1932

Abstract

Invasive fungal diseases are rare in individuals with intact immunity. This, together with the fact that there are only a few species that account for most mycotic diseases, implies a remarkable natural resistance to pathogenic fungi. Mammalian immunity to fungi rests on two pillars, powerful immune mechanisms and elevated temperatures that create a thermal restriction zone for most fungal species. Conditions associated with increased susceptibility generally reflect major disturbances of immune function involving both the cellular and humoral innate and adaptive arms, which implies considerable redundancy in host defense mechanisms against fungi. In general, tissue fungal invasion is controlled through either neutrophil or granulomatous inflammation, depending on the fungal species. Neutrophils are critical against spp. and spp. while macrophages are essential for controlling mycoses due to spp., spp., and other fungi. The increasing number of immunocompromised patients together with climate change could significantly increase the prevalence of fungal diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-101220-034306
2022-04-26
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/immunol/40/1/annurev-immunol-101220-034306.html?itemId=/content/journals/10.1146/annurev-immunol-101220-034306&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Fisher MC, Gurr SJ, Cuomo CA, Blehert DS, Jin H et al. 2020. Threats posed by the fungal kingdom to humans, wildlife, and agriculture. mBio 11:e00449–20
    [Google Scholar]
  2. 2. 
    Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC. 2012. Hidden killers: human fungal infections. Sci. Transl. Med. 4:165rv13
    [Google Scholar]
  3. 3. 
    Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC et al. 2012. Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–94
    [Google Scholar]
  4. 4. 
    Robert VA, Casadevall A. 2009. Vertebrate endothermy restricts most fungi as potential pathogens. J. Infect. Dis. 200:1623–26
    [Google Scholar]
  5. 5. 
    Blehert DS, Hicks AC, Behr M, Meteyer CU, Berlowski-Zier BM et al. 2009. Bat white-nose syndrome: an emerging fungal pathogen?. Science 323:227
    [Google Scholar]
  6. 6. 
    Meteyer CU, Valent M, Kashmer J, Buckles EL, Lorch JM et al. 2011. Recovery of little brown bats (Myotis lucifugus) from natural infection with Geomyces destructans, white-nose syndrome. J. Wildl. Dis. 47:618–26
    [Google Scholar]
  7. 7. 
    Woodhams DC, Alford RA, Marantelli G 2003. Emerging disease of amphibians cured by elevated body temperature. Dis. Aquat. Organ. 55:65–67
    [Google Scholar]
  8. 8. 
    Romani L. 2011. Immunity to fungal infections. Nat. Rev. Immunol. 11:275–88
    [Google Scholar]
  9. 9. 
    Lionakis MS, Iliev ID, Hohl TM. 2017. Immunity against fungi. JCI Insight 2:e93156
    [Google Scholar]
  10. 10. 
    Höft MA, Hoving JC, Brown GD. 2020. Signaling C-type lectin receptors in antifungal immunity. Curr. Top. Microbiol. Immunol. 429:63–101
    [Google Scholar]
  11. 11. 
    Hatinguais R, Willment JA, Brown GD. 2020. PAMPs of the fungal cell wall and mammalian PRRs. Curr. Top. Microbiol. Immunol. 425:187–223
    [Google Scholar]
  12. 12. 
    Drummond RA, Gaffen SL, Hise AG, Brown GD. 2014. Innate defense against fungal pathogens. Cold Spring Harb. Perspect. Med. 5:a019620
    [Google Scholar]
  13. 13. 
    Verma A, Wüthrich M, Deepe G, Klein B 2014. Adaptive immunity to fungi. Cold Spring Harb. Perspect. Med. 5:a019612
    [Google Scholar]
  14. 14. 
    Scheffold A, Bacher P, LeibundGut-Landmann S. 2020. T cell immunity to commensal fungi. Curr. Opin. Microbiol. 58:116–23
    [Google Scholar]
  15. 15. 
    Ochoa S, Constantine GM, Lionakis MS. 2020. Genetic susceptibility to fungal infection in children. Curr. Opin. Pediatr. 32:780–89
    [Google Scholar]
  16. 16. 
    Lionakis MS, Netea MG, Holland SM. 2014. Mendelian genetics of human susceptibility to fungal infection. Cold Spring Harb. Perspect. Med. 4:a019638
    [Google Scholar]
  17. 17. 
