1932

Abstract

Inflammasomes are inflammatory signaling complexes that provide molecular platforms to activate the protease function of inflammatory caspases. Caspases-1, -4, -5, and -11 are inflammatory caspases activated by inflammasomes to drive lytic cell death and inflammatory mediator production, thereby activating host-protective and pathological immune responses. Here, we comprehensively review the mechanisms that govern the activity of inflammatory caspases. We discuss inflammatory caspase activation and deactivation mechanisms, alongside the physiological importance of caspase activity kinetics. We also examine mechanisms of caspase substrate selection and how inflammasome and cell identities influence caspase activity and resultant inflammatory and pyroptotic cellular programs. Understanding how inflammatory caspases are regulated may offer new strategies for treating infection and inflammasome-driven disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-101220-030653
2022-04-26
2024-06-25
Loading full text...

Full text loading...

/deliver/fulltext/immunol/40/1/annurev-immunol-101220-030653.html?itemId=/content/journals/10.1146/annurev-immunol-101220-030653&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Kumar H, Kawai T, Akira S. 2011. Pathogen recognition by the innate immune system. Int. Rev. Immunol. 30:16–34
    [Google Scholar]
  2. 2. 
    Broz P, Dixit VM. 2016. Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 16:407–20
    [Google Scholar]
  3. 3. 
    Martinon F, Burns K, Tschopp J. 2002. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell 10:417–26
    [Google Scholar]
  4. 4. 
    Vanaja SK, Rathinam VA, Fitzgerald KA. 2015. Mechanisms of inflammasome activation: recent advances and novel insights. Trends Cell Biol 25:308–15
    [Google Scholar]
  5. 5. 
    von Moltke J, Ayres JS, Kofoed EM, Chavarria-Smith J, Vance RE 2013. Recognition of bacteria by inflammasomes. Annu. Rev. Immunol. 31:73–106
    [Google Scholar]
  6. 6. 
    Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G et al. 2010. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464:1357–61
    [Google Scholar]
  7. 7. 
    Franchi L, Eigenbrod T, Munoz-Planillo R, Nunez G. 2009. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat. Immunol. 10:241–47
    [Google Scholar]
  8. 8. 
    Guo H, Callaway JB, Ting JP. 2015. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat. Med. 21:677–87
    [Google Scholar]
  9. 9. 
    Martinon F, Mayor A, Tschopp J 2009. The inflammasomes: guardians of the body. Annu. Rev. Immunol. 27:229–65
    [Google Scholar]
  10. 10. 
    Schroder K, Tschopp J. 2010. The inflammasomes. Cell 140:821–32
    [Google Scholar]
  11. 11. 
    Yang J, Zhao Y, Shao F. 2015. Non-canonical activation of inflammatory caspases by cytosolic LPS in innate immunity. Curr. Opin. Immunol. 32:78–83
    [Google Scholar]
  12. 12. 
    Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S et al. 2011. Non-canonical inflammasome activation targets caspase-11. Nature 479:117–21
    [Google Scholar]
  13. 13. 
    Lagrange B, Benaoudia S, Wallet P, Magnotti F, Provost A et al. 2018. Human caspase-4 detects tetra-acylated LPS and cytosolic Francisella and functions differently from murine caspase-11. Nat. Commun. 9:242
    [Google Scholar]
  14. 14. 
    Shi J, Zhao Y, Wang Y, Gao W, Ding J et al. 2014. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514:187–92
    [Google Scholar]
  15. 15. 
    Santos JC, Boucher D, Schneider LK, Demarco B, Dilucca M et al. 2020. Human GBP1 binds LPS to initiate assembly of a caspase-4 activating platform on cytosolic bacteria. Nat. Commun. 11:3276
    [Google Scholar]
  16. 16. 
    Wandel MP, Kim BH, Park ES, Boyle KB, Nayak K et al. 2020. Guanylate-binding proteins convert cytosolic bacteria into caspase-4 signaling platforms. Nat. Immunol. 21:880–91
    [Google Scholar]
  17. 17. 
    Kutsch M, Sistemich L, Lesser CF, Goldberg MB, Herrmann C, Coers J 2020. Direct binding of polymeric GBP1 to LPS disrupts bacterial cell envelope functions. EMBO J 39:e104926
    [Google Scholar]
  18. 18. 
