MR, Ambrosino C, Mallardo M, Giordano V et al. 1994. The expression of the interleukin 6 gene is induced by the human immunodeficiency virus 1 TAT protein. J. Exp. Med. 179:961–71
    [Google Scholar]
  56. 56. 
    Delerive P, De Bosscher K, Besnard S, Vanden Berghe W, Peters JM et al. 1999. Peroxisome proliferator-activated receptor α negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-κB and AP-1. J. Biol. Chem. 274:32048–54
    [Google Scholar]
  57. 57. 
    Kimura A, Naka T, Nakahama T, Chinen I, Masuda K et al. 2009. Aryl hydrocarbon receptor in combination with Stat1 regulates LPS-induced inflammatory responses. J. Exp. Med. 206:2027–35
    [Google Scholar]
  58. 58. 
    Nakahama T, Kimura A, Nguyen NT, Chinen I, Hanieh H et al. 2011. Aryl hydrocarbon receptor deficiency in T cells suppresses the development of collagen-induced arthritis. PNAS 108:14222–27
    [Google Scholar]
  59. 59. 
    Chen CY, Chang JT, Ho YF, Shyu AB. 2016. MiR-26 down-regulates TNF-α/NF-κB signalling and IL-6 expression by silencing HMGA1 and MALT1. Nucleic Acids Res 44:3772–87
    [Google Scholar]
  60. 60. 
    He M, Xu Z, Ding T, Kuang DM, Zheng L. 2009. microRNA-155 regulates inflammatory cytokine production in tumor-associated macrophages via targeting C/EBPβ. Cell Mol. Immunol. 6:343–52
    [Google Scholar]
  61. 61. 
    Song Q, Li H, Shao H, Li C, Lu X 2015. microRNA-365 in macrophages regulates Mycobacterium tuberculosis-induced active pulmonary tuberculosis via interleukin-6. Int. J. Clin. Exp. Med. 8:15458–65
    [Google Scholar]
  62. 62. 
    Iwasaki H, Takeuchi O, Teraguchi S, Matsushita K, Uehata T et al. 2011. The IκB kinase complex regulates the stability of cytokine-encoding mRNA induced by TLR-IL-1R by controlling degradation of regnase-1. Nat. Immunol. 12:1167–75
    [Google Scholar]
  63. 63. 
    Matsushita K, Takeuchi O, Standley DM, Kumagai Y, Kawagoe T et al. 2009. Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature 458:1185–90
    [Google Scholar]
  64. 64. 
    Mino T, Takeuchi O. 2018. Post-transcriptional regulation of immune responses by RNA binding proteins. Proc. Jpn. Acad. Ser. B 94:248–58
    [Google Scholar]
  65. 65. 
    Mino T, Murakawa Y, Fukao A, Vandenbon A, Wessels HH et al. 2015. Regnase-1 and roquin regulate a common element in inflammatory mRNAs by spatiotemporally distinct mechanisms. Cell 161:1058–73
    [Google Scholar]
  66. 66. 
    Masuda K, Ripley B, Nishimura R, Mino T, Takeuchi O et al. 2013. Arid5a controls IL-6 mRNA stability, which contributes to elevation of IL-6 level in vivo. PNAS 110:9409–14
    [Google Scholar]
  67. 67. 
    Masuda K, Ripley B, Nyati KK, Dubey PK, Zaman MM et al. 2016. Arid5a regulates naive CD4+ T cell fate through selective stabilization of Stat3 mRNA. J. Exp. Med. 213:605–19
    [Google Scholar]
  68. 68. 
    Saito Y, Kagami S, Sanayama Y, Ikeda K, Suto A et al. 2014. AT-rich-interactive domain-containing protein 5A functions as a negative regulator of retinoic acid receptor-related orphan nuclear receptor γt-induced Th17 cell differentiation. Arthritis Rheum 66:1185–94
    [Google Scholar]
  69. 69. 