    Merkhofer RM, Klein BS. 2020. Advances in understanding human genetic variations that influence innate immunity to fungi. Front. Cell Infect. Microbiol. 10:69
    [Google Scholar]
  18. 18. 
    Lilic D. 2012. Unravelling fungal immunity through primary immune deficiencies. Curr. Opin. Microbiol. 15:420–26
    [Google Scholar]
  19. 19. 
    Clark C, Drummond RA 2019. The hidden cost of modern medical interventions: how medical advances have shaped the prevalence of human fungal disease. Pathogens 8:45
    [Google Scholar]
  20. 20. 
    Wu B, Hussain M, Zhang W, Stadler M, Liu X, Xiang M. 2019. Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi. Mycology 10:127–40
    [Google Scholar]
  21. 21. 
    Kwon-Chung KJ, Bennett JE. 1992. Medical Mycology Philadelphia: Lea Febiger
  22. 22. 
    Kwon-Chung KJ, Bennett JE, Wickes BL, Meyer W, Cuomo CA et al. 2017. The case for adopting the “species complex” nomenclature for the etiologic agents of cryptococcosis. mSphere 2:e00357–16
    [Google Scholar]
  23. 23. 
    Casadevall A, Pirofski L. 1999. Host-pathogen interactions: redefining the basic concepts of virulence and pathogenicity. Infect. Immun. 67:3703–13
    [Google Scholar]
  24. 24. 
    Casadevall A, Pirofski L. 2003. The damage-response framework of microbial pathogenesis. Nat. Rev. Microbiol. 1:17–24
    [Google Scholar]
  25. 25. 
    Pirofski LA, Casadevall A. 2018. The damage-response framework as a tool for the physician-scientist to understand the pathogenesis of infectious diseases. J. Infect. Dis. 218:S7–11
    [Google Scholar]
  26. 26. 
    Pirofski LA, Casadevall A. 2020. The state of latency in microbial pathogenesis. J. Clin. Investig. 130:4525–31
    [Google Scholar]
  27. 27. 
    Casanova JL, Abel L. 2020. The human genetic determinism of life-threatening infectious diseases: genetic heterogeneity and physiological homogeneity?. Hum. Genet. 139:681–94
    [Google Scholar]
  28. 28. 
    Jawetz E. 1956. Antimicrobial therapy. Annu. Rev. Microbiol. 10:85–114
    [Google Scholar]
  29. 29. 
    Marcon MJ, Powell DA. 1992. Human infections due to Malassezia spp. Clin. Microbiol. Rev. 5:101–19
    [Google Scholar]
  30. 30. 
    Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, Chiller TM. 2009. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 23:525–30
    [Google Scholar]
  31. 31. 
    Casadevall A, Perfect JR. 1998. Cryptococcus neoformans Washington, DC: Am. Soc. Microbiol.
  32. 32. 
    Goldman DL, Khine H, Abadi J, Lindenberg DJ, Pirofski L et al. 2001. Serologic evidence for Cryptococcus infection in early childhood. Pediatrics 107:E66
    [Google Scholar]
  33. 33. 
    Bruton OC. 1952. Agammaglobulinemia. Pediatrics 9:722–28
    [Google Scholar]
  34. 34. 
    Vaezi A, Fakhim H, Abtahian Z, Khodavaisy S, Geramishoar M et al. 2018. Frequency and geographic distribution of CARD9 mutations in patients with severe fungal infections. Front. Microbiol. 9:2434
    [Google Scholar]
  35. 35. 
    Viola GM, Malek AE, Rosen LB, DiNardo AR, Nishiguchi T et al. 2021. Disseminated cryptococcosis and anti-granulocyte-macrophage colony-stimulating factor autoantibodies: an underappreciated association. Mycoses 64:576–82
    [Google Scholar]
  36. 36. 
    Browne SK, Holland SM. 2010. Immunodeficiency secondary to anticytokine autoantibodies. Curr. Opin. Allergy Clin. Immunol. 10:534–41
    [Google Scholar]
  37. 37. 
    Bhattacharya S, Bouklas T, Fries BC. 2020. Replicative aging in pathogenic fungi. J. Fungi 7:6
    [Google Scholar]
  38. 38. 