    Fisch D, Bando H, Clough B, Hornung V, Yamamoto M et al. 2019. Human GBP1 is a microbe-specific gatekeeper of macrophage apoptosis and pyroptosis. EMBO J 38:e100926
    [Google Scholar]
  19. 19. 
    Kayagaki N, Stowe IB, Lee BL, O'Rourke K, Anderson K et al. 2015. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526:666–71
    [Google Scholar]
  20. 20. 
    Shi J, Zhao Y, Wang K, Shi X, Wang Y et al. 2015. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526:660–65
    [Google Scholar]
  21. 21. 
    Ding J, Wang K, Liu W, She Y, Sun Q et al. 2016. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535:111–16
    [Google Scholar]
  22. 22. 
    Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG et al. 2016. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535:153–58
    [Google Scholar]
  23. 23. 
    Chan AH, Schroder K. 2020. Inflammasome signaling and regulation of interleukin-1 family cytokines. J. Exp. Med. 217:e20190314
    [Google Scholar]
  24. 24. 
    Monteleone M, Stanley AC, Chen KW, Brown DL, Bezbradica JS et al. 2018. Interleukin-1β maturation triggers its relocation to the plasma membrane for gasdermin-D-dependent and -independent secretion. Cell Rep 24:1425–33
    [Google Scholar]
  25. 25. 
    Evavold CL, Ruan J, Tan Y, Xia S, Wu H, Kagan JC. 2018. The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity 48:35–44.e6
    [Google Scholar]
  26. 26. 
    Heilig R, Dick MS, Sborgi L, Meunier E, Hiller S, Broz P. 2018. The gasdermin-D pore acts as a conduit for IL-1β secretion in mice. Eur. J. Immunol. 48:584–92
    [Google Scholar]
  27. 27. 
    Xia S, Zhang Z, Magupalli VG, Pablo JL, Dong Y et al. 2021. Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature 593:607–11
    [Google Scholar]
  28. 28. 
    Chen KW, Gross CJ, Sotomayor FV, Stacey KJ, Tschopp J et al. 2014. The neutrophil NLRC4 inflammasome selectively promotes IL-1β maturation without pyroptosis during acute Salmonella challenge. Cell Rep 8:570–82
    [Google Scholar]
  29. 29. 
    Zanoni I, Tan Y, Di Gioia M, Broggi A, Ruan J et al. 2016. An endogenous caspase-11 ligand elicits interleukin-1 release from living dendritic cells. Science 352:1232–36
    [Google Scholar]
  30. 30. 
    Wolf AJ, Reyes CN, Liang W, Becker C, Shimada K et al. 2016. Hexokinase is an innate immune receptor for the detection of bacterial peptidoglycan. Cell 166:624–36
    [Google Scholar]
  31. 31. 
    Ruhl S, Shkarina K, Demarco B, Heilig R, Santos JC, Broz P. 2018. ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science 362:956–60
    [Google Scholar]
  32. 32. 
    Kayagaki N, Kornfeld OS, Lee BL, Stowe IB, O'Rourke K et al. 2021. NINJ1 mediates plasma membrane rupture during lytic cell death. Nature 591:131–36
    [Google Scholar]
  33. 33. 
    Lee HJ, Ahn BJ, Shin MW, Jeong JW, Kim JH, Kim KW. 2009. Ninjurin1 mediates macrophage-induced programmed cell death during early ocular development. Cell Death Differ 16:1395–407
    [Google Scholar]
  34. 34. 
    Wang X, Qin J, Zhang X, Peng Z, Ye K et al. 2018. Functional blocking of Ninjurin1 as a strategy for protecting endothelial cells in diabetes mellitus. Clin. Sci. 132:2213–29
    [Google Scholar]
  35. 35. 
    Phulphagar K, Kuhn LI, Ebner S, Frauenstein A, Swietlik JJ et al. 2021. Proteomics reveals distinct mechanisms regulating the release of cytokines and alarmins during pyroptosis. Cell Rep 34:108826
    [Google Scholar]
  36. 36. 
    Russo AJ, Vasudevan SO, Mendez-Huergo SP, Kumari P, Menoret A et al. 2021. Intracellular immune sensing promotes inflammation via gasdermin D-driven release of a lectin alarmin. Nat. Immunol. 22:154–65
    [Google Scholar]
  37. 37. 