    Ferreira MA, Matheson MC, Duffy DL, Marks GB, Hui J et al. 2011. Identification of IL6R and chromosome 11q13.5 as risk loci for asthma. Lancet 378:1006–14
    [Google Scholar]
  70. 70. 
    Hawkins GA, Robinson MB, Hastie AT, Li X, Li H et al. 2012. The IL6R variation Asp358Ala is a potential modifier of lung function in subjects with asthma. J. Allergy Clin. Immunol. 130:510–15.e1
    [Google Scholar]
  71. 71. 
    Garbers C, Monhasery N, Aparicio-Siegmund S, Lokau J, Baran P et al. 2014. The interleukin-6 receptor Asp358Ala single nucleotide polymorphism rs2228145 confers increased proteolytic conversion rates by ADAM proteases. Biochim. Biophys. Acta Mol. Basis Dis. 1842:1485–94
    [Google Scholar]
  72. 72. 
    Aparicio-Siegmund S, Garbers Y, Flynn CM, Waetzig GH, Gouni-Berthold I et al. 2019. The IL-6-neutralizing sIL-6R-sgp130 buffer system is disturbed in patients with type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 317:E411–20
    [Google Scholar]
  73. 73. 
    Muller-Newen G, Kuster A, Hemmann U, Keul R, Horsten U et al. 1998. Soluble IL-6 receptor potentiates the antagonistic activity of soluble gp130 on IL-6 responses. J. Immunol. 161:6347–55
    [Google Scholar]
  74. 74. 
    Schwerd T, Twigg SRF, Aschenbrenner D, Manrique S, Miller KA et al. 2017. A biallelic mutation in IL6ST encoding the GP130 co-receptor causes immunodeficiency and craniosynostosis. J. Exp. Med. 214:2547–62
    [Google Scholar]
  75. 75. 
    Grimbacher B, Holland SM, Gallin JI, Greenberg F, Hill SC et al. 1999. Hyper-IgE syndrome with recurrent infections—an autosomal dominant multisystem disorder. N. Engl. J. Med. 340:692–702
    [Google Scholar]
  76. 76. 
    Minegishi Y, Saito M, Tsuchiya S, Tsuge I, Takada H et al. 2007. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature 448:1058–62
    [Google Scholar]
  77. 77. 
    Spencer S, Köstel Bal S, Egner W, Lango Allen H, Raza SI et al. 2019. Loss of the interleukin-6 receptor causes immunodeficiency, atopy, and abnormal inflammatory responses. J. Exp. Med. 216:91986–98
    [Google Scholar]
  78. 78. 
    Dupuis S, Jouanguy E, Al-Hajjar S, Fieschi C, Al-Mohsen IZ et al. 2003. Impaired response to interferon-α/β and lethal viral disease in human STAT1 deficiency. Nat. Genet. 33:388–91
    [Google Scholar]
  79. 79. 
    Blaydon DC, Biancheri P, Di WL, Plagnol V, Cabral RM et al. 2011. Inflammatory skin and bowel disease linked to ADAM17 deletion. N. Engl. J. Med. 365:1502–8
    [Google Scholar]
  80. 80. 
    Kreins AY, Ciancanelli MJ, Okada S, Kong XF, Ramirez-Alejo N et al. 2015. Human TYK2 deficiency: mycobacterial and viral infections without hyper-IgE syndrome. J. Exp. Med. 212:1641–62
    [Google Scholar]
  81. 81. 
    Kang S, Tanaka T, Kishimoto T. 2015. Therapeutic uses of anti-interleukin-6 receptor antibody. Int. Immunol. 27:21–29
    [Google Scholar]
  82. 82. 
    Lamertz L, Rummel F, Polz R, Baran P, Hansen S et al. 2018. Soluble gp130 prevents interleukin-6 and interleukin-11 cluster signaling but not intracellular autocrine responses. Sci. Signal. 11:eaar7388
    [Google Scholar]
  83. 83. 