    Currie BP, Casadevall A. 1994. Estimation of the prevalence of cryptococcal infection among patients infected with the human immunodeficiency virus in New York City. Clin. Infect. Dis. 19:61029–33
    [Google Scholar]
  39. 39. 
    Schneider E, Hajjeh RA, Spiegel RA, Jibson RW, Harp EL et al. 1997. A coccidioidomycosis outbreak following the Northridge, Calif, earthquake. JAMA 277:904–8
    [Google Scholar]
  40. 40. 
    Ward JI, Weeks M, Allen D, Hutcheson RH Jr., Anderson R et al. 1979. Acute histoplasmosis: clinical, epidemiologic and serologic findings of an outbreak associated with exposure to a fallen tree. Am. J. Med. 66:587–95
    [Google Scholar]
  41. 41. 
    Werner SB, Pappagianis D, Heindl I, Mickel A 1972. An epidemic of coccidioidomycosis among archeology students in northern California. N. Engl. J. Med. 286:507–12
    [Google Scholar]
  42. 42. 
    Feldmesser M. 2013. Fungal disease following contaminated steroid injections: Exserohilum is ready for its close-up. Am. J. Pathol. 183:661–64
    [Google Scholar]
  43. 43. 
    Cissé OH, Ma L, Jiang C, Snyder M, Kovacs JA. 2020. Humans are selectively exposed to Pneumocystis jirovecii. mBio 11:e03138–19
    [Google Scholar]
  44. 44. 
    Edman JC, Kovacs JA, Masur H, Santi DV, Elwood HJ, Sogin ML 1988. Ribosomal RNA shows Pneumocystis carinii to be a member of the Fungi. Nature 334:519–22
    [Google Scholar]
  45. 45. 
    Denham ST, Wambaugh MA, Brown JCS. 2019. How environmental fungi cause a range of clinical outcomes in susceptible hosts. J. Mol. Biol. 431:2982–3009
    [Google Scholar]
  46. 46. 
    Gustafson TL, Kaufman L, Weeks R, Ajello L, Hutcheson RH Jr. et al. 1981. Outbreak of acute pulmonary histoplasmosis in members of a wagon train. Am. J. Med. 71:759–65
    [Google Scholar]
  47. 47. 
    Muchmore HG, Rhoades ER, Nix GE, Felton FG, Carpenter RE 1963. Occurrence of Cryptococcus neoformans in the environment of three geographically associated cases of cryptococcal meningitis. N. Engl. J. Med. 268:1112–14
    [Google Scholar]
  48. 48. 
    Vogel K, Pierau M, Arra A, Lampe K, Schlueter D et al. 2018. Developmental induction of human T-cell responses against Candida albicans and Aspergillus fumigatus. Sci. Rep. 8:16904
    [Google Scholar]
  49. 49. 
    Edwards LB, Acquaviva FA, Livesay VT, Cross FW, Palmer CE. 1969. An atlas of sensitivity to tuberculin, PPD-B, and histoplasmin in the United States. Am. Rev. Respir. Dis. 99:41132
    [Google Scholar]
  50. 50. 
    Casadevall A, Fu MS, Guimaraes AJ, Albuquerque P. 2019. The ‘amoeboid predator-fungal animal virulence’ hypothesis. J. Fungi. 5:10
    [Google Scholar]
  51. 51. 
    Hillmann F, Novohradska S, Mattern DJ, Forberger T, Heinekamp T et al. 2015. Virulence determinants of the human pathogenic fungus Aspergillus fumigatus protect against soil amoeba predation. Environ. Microbiol. 17:2858–69
    [Google Scholar]
  52. 52. 
    Radosa S, Hillmann F. 2021. Host-pathogen interactions: lessons from phagocytic predation on fungi. Curr. Opin. Microbiol. 62:38–44
    [Google Scholar]
  53. 53. 
    DeLeon-Rodriguez CM, Casadevall A. 2016. Cryptococcus neoformans: tripping on acid in the phagolysosome. Front. Microbiol. 7:164
    [Google Scholar]
  54. 54. 
    Casadevall A. 2016. Thermal restriction as an antimicrobial function of fever. PLOS Pathog 12:e1005577
    [Google Scholar]
  55. 55. 
    Protsiv M, Ley C, Lankester J, Hastie T, Parsonnet J. 2020. Decreasing human body temperature in the United States since the Industrial Revolution. eLife 9:e49555
    [Google Scholar]
  56. 56. 