    Wilson KP, Black JA, Thomson JA, Kim EE, Griffith JP et al. 1994. Structure and mechanism of interleukin-1 beta converting enzyme. Nature 370:270–75
    [Google Scholar]
  38. 38. 
    Man SM, Kanneganti TD. 2016. Converging roles of caspases in inflammasome activation, cell death and innate immunity. Nat. Rev. Immunol. 16:7–21
    [Google Scholar]
  39. 39. 
    Gonzalez Ramirez ML, Salvesen GS 2018. A primer on caspase mechanisms. Sem. Cell Dev. Biol. 82:79–85
    [Google Scholar]
  40. 40. 
    Orning P, Lien E 2021. Multiple roles of caspase-8 in cell death, inflammation, and innate immunity. J. Leukoc. Biol. 109:121–41
    [Google Scholar]
  41. 41. 
    Martinon F, Tschopp J. 2007. Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ 14:10–22
    [Google Scholar]
  42. 42. 
    Clark AC. 2016. Caspase allostery and conformational selection. Chem. Rev. 116:6666–706
    [Google Scholar]
  43. 43. 
    Walker NPC, Talanian RV, Brady KD, Dang LC, Bump NJ et al. 1994. Crystal structure of the cysteine protease interleukin-1β-converting enzyme: a (p20/p10)2 homodimer. Cell 78:343–52
    [Google Scholar]
  44. 44. 
    Fuentes-Prior P, Salvesen GS. 2004. The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem. J. 384:201–32
    [Google Scholar]
  45. 45. 
    Ross C, Chan AH, Von Pein J, Boucher D, Schroder K. 2018. Dimerization and auto-processing induce caspase-11 protease activation within the non-canonical inflammasome. Life Sci. Alliance 1:e201800237
    [Google Scholar]
  46. 46. 
    Boucher D, Monteleone M, Coll RC, Chen KW, Ross CM et al. 2018. Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflammasome activity. J. Exp. Med. 215:827
    [Google Scholar]
  47. 47. 
    Lee BL, Stowe IB, Gupta A, Kornfeld OS, Roose-Girma M et al. 2018. Caspase-11 auto-proteolysis is crucial for noncanonical inflammasome activation. J. Exp. Med. 215:2279–88
    [Google Scholar]
  48. 48. 
    Broz P, von Moltke J, Jones JW, Vance RE, Monack DM 2010. Differential requirement for Caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing. Cell Host Microbe 8:471–83
    [Google Scholar]
  49. 49. 
    Ball DP, Taabazuing CY, Griswold AR, Orth EL, Rao SD et al. 2020. Caspase-1 interdomain linker cleavage is required for pyroptosis. Life Sci. Alliance 3:e202000664
    [Google Scholar]
  50. 50. 
    MacKenzie SH, Clark AC. 2012. Death by caspase dimerization. Protein Dimerization and Oligomerization in Biology JM Matthews 55–73 New York: Springer
    [Google Scholar]
  51. 51. 
    Pop C, Salvesen GS. 2009. Human caspases: activation, specificity, and regulation. J. Biol. Chem. 284:21777–81
    [Google Scholar]
  52. 52. 
    Chang DW, Xing Z, Capacio VL, Peter ME, Yang X 2003. Interdimer processing mechanism of procaspase-8 activation. EMBO J 22:4132–42
    [Google Scholar]
  53. 53. 
    Hughes MA, Harper N, Butterworth M, Cain K, Cohen GM, MacFarlane M 2009. Reconstitution of the death-inducing signaling complex reveals a substrate switch that determines CD95-mediated death or survival. Mol. Cell 35:265–79
    [Google Scholar]
  54. 54. 
    Oberst A, Pop C, Tremblay AG, Blais V, Denault J-B et al. 2010. Inducible dimerization and inducible cleavage reveal a requirement for both processes in caspase-8 activation. J. Biol. Chem. 285:16632–42
    [Google Scholar]
  55. 55. 
    Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P et al. 2011. Catalytic activity of the caspase-8–FLIPL complex inhibits RIPK3-dependent necrosis. Nature 471:363
    [Google Scholar]
  56. 56. 
    Wachmann K, Pop C, van Raam BJ, Drag M, Mace PD et al. 2010. Activation and specificity of human caspase-10. Biochemistry 49:8307–15
    [Google Scholar]
  57. 57. 