    Narazaki M, Yasukawa K, Saito T, Ohsugi Y, Fukui H et al. 1993. Soluble forms of the interleukin-6 signal-transducing receptor component gp130 in human serum possessing a potential to inhibit signals through membrane-anchored gp130. Blood 82:1120–26
    [Google Scholar]
  84. 84. 
    Dasgupta B, Corkill M, Kirkham B, Gibson T, Panayi G. 1992. Serial estimation of interleukin 6 as a measure of systemic disease in rheumatoid arthritis. J. Rheumatol. 19:22–25
    [Google Scholar]
  85. 85. 
    Gabay C. 2006. Interleukin-6 and chronic inflammation. Arthritis Res. Ther. 8:Suppl. 2S3
    [Google Scholar]
  86. 86. 
    Hein GE, Kohler M, Oelzner P, Stein G, Franke S. 2005. The advanced glycation end product pentosidine correlates to IL-6 and other relevant inflammatory markers in rheumatoid arthritis. Rheumatol. Int. 26:137–41
    [Google Scholar]
  87. 87. 
    Kishimoto T. 2005. Interleukin-6: from basic science to medicine—40 years in immunology. Annu. Rev. Immunol. 23:1–21
    [Google Scholar]
  88. 88. 
    Lally F, Smith E, Filer A, Stone MA, Shaw JS et al. 2005. A novel mechanism of neutrophil recruitment in a coculture model of the rheumatoid synovium. Arthritis Rheum 52:3460–69
    [Google Scholar]
  89. 89. 
    Kaplanski G, Marin V, Montero-Julian F, Mantovani A, Farnarier C 2003. IL-6: a regulator of the transition from neutrophil to monocyte recruitment during inflammation. Trends Immunol 24:25–29
    [Google Scholar]
  90. 90. 
    Guerne PA, Zuraw BL, Vaughan JH, Carson DA, Lotz M 1989. Synovium as a source of interleukin 6 in vitro: contribution to local and systemic manifestations of arthritis. J. Clin. Investig. 83:585–92
    [Google Scholar]
  91. 91. 
    Jilka RL, Hangoc G, Girasole G, Passeri G, Williams DC et al. 1992. Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science 257:88–91
    [Google Scholar]
  92. 92. 
    Poli V, Balena R, Fattori E, Markatos A, Yamamoto M et al. 1994. Interleukin-6 deficient mice are protected from bone loss caused by estrogen depletion. EMBO J 13:1189–96
    [Google Scholar]
  93. 93. 
    Ohshima S, Saeki Y, Mima T, Sasai M, Nishioka K et al. 1998. Interleukin 6 plays a key role in the development of antigen-induced arthritis. PNAS 95:8222–26
    [Google Scholar]
  94. 94. 
    Takagi N, Mihara M, Moriya Y, Nishimoto N, Yoshizaki K et al. 1998. Blockage of interleukin-6 receptor ameliorates joint disease in murine collagen-induced arthritis. Arthritis Rheum 41:2117–21
    [Google Scholar]
  95. 95. 
    Wendling D, Racadot E, Wijdenes J 1993. Treatment of severe rheumatoid arthritis by anti-interleukin 6 monoclonal antibody. J. Rheumatol. 20:259–62
    [Google Scholar]
  96. 96. 
    Nishimoto N, Kishimoto T, Yoshizaki K. 2000. Anti-interleukin 6 receptor antibody treatment in rheumatic disease. Ann. Rheum. Dis. 59:Suppl. 1i21–27
    [Google Scholar]
  97. 97. 
    Choy EH, Isenberg DA, Garrood T, Farrow S, Ioannou Y et al. 2002. Therapeutic benefit of blocking interleukin-6 activity with an anti-interleukin-6 receptor monoclonal antibody in rheumatoid arthritis: a randomized, double-blind, placebo-controlled, dose-escalation trial. Arthritis Rheum 46:3143–50
    [Google Scholar]
  98. 98. 