    Kerr JR. 1999. Bacterial inhibition of fungal growth and pathogenicity. Microbial. Ecol. Health Dis. 11:129–42
    [Google Scholar]
  57. 57. 
    Casadevall A, Pirofski LA. 2018. What is a host? Attributes of individual susceptibility. Infect. Immun. 86:e00636–17
    [Google Scholar]
  58. 58. 
    Zelante T, Costantini C, Romani L. 2020. Microbiome-mediated regulation of anti-fungal immunity. Curr. Opin. Microbiol. 58:8–14
    [Google Scholar]
  59. 59. 
    Malavia D, Crawford A, Wilson D 2017. Nutritional immunity and fungal pathogenesis: the struggle for micronutrients at the host-pathogen interface. Adv. Microb. Physiol. 70:85–103
    [Google Scholar]
  60. 60. 
    Vazquez-Torres A, Balish E. 1997. Macrophages in resistance to candidiasis. Microbiol. Mol. Biol. Rev. 61:170–92
    [Google Scholar]
  61. 61. 
    Mednick AJ, Feldmesser M, Rivera J, Casadevall A. 2003. Neutropenia alters lung cytokine production in mice and reduces their susceptibility to pulmonary cryptococcosis. Eur. J. Immunol. 33:1744–53
    [Google Scholar]
  62. 62. 
    Mendoza SR, Zamith-Miranda D, Takács T, Gacser A, Nosanchuk JD, Guimarães AJ. 2021. Complex and controversial roles of eicosanoids in fungal pathogenesis. J. Fungi 7:254
    [Google Scholar]
  63. 63. 
    Stappers MHT, Clark AE, Aimanianda V, Bidula S, Reid DM et al. 2018. Recognition of DHN-melanin by a C-type lectin receptor is required for immunity to Aspergillus. Nature 555:382–86
    [Google Scholar]
  64. 64. 
    van de Veerdonk FL, Joosten LA, Netea MG. 2015. The interplay between inflammasome activation and antifungal host defense. Immunol. Rev. 265:172–80
    [Google Scholar]
  65. 65. 
    Casadevall A, Pirofski LA. 2012. Immunoglobulins in defense, pathogenesis, and therapy of fungal diseases. Cell Host Microbe 11:447–56
    [Google Scholar]
  66. 66. 
    McClelland EE, Nicola AM, Prados-Rosales R, Casadevall A. 2010. Ab binding alters gene expression in Cryptococcus neoformans and directly modulates fungal metabolism. J. Clin. Investig. 120:1355–61
    [Google Scholar]
  67. 67. 
    Trevijano-Contador N, Pianalto KM, Nichols CB, Zaragoza O, Alspaugh JA, Pirofski LA. 2020. Human IgM inhibits the formation of titan-like cells in Cryptococcus neoformans. Infect. Immun. 88:e00046–20
    [Google Scholar]
  68. 68. 
    Crawford CJ, Wear MP, Smith DFQ, d'Errico C, McConnell SA et al. 2021. A glycan FRET assay for detection and characterization of catalytic antibodies to the Cryptococcus neoformans capsule. PNAS 118:e2016198118
    [Google Scholar]
  69. 69. 
    Brena S, Cabezas-Olcoz J, Moragues MD, Fernández de Larrinoa I, Dominguez A et al. 2011. Fungicidal monoclonal antibody C7 interferes with iron acquisition in Candida albicans. Antimicrob. Agents Chemother. 55:3156–63
    [Google Scholar]
  70. 70. 
    Yadav RK, Shukla PK. 2019. A novel monoclonal antibody against enolase antigen of Aspergillus fumigatus protects experimental aspergillosis in mice. FEMS Microbiol. Lett. 366:fnz015
    [Google Scholar]
  71. 71. 
    Desai JV, Lionakis MS. 2018. The role of neutrophils in host defense against invasive fungal infections. Curr. Clin. Microbiol. Rep. 5:181–89
    [Google Scholar]
  72. 72. 
    Gazendam RP, van de Geer A, Roos D, van den Berg TK, Kuijpers TW. 2016. How neutrophils kill fungi. Immunol. Rev. 273:299–311
    [Google Scholar]
  73. 73. 