    Malladi S, Challa-Malladi M, Fearnhead HO, Bratton SB. 2009. The Apaf-1·procaspase-9 apoptosome complex functions as a proteolytic-based molecular timer. EMBO J 28:1916–25
    [Google Scholar]
  58. 58. 
    Talanian RV, Quinlan C, Trautz S, Hackett MC, Mankovich JA et al. 1997. Substrate specificities of caspase family proteases. J. Biol. Chem. 272:9677–82
    [Google Scholar]
  59. 59. 
    Rano TA, Timkey T, Peterson EP, Rotonda J, Nicholson DW et al. 1997. A combinatorial approach for determining protease specificities: application to interleukin-1β converting enzyme (ICE). Chem. Biol. 4:149–55
    [Google Scholar]
  60. 60. 
    Thornberry NA, Rano TA, Peterson EP, Rasper DM, Timkey T et al. 1997. A combinatorial approach defines specificities of members of the caspase family and granzyme B: functional relationships established for key mediators of apoptosis. J. Biol. Chem. 272:17907–11
    [Google Scholar]
  61. 61. 
    Seaman J, Julien O, Lee P, Rettenmaier T, Thomsen N, Wells J. 2016. Cacidases: Caspases can cleave after aspartate, glutamate and phosphoserine residues. Cell Death Differ 23:1717–26
    [Google Scholar]
  62. 62. 
    Stennicke HR, Renatus M, Meldal M, Salvesen GS 2000. Internally quenched fluorescent peptide substrates disclose the subsite preferences of human caspases 1, 3, 6, 7 and 8. Biochem. J. 350:Part 2563–68
    [Google Scholar]
  63. 63. 
    Kang SJ, Wang S, Hara H, Peterson EP, Namura S et al. 2000. Dual role of caspase-11 in mediating activation of caspase-1 and caspase-3 under pathological conditions. J. Cell Biol. 149:613–22
    [Google Scholar]
  64. 64. 
    Ramirez MLG, Poreba M, Snipas SJ, Groborz K, Drag M, Salvesen GS. 2018. Extensive peptide and natural protein substrate screens reveal that mouse caspase-11 has much narrower substrate specificity than caspase-1. J. Biol. Chem. 293:7058–67
    [Google Scholar]
  65. 65. 
    Baker PJ, Masters SL. 2018. Caspase substrates won't be defined by a four-letter code. J. Biol. Chem. 293:7068–69
    [Google Scholar]
  66. 66. 
    Timmer JC, Zhu W, Pop C, Regan T, Snipas SJ et al. 2009. Structural and kinetic determinants of protease substrates. Nat. Struct. Mol. Biol. 16:1101–8
    [Google Scholar]
  67. 67. 
    Wiggins KA, Parry AJ, Cassidy LD, Humphry M, Webster SJ et al. 2019. IL-1α cleavage by inflammatory caspases of the noncanonical inflammasome controls the senescence-associated secretory phenotype. Aging Cell 18:e12946
    [Google Scholar]
  68. 68. 
    Wang Y, Ning X, Gao P, Wu S, Sha M et al. 2017. Inflammasome activation triggers caspase-1-mediated cleavage of cGAS to regulate responses to DNA virus infection. Immunity 46:393–404
    [Google Scholar]
  69. 69. 
    Agard NJ, Maltby D, Wells JA. 2010. Inflammatory stimuli regulate caspase substrate profiles. Mol. Cell Proteom. 9:880–93
    [Google Scholar]
  70. 70. 
    Donepudi M, Sweeney AM, Briand C, Grütter MG. 2003. Insights into the regulatory mechanism for caspase-8 activation. Mol. Cell 11:543–49
    [Google Scholar]
  71. 71. 
    Liu M, Zhou K, Xu Z, Ma H, Cao X et al. 2020. Crystal structure of caspase-11 CARD provides insights into caspase-11 activation. Cell Discov 6:70
    [Google Scholar]
  72. 72. 
    Salvesen GS, Dixit VM. 1999. Caspase activation: the induced-proximity model. PNAS 96:10964–67
    [Google Scholar]
  73. 73. 