    Maini RN, Taylor PC, Szechinski J, Pavelka K, Broll J et al. 2006. Double-blind randomized controlled clinical trial of the interleukin-6 receptor antagonist, tocilizumab, in European patients with rheumatoid arthritis who had an incomplete response to methotrexate. Arthritis Rheum 54:2817–29
    [Google Scholar]
  99. 99. 
    Nishimoto N, Yoshizaki K, Miyasaka N, Yamamoto K, Kawai S et al. 2004. Treatment of rheumatoid arthritis with humanized anti-interleukin-6 receptor antibody: a multicenter, double-blind, placebo-controlled trial. Arthritis Rheum 50:1761–69
    [Google Scholar]
  100. 100. 
    Jones G, Sebba A, Gu J, Lowenstein MB, Calvo A et al. 2010. Comparison of tocilizumab monotherapy versus methotrexate monotherapy in patients with moderate to severe rheumatoid arthritis: the AMBITION study. Ann. Rheum. Dis. 69:88–96
    [Google Scholar]
  101. 101. 
    Gabay C, Emery P, van Vollenhoven R, Dikranian A, Alten R et al. 2013. Tocilizumab monotherapy versus adalimumab monotherapy for treatment of rheumatoid arthritis (ADACTA): a randomised, double-blind, controlled phase 4 trial. Lancet 381:1541–50
    [Google Scholar]
  102. 102. 
    Genovese MC, Fleischmann R, Kivitz AJ, Rell-Bakalarska M, Martincova R et al. 2015. Sarilumab plus methotrexate in patients with active rheumatoid arthritis and inadequate response to methotrexate: results of a phase III study. Arthritis Rheum 67:1424–37
    [Google Scholar]
  103. 103. 
    Ravelli A, Martini A. 2007. Juvenile idiopathic arthritis. Lancet 369:767–78
    [Google Scholar]
  104. 104. 
    De Benedetti F, Pignatti P, Gerloni V, Massa M, Sartirana P et al. 1997. Differences in synovial fluid cytokine levels between juvenile and adult rheumatoid arthritis. J. Rheumatol. 24:1403–9
    [Google Scholar]
  105. 105. 
    Yokota S, Miyamae T, Imagawa T, Iwata N, Katakura S et al. 2005. Therapeutic efficacy of humanized recombinant anti-interleukin-6 receptor antibody in children with systemic-onset juvenile idiopathic arthritis. Arthritis Rheum 52:818–25
    [Google Scholar]
  106. 106. 
    De Benedetti F, Brunner H, Ruperto N, Schneider R, Xavier R et al. 2015. Catch-up growth during tocilizumab therapy for systemic juvenile idiopathic arthritis: results from a phase III trial. Arthritis Rheum 67:840–48
    [Google Scholar]
  107. 107. 
    Miyamae T, Yokoya S, Yamanaka H, Yokota S 2014. Effect of tocilizumab on growth impairment in systemic juvenile idiopathic arthritis with long-term corticosteroid therapy. Mod. Rheumatol. 24:567–71
    [Google Scholar]
  108. 108. 
    Fautrel B. 2008. Adult-onset Still disease. Best Pract. Res. Clin. Rheumatol. 22:773–92
    [Google Scholar]
  109. 109. 
    Kaneko Y, Kameda H, Ikeda K, Ishii T, Murakami K et al. 2018. Tocilizumab in patients with adult-onset Still's disease refractory to glucocorticoid treatment: a randomised, double-blind, placebo-controlled phase III trial. Ann. Rheum. Dis. 77:1720–29
    [Google Scholar]
  110. 110. 
    Yoshizaki K, Matsuda T, Nishimoto N, Kuritani T, Taeho L et al. 1989. Pathogenic significance of interleukin-6 (IL-6/BSF-2) in Castleman's disease. Blood 74:1360–67
    [Google Scholar]
  111. 111. 