    Missall TA, Lodge JK, McEwen JE. 2004. Mechanisms of resistance to oxidative and nitrosative stress: implications for fungal survival in mammalian hosts. Eukaryot. Cell 3:835–46
    [Google Scholar]
  74. 74. 
    Thompson A, da Fonseca DM, Walker L, Griffiths JS, Taylor PR et al. 2021. Dependence on Mincle and Dectin-2 varies with multiple Candida species during systemic infection. Front. Microbiol. 12:633229
    [Google Scholar]
  75. 75. 
    Urban CF, Nett JE. 2019. Neutrophil extracellular traps in fungal infection. Semin. Cell Dev. Biol. 89:47–57
    [Google Scholar]
  76. 76. 
    Bain JM, Alonso MF, Childers DS, Walls CA, Mackenzie K et al. 2021. Immune cells fold and damage fungal hyphae. PNAS 118:e2020484118
    [Google Scholar]
  77. 77. 
    Fites JS, Gui M, Kernien JF, Negoro P, Dagher Z et al. 2018. An unappreciated role for neutrophil-DC hybrids in immunity to invasive fungal infections. PLOS Pathog 14:e1007073
    [Google Scholar]
  78. 78. 
    Jabra-Rizk MA, Kong EF, Tsui C, Nguyen MH, Clancy CJ et al. 2016. Candida albicans pathogenesis: fitting within the host-microbe damage response framework. Infect. Immun. 84:2724–39
    [Google Scholar]
  79. 79. 
    Ardizzoni A, Wheeler RT, Pericolini E. 2021. It takes two to tango: how a dysregulation of the innate immunity, coupled with Candida virulence, triggers VVC onset. Front. Microbiol. 12:692491
    [Google Scholar]
  80. 80. 
    Rosati D, Bruno M, Jaeger M, Kullberg BJ, van de Veerdonk F et al. 2020. An exaggerated monocyte-derived cytokine response to Candida hyphae in patients with recurrent vulvovaginal candidiasis. J. Infect. Dis. 2020 jiaa444
    [Google Scholar]
  81. 81. 
    Hill JO. 1992. CD4+ T cells cause multinucleated giant cells to form around Cryptococcus neoformans and confine the yeast within the primary site of infection in the respiratory tract. J. Exp. Med. 175:1685–95
    [Google Scholar]
  82. 82. 
    Huffnagle GB, Yates JL, Lipscomb MF. 1991. T cell-mediated immunity in the lung: a Cryptococcus neoformans pulmonary infection model using SCID and athymic nude mice. Infect. Immun. 59:1423–33
    [Google Scholar]
  83. 83. 
    Perfect JR, Lang SD, Durack DT 1980. Chronic cryptococcal meningitis: a new experimental model in rabbits. Am. J. Pathol. 101:177–94
    [Google Scholar]
  84. 84. 
    Rocha ICN, Hasan MM, Goyal S, Patel T, Jain S et al. 2021. COVID-19 and mucormycosis syndemic: double health threat to a collapsing healthcare system in India. Trop. Med. Int. Health 26:101618
    [Google Scholar]
  85. 85. 
    Salmanton-García J, Sprute R, Stemler J, Bartoletti M, Dupont D et al. 2021. COVID-19-associated pulmonary aspergillosis, March-August 2020. Emerg. Infect. Dis. 27:1077–86
    [Google Scholar]
  86. 86. 
    Candel FJ, Peñuelas M, Tabares C, Garcia-Vidal C, Matesanz M et al. 2020. Fungal infections following treatment with monoclonal antibodies and other immunomodulatory therapies. Rev. Iberoam. Micol. 37:5–16
    [Google Scholar]
  87. 87. 
    Robert V, Cardinali G, Casadevall A 2015. Distribution and impact of yeast thermal tolerance permissive for mammalian infection. BMC Biol 13:18
    [Google Scholar]
  88. 88. 
    Garcia-Solache MA, Casadevall A. 2010. Global warming will bring new fungal diseases for mammals. mBio 1:e00061–10
    [Google Scholar]
  89. 89. 
    Casadevall A, Kontoyiannis DP, Robert V. 2019. On the emergence of Candida auris: climate change, azoles, swamps, and birds. mBio 10:e01397–19
    [Google Scholar]
  90. 90. 
    Casadevall A, Kontoyiannis DP, Robert V