    Kagan JC, Magupalli VG, Wu H. 2014. SMOCs: supramolecular organizing centres that control innate immunity. Nat. Rev. Immunol. 14:821–26
    [Google Scholar]
  74. 74. 
    Liu Z, Wang C, Yang J, Chen Y, Zhou B et al. 2020. Caspase-1 engages full-length gasdermin D through two distinct interfaces that mediate caspase recruitment and substrate cleavage. Immunity 53:106–14.e5
    [Google Scholar]
  75. 75. 
    Wang K, Sun Q, Zhong X, Zeng M, Zeng H et al. 2020. Structural mechanism for GSDMD targeting by autoprocessed caspases in pyroptosis. Cell 180:941–55.e20
    [Google Scholar]
  76. 76. 
    Walsh JG, Logue SE, Luthi AU, Martin SJ. 2011. Caspase-1 promiscuity is counterbalanced by rapid inactivation of the processed enzyme. J. Biol. Chem. 286:3732513–24
    [Google Scholar]
  77. 77. 
    Datta D, McClendon CL, Jacobson MP, Wells JA. 2013. Substrate and inhibitor-induced dimerization and cooperativity in caspase-1 but not caspase-3. J. Biol. Chem. 288:9971–81
    [Google Scholar]
  78. 78. 
    Kahns S, Kalai M, Jakobsen LD, Clark BF, Vandenabeele P, Jensen PH. 2003. Caspase-1 and caspase-8 cleave and inactivate cellular parkin. J. Biol. Chem. 278:23376–80
    [Google Scholar]
  79. 79. 
    Keller M, Ruegg A, Werner S, Beer HD 2008. Active caspase-1 is a regulator of unconventional protein secretion. Cell 132:818–31
    [Google Scholar]
  80. 80. 
    Lamkanfi M, Kanneganti T-D, Van Damme P, Berghe TV, Vanoverberghe I et al. 2008. Targeted peptidecentric proteomics reveals caspase-7 as a substrate of the caspase-1 inflammasomes. Mol. Cell. Proteom. 7:2350–63
    [Google Scholar]
  81. 81. 
    Miggin SM, Pålsson-McDermott E, Dunne A, Jefferies C, Pinteaux E et al. 2007. NF-κB activation by the Toll-IL-1 receptor domain protein MyD88 adapter-like is regulated by caspase-1. PNAS 104:3372
    [Google Scholar]
  82. 82. 
    Shao W, Yeretssian G, Doiron K, Hussain SN, Saleh M. 2007. The caspase-1 digestome identifies the glycolysis pathway as a target during infection and septic shock. J. Biol. Chem. 282:36321–29
    [Google Scholar]
  83. 83. 
    Weigert A, Cremer S, Schmidt MV, von Knethen A, Angioni C et al. 2010. Cleavage of sphingosine kinase 2 by caspase-1 provokes its release from apoptotic cells. Blood 115:3531–40
    [Google Scholar]
  84. 84. 
    Hollingsworth LR, David L, Li Y, Griswold AR, Ruan J et al. 2021. Mechanism of filament formation in UPA-promoted CARD8 and NLRP1 inflammasomes. Nat. Commun. 12:189
    [Google Scholar]
  85. 85. 
    Zhang L, Chen S, Ruan J, Wu J, Tong AB et al. 2015. Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. Science 350:404–9
    [Google Scholar]
  86. 86. 
    Lu A, Magupalli VG, Ruan J, Yin Q, Atianand MK et al. 2014. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156:1193–206
    [Google Scholar]
  87. 87. 
    Fernandes-Alnemri T, Wu J, Yu JW, Datta P, Miller B et al. 2007. The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ 14:1590–604
    [Google Scholar]
  88. 88. 
    Mariathasan S, Newton K, Monack DM, Vucic D, French DM et al. 2004. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430:213–18
    [Google Scholar]
  89. 89. 
    Chen KW, Monteleone M, Boucher D, Sollberger G, Ramnath D et al. 2018. Noncanonical inflammasome signaling elicits gasdermin D-dependent neutrophil extracellular traps. Sci. Immunol. 3:eaar6676
    [Google Scholar]
  90. 90. 
    Indramohan M, Stehlik C, Dorfleutner A. 2018. COPs and POPs patrol inflammasome activation. J. Mol. Biol. 430:153–73
    [Google Scholar]
  91. 91. 