    Brandt SJ, Bodine DM, Dunbar CE, Nienhuis AW. 1990. Dysregulated interleukin 6 expression produces a syndrome resembling Castleman's disease in mice. J. Clin. Investig. 86:592–99
    [Google Scholar]
  112. 112. 
    Suthaus J, Stuhlmann-Laeisz C, Tompkins VS, Rosean TR, Klapper W et al. 2012. HHV-8-encoded viral IL-6 collaborates with mouse IL-6 in the development of multicentric Castleman disease in mice. Blood 119:5173–81
    [Google Scholar]
  113. 113. 
    Mori Y, Nishimoto N, Ohno M, Inagi R, Dhepakson P et al. 2000. Human herpesvirus 8-encoded interleukin-6 homologue (viral IL-6) induces endogenous human IL-6 secretion. J. Med. Virol. 61:332–35
    [Google Scholar]
  114. 114. 
    Nishimoto N, Kanakura Y, Aozasa K, Johkoh T, Nakamura M et al. 2005. Humanized anti-interleukin-6 receptor antibody treatment of multicentric Castleman disease. Blood 106:2627–32
    [Google Scholar]
  115. 115. 
    Nishimoto N, Sasai M, Shima Y, Nakagawa M, Matsumoto T et al. 2000. Improvement in Castleman's disease by humanized anti-interleukin-6 receptor antibody therapy. Blood 95:56–61
    [Google Scholar]
  116. 116. 
    Dasgupta B, Panayi GS. 1990. Interleukin-6 in serum of patients with polymyalgia rheumatica and giant cell arteritis. Br. J. Rheumatol. 29:456–58
    [Google Scholar]
  117. 117. 
    Noris M, Daina E, Gamba S, Bonazzola S, Remuzzi G 1999. Interleukin-6 and RANTES in Takayasu arteritis: a guide for therapeutic decisions?. Circulation 100:55–60
    [Google Scholar]
  118. 118. 
    Stone JH, Tuckwell K, Dimonaco S, Klearman M, Aringer M et al. 2017. Trial of tocilizumab in giant-cell arteritis. N. Engl. J. Med. 377:317–28
    [Google Scholar]
  119. 119. 
    Nakaoka Y, Isobe M, Takei S, Tanaka Y, Ishii T et al. 2018. Efficacy and safety of tocilizumab in patients with refractory Takayasu arteritis: results from a randomised, double-blind, placebo-controlled, phase 3 trial in Japan (the TAKT study). Ann. Rheum. Dis. 77:348–54
    [Google Scholar]
  120. 120. 
    Jarius S, Wildemann B 2010. AQP4 antibodies in neuromyelitis optica: diagnostic and pathogenetic relevance. Nat. Rev. Neurol. 6:383–92
    [Google Scholar]
  121. 121. 
    Wingerchuk DM, Lennon VA, Lucchinetti CF, Pittock SJ, Weinshenker BG. 2007. The spectrum of neuromyelitis optica. Lancet Neurol 6:805–15
    [Google Scholar]
  122. 122. 
    Araki M, Matsuoka T, Miyamoto K, Kusunoki S, Okamoto T et al. 2014. Efficacy of the anti-IL-6 receptor antibody tocilizumab in neuromyelitis optica: a pilot study. Neurology 82:1302–6
    [Google Scholar]
  123. 123. 
    Traboulsee A, Greenberg BM, Bennett JL, Szczechowski L, Fox E et al. 2020. Safety and efficacy of satralizumab monotherapy in neuromyelitis optica spectrum disorder: a randomised, double-blind, multicentre, placebo-controlled phase 3 trial. Lancet Neurol 19:402–12
    [Google Scholar]
  124. 124. 
    Yamamura T, Kleiter I, Fujihara K, Palace J, Greenberg B et al. 2019. Trial of satralizumab in neuromyelitis optica spectrum disorder. N. Engl. J. Med. 381:2114–24
    [Google Scholar]
  125. 125. 
    Tanaka T, Narazaki M, Kishimoto T. 2014. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 6:a016295
    [Google Scholar]
  126. 126. 
    Akira S, Taga T, Kishimoto T. 1993. Interleukin-6 in biology and medicine. Adv. Immunol. 54:1–78
    [Google Scholar]
  127. 127. 
    Akira S, Takeda K. 2004. Toll-like receptor signalling. Nat. Rev. Immunol. 4:499–511
    [Google Scholar]
  128. 128. 
    Piccinini AM, Midwood KS. 2010. DAMPening inflammation by modulating TLR signalling. Mediators Inflamm 2010:672395
    [Google Scholar]
  129. 129. 
    Tanaka T, Narazaki M, Kishimoto T. 2016. Immunotherapeutic implications of IL-6 blockade for cytokine storm. Immunotherapy 8:959–70
    [Google Scholar]
  130. 130. 
    Levi M, ten Cate H. 1999. Disseminated intravascular coagulation. N. Engl. J. Med. 341:586–92
    [Google Scholar]
  131. 131. 
    Gerszten RE, Garcia-Zepeda EA, Lim YC, Yoshida M, Ding HA et al. 1999. MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature 398:718–23
    [Google Scholar]
  132. 132. 
    Kang S, Tanaka T, Inoue H, Ono C, Hashimoto S et al. 2020. IL-6 trans-signaling induces plasminogen activator inhibitor-1 from vascular endothelial cells in cytokine release syndrome. PNAS 117:22351–56
    [Google Scholar]
  133. 133. 
    Marin V, Montero-Julian FA, Gres S, Boulay V, Bongrand P et al. 2001. The IL-6-soluble IL-6Rα autocrine loop of endothelial activation as an intermediate between acute and chronic inflammation: an experimental model involving thrombin. J. Immunol. 167:3435–42
    [Google Scholar]
  134. 134. 
    Jirik FR, Podor TJ, Hirano T, Kishimoto T, Loskutoff DJ et al. 1989. Bacterial lipopolysaccharide and inflammatory mediators augment IL-6 secretion by human endothelial cells. J. Immunol. 142:144–47
    [Google Scholar]
  135. 135. 
    Romano M, Sironi M, Toniatti C, Polentarutti N, Fruscella P et al. 1997. Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity 6:315–25
    [Google Scholar]
  136. 136. 
    Cohen T, Nahari D, Cerem LW, Neufeld G, Levi BZ. 1996. Interleukin 6 induces the expression of vascular endothelial growth factor. J. Biol. Chem. 271:736–41
    [Google Scholar]
  137. 137. 
    Desai TR, Leeper NJ, Hynes KL, Gewertz BL. 2002. Interleukin-6 causes endothelial barrier dysfunction via the protein kinase C pathway. J. Surg. Res. 104:118–23
    [Google Scholar]
  138. 138. 
    Esser S, Lampugnani MG, Corada M, Dejana E, Risau W 1998. Vascular endothelial growth factor induces VE-cadherin tyrosine phosphorylation in endothelial cells. J. Cell Sci. 111:Part 131853–65
    [Google Scholar]
  139. 139. 
    Laudes IJ, Chu JC, Huber-Lang M, Guo RF, Riedemann NC et al. 2002. Expression and function of C5a receptor in mouse microvascular endothelial cells. J. Immunol. 169:5962–70
    [Google Scholar]
  140. 140. 
    Riedemann NC, Neff TA, Guo RF, Bernacki KD, Laudes IJ et al. 2003. Protective effects of IL-6 blockade in sepsis are linked to reduced C5a receptor expression. J. Immunol. 170:503–7
    [Google Scholar]
  141. 141. 