    Evavold CL, Kagan JC. 2019. Inflammasomes: threat-assessment organelles of the innate immune system. Immunity 51:609–24
    [Google Scholar]
  92. 92. 
    Hisahara S, Yuan J, Momoi T, Okano H, Miura M. 2001. Caspase-11 mediates oligodendrocyte cell death and pathogenesis of autoimmune-mediated demyelination. J. Exp. Med. 193:111–22
    [Google Scholar]
  93. 93. 
    Zasłona Z, Flis E, Wilk MM, Carroll RG, Palsson-McDermott EM et al. 2020. Caspase-11 promotes allergic airway inflammation. Nat. Commun. 11:1055
    [Google Scholar]
  94. 94. 
    Hagar JA, Powell DA, Aachoui Y, Ernst RK, Miao EA 2013. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 341:1250–53
    [Google Scholar]
  95. 95. 
    Kayagaki N, Wong MT, Stowe IB, Ramani SR, Gonzalez LC et al. 2013. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341:1246–49
    [Google Scholar]
  96. 96. 
    Aachoui Y, Leaf IA, Hagar JA, Fontana MF, Campos CG et al. 2013. Caspase-11 protects against bacteria that escape the vacuole. Science 339:975–78
    [Google Scholar]
  97. 97. 
    Schauvliege R, Vanrobaeys J, Schotte P, Beyaert R. 2002. Caspase-11 gene expression in response to lipopolysaccharide and interferon-γ requires nuclear factor-κB and signal transducer and activator of transcription (STAT) 1. J. Biol. Chem. 277:41624–30
    [Google Scholar]
  98. 98. 
    Wang S, Miura M, Jung Y-K, Zhu H, Gagliardini V et al. 1996. Identification and characterization of Ich-3, a member of the interleukin-1β converting enzyme (ICE)/Ced-3 family and an upstream regulator of ICE. J. Biol. Chem. 271:20580–87
    [Google Scholar]
  99. 99. 
    Wang S, Miura M, Jung Y-K, Zhu H, Li E, Yuan J 1998. Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92:501–9
    [Google Scholar]
  100. 100. 
    Santos JC, Dick MS, Lagrange B, Degrandi D, Pfeffer K et al. 2018. LPS targets host guanylate-binding proteins to the bacterial outer membrane for non-canonical inflammasome activation. EMBO J 37:e98089
    [Google Scholar]
  101. 101. 
    Tretina K, Park ES, Maminska A, MacMicking JD 2019. Interferon-induced guanylate-binding proteins: guardians of host defense in health and disease. J. Exp. Med. 216:482–500
    [Google Scholar]
  102. 102. 
    Boucher D, Blais V, Drag M, Denault JB. 2011. Molecular determinants involved in activation of caspase 7. Biosci. Rep. 31:283–94
    [Google Scholar]
  103. 103. 
    Aglietti RA, Estevez A, Gupta A, Ramirez MG, Liu PS et al. 2016. GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. PNAS 113:7858–63
    [Google Scholar]
  104. 104. 
    He W-T, Wan H, Hu L, Chen P, Wang X et al. 2015. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res 25:1285–98
    [Google Scholar]
  105. 105. 
    Rathinam VA, Vanaja SK, Waggoner L, Sokolovska A, Becker C et al. 2012. TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell 150:606–19
    [Google Scholar]
  106. 106. 
    Knodler LA, Crowley SM, Sham HP, Yang H, Wrande M et al. 2014. Noncanonical inflammasome activation of caspase-4/caspase-11 mediates epithelial defenses against enteric bacterial pathogens. Cell Host Microbe 16:249–56
    [Google Scholar]
  107. 107. 
    Chu LH, Indramohan M, Ratsimandresy RA, Gangopadhyay A, Morris EP et al. 2018. The oxidized phospholipid oxPAPC protects from septic shock by targeting the non-canonical inflammasome in macrophages. Nat. Commun. 9:996
    [Google Scholar]
  108. 108. 
    Kang R, Zeng L, Zhu S, Xie Y, Liu J et al. 2018. Lipid peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial sepsis. Cell Host Microbe 24:97–108.e4
    [Google Scholar]
  109. 109. 
    Chen R, Zhu S, Zeng L, Wang Q, Sheng Y et al. 2019. AGER-mediated lipid peroxidation drives caspase-11 inflammasome activation in sepsis. Front. Immunol. 10:1904
    [Google Scholar]
  110. 110. 