    Finkel MS, Romeo RC, Oddis CV, Salama G. 1992. Inotropic effects of calcium antagonists in the cardiomyopathic Syrian hamster. J. Cardiovasc. Pharmacol. 19:546–53
    [Google Scholar]
  142. 142. 
    Pathan N, Hemingway CA, Alizadeh AA, Stephens AC, Boldrick JC et al. 2004. Role of interleukin 6 in myocardial dysfunction of meningococcal septic shock. Lancet 363:203–9
    [Google Scholar]
  143. 143. 
    Porter DL, Hwang WT, Frey NV, Lacey SF, Shaw PA et al. 2015. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci. Transl. Med. 7:303ra139
    [Google Scholar]
  144. 144. 
    Matthys P, Dillen C, Proost P, Heremans H, Van Damme J, Billiau A. 1993. Modification of the anti-CD3-induced cytokine release syndrome by anti-interferon-gamma or anti-interleukin-6 antibody treatment: protective effects and biphasic changes in blood cytokine levels. Eur. J. Immunol. 23:2209–16
    [Google Scholar]
  145. 145. 
    Giavridis T, van der Stegen SJC, Eyquem J, Hamieh M, Piersigilli A, Sadelain M. 2018. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat. Med. 24:731–38
    [Google Scholar]
  146. 146. 
    Norelli M, Camisa B, Barbiera G, Falcone L, Purevdorj A et al. 2018. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat. Med. 24:739–48
    [Google Scholar]
  147. 147. 
    Brentjens RJ, Davila ML, Riviere I, Park J, Wang X et al. 2013. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci. Transl. Med. 5:177ra38
    [Google Scholar]
  148. 148. 
    Teachey DT, Rheingold SR, Maude SL, Zugmaier G, Barrett DM et al. 2013. Cytokine release syndrome after blinatumomab treatment related to abnormal macrophage activation and ameliorated with cytokine-directed therapy. Blood 121:5154–57
    [Google Scholar]
  149. 149. 
    van der Stegen SJ, Davies DM, Wilkie S, Foster J, Sosabowski JK et al. 2013. Preclinical in vivo modeling of cytokine release syndrome induced by ErbB-retargeted human T cells: identifying a window of therapeutic opportunity?. J. Immunol. 191:4589–98
    [Google Scholar]
  150. 150. 
    Teachey DT, Lacey SF, Shaw PA, Melenhorst JJ, Maude SL et al. 2016. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov 6:664–79
    [Google Scholar]
  151. 151. 
    Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL et al. 2013. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N. Engl. J. Med. 368:1509–18
    [Google Scholar]
  152. 152. 
    Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM et al. 2014. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371:1507–17
    [Google Scholar]
  153. 153. 
    Obstfeld AE, Frey NV, Mansfield K, Lacey SF, June CH et al. 2017. Cytokine release syndrome associated with chimeric-antigen receptor T-cell therapy: clinicopathological insights. Blood 130:2569–72
    [Google Scholar]
  154. 154. 
    Gust J, Hay KA, Hanafi LA, Li D, Myerson D et al. 2017. Endothelial activation and blood-brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discov 7:1404–19
    [Google Scholar]
  155. 155. 
    Winkler U, Jensen M, Manzke O, Schulz H, Diehl V, Engert A. 1999. Cytokine-release syndrome in patients with B-cell chronic lymphocytic leukemia and high lymphocyte counts after treatment with an anti-CD20 monoclonal antibody (rituximab, IDEC-C2B8). Blood 94:2217–24
    [Google Scholar]
  156. 156. 
    Huang C, Wang Y, Li X, Ren L, Zhao J et al. 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395:497–506
    [Google Scholar]
  157. 157. 
    Moore JB, June CH. 2020. Cytokine release syndrome in severe COVID-19. Science 368:473–74
    [Google Scholar]
  158. 158. 
    Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. 2020. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 395:1033–34
    [Google Scholar]
  159. 159. 
    Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R et al. 2020. Endothelial cell infection and endotheliitis in COVID-19. Lancet 395:1417–18
    [Google Scholar]
  160. 160. 
    Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ et al. 2020. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 382:1708–20
    [Google Scholar]
  161. 161. 
    Wu C, Chen X, Cai Y, Xia J, Zhou X et al. 2020. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern. Med. 180:7934–43
    [Google Scholar]
  162. 162. 
    Zhou F, Yu T, Du R, Fan G, Liu Y et al. 2020. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395:1054–62
    [Google Scholar]
  163. 163. 
    Goshua G, Pine AB, Meizlish ML, Chang CH, Zhang H et al. 2020. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. Lancet Haematol 7:e575–82
    [Google Scholar]
  164. 164. 
    Pine AB, Meizlish ML, Goshua G, Chang C-H, Zhang H et al. 2020. Circulating markers of angiogenesis and endotheliopathy in COVID-19. Pulm. Circ. 10:2045894020966547
    [Google Scholar]
  165. 165. 
    Ranucci M, Ballotta A, Di Dedda U, Bayshnikova E, Dei Poli M et al. 2020. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J. Thromb. Haemost. 18:1747–51
    [Google Scholar]
  166. 166. 
    RECOVERY Collab. Group Horby P, Lim WS, Emberson JR, Mafham M et al. 2021. Dexamethasone in hospitalized patients with Covid-19. N. Engl. J. Med. 384693–704
  167. 167. 
    Xu X, Han M, Li T, Sun W, Wang D et al. 2020. Effective treatment of severe COVID-19 patients with tocilizumab. PNAS 117:10970–75
    [Google Scholar]
  168. 168. 
    Biran N, Ip A, Ahn J, Go RC, Wang S et al. 2020. Tocilizumab among patients with COVID-19 in the intensive care unit: a multicentre observational study. Lancet Rheumatol 2:e603–12
    [Google Scholar]
  169. 169. 
    Guaraldi G, Meschiari M, Cozzi-Lepri A, Milic J, Tonelli R et al. 2020. Tocilizumab in patients with severe COVID-19: a retrospective cohort study. Lancet Rheumatol 2:e474–84
    [Google Scholar]
  170. 170. 
    Somers EC, Eschenauer GA, Troost JP, Golob JL, Gandhi TN et al. 2021. Tocilizumab for treatment of mechanically ventilated patients with COVID-19. Clin. Infect. Dis. 73:2e445–54
    [Google Scholar]
  171. 171. 
    Salama C, Han J, Yau L, Reiss WG, Kramer B et al. 2021. Tocilizumab in patients hospitalized with Covid-19 pneumonia. N. Engl. J. Med. 384:20–30
    [Google Scholar]
  172. 172. 
    Gordon AC, Mouncey PR, Al-Beidh F, Rowan KM, Nichol AD et al. (REMAP-CAP Investig.) 2021. Interleukin-6 receptor antagonists in critically ill patients with Covid-19. N. Engl. J. Med. 384:1491–502
    [Google Scholar]
  173. 173. 
    Horby PW, Campbell M, Staplin N, Spata E, Emberson JR et al. (RECOVERY Collab. Group). 2021. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet 397:1637–45
    [Google Scholar]
  174. 174. 
    Shankar-Hari M, Vale CL, Godolphin PJ, Fisher D, Higgins JPT et al. (WHO Rapid Evid. Apprais. COVID-19 Ther. Work. Group). 2021. Association between administration of IL-6 antagonists and mortality among patients hospitalized for COVID-19: a meta-analysis. JAMA 326:6499–518
    [Google Scholar]
  175. 175. 
    Kishimoto T. 1985. Factors affecting B-cell growth and differentiation. Annu. Rev. Immunol. 3:133–57
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-101220-023458
Loading
/content/journals/10.1146/annurev-immunol-101220-023458
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error