    Imai Y, Kuba K, Neely GG, Yaghubian-Malhami R, Perkmann T et al. 2008. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 133:235–49
    [Google Scholar]
  111. 111. 
    Shirey KA, Lai W, Scott AJ, Lipsky M, Mistry P et al. 2013. The TLR4 antagonist Eritoran protects mice from lethal influenza infection. Nature 497:498–502
    [Google Scholar]
  112. 112. 
    Zhivaki D, Borriello F, Chow OA, Doran B, Fleming I et al. 2020. Inflammasomes within hyperactive murine dendritic cells stimulate long-lived T cell-mediated anti-tumor immunity. Cell Rep 33:108381
    [Google Scholar]
  113. 113. 
    Lamkanfi M, Declercq W, Kalai M, Saelens X, Vandenabeele P. 2002. Alice in caspase land: a phylogenetic analysis of caspases from worm to man. Cell Death Differ 9:358–61
    [Google Scholar]
  114. 114. 
    Lin XY, Choi MS, Porter AG. 2000. Expression analysis of the human caspase-1 subfamily reveals specific regulation of the CASP5 gene by lipopolysaccharide and interferon-γ. J. Biol. Chem. 275:39920–26
    [Google Scholar]
  115. 115. 
    Kobayashi T, Ogawa M, Sanada T, Mimuro H, Kim M et al. 2013. The Shigella OspC3 effector inhibits caspase-4, antagonizes inflammatory cell death, and promotes epithelial infection. Cell Host Microbe 13:570–83
    [Google Scholar]
  116. 116. 
    Baker PJ, Boucher D, Bierschenk D, Tebartz C, Whitney PG et al. 2015. NLRP3 inflammasome activation downstream of cytoplasmic LPS recognition by both caspase-4 and caspase-5. Eur. J. Immunol. 45:2918–26
    [Google Scholar]
  117. 117. 
    Kajiwara Y, Schiff T, Voloudakis G, Gama Sosa MA, Elder G et al. 2014. A critical role for human caspase-4 in endotoxin sensitivity. J. Immunol. 193:335–43
    [Google Scholar]
  118. 118. 
    Casson CN, Yu J, Reyes VM, Taschuk FO, Yadav A et al. 2015. Human caspase-4 mediates noncanonical inflammasome activation against gram-negative bacterial pathogens. PNAS 112:6688–93
    [Google Scholar]
  119. 119. 
    Schmid-Burgk JL, Gaidt MM, Schmidt T, Ebert TS, Bartok E, Hornung V 2015. Caspase-4 mediates non-canonical activation of the NLRP3 inflammasome in human myeloid cells. Eur. J. Immunol. 45:2911–17
    [Google Scholar]
  120. 120. 
    Vigano E, Diamond CE, Spreafico R, Balachander A, Sobota RM, Mortellaro A. 2015. Human caspase-4 and caspase-5 regulate the one-step non-canonical inflammasome activation in monocytes. Nat. Commun. 6:8761
    [Google Scholar]
  121. 121. 
    Li J, Billiar TR, Talanian RV, Kim YM. 1997. Nitric oxide reversibly inhibits seven members of the caspase family via S-nitrosylation. Biochem. Biophys. Res. Commun. 240:419–24
    [Google Scholar]
  122. 122. 
    Kim YM, Talanian RV, Li J, Billiar TR. 1998. Nitric oxide prevents IL-1β and IFN-γ-inducing factor (IL-18) release from macrophages by inhibiting caspase-1 (IL-1β-converting enzyme). J. Immunol. 161:4122–28
    [Google Scholar]
  123. 123. 
    Meissner F, Molawi K, Zychlinsky A. 2008. Superoxide dismutase 1 regulates caspase-1 and endotoxic shock. Nat. Immunol. 9:866–72
    [Google Scholar]
  124. 124. 
    Ramage P, Cheneval D, Chvei M, Graff P, Hemmig R et al. 1995. Expression, refolding, and autocatalytic proteolytic processing of the interleukin-1β-converting enzyme precursor. J. Biol. Chem. 270:9378–83
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-101220-030653
Loading
/content/journals/10.1146/annurev-immunol-101220-030653
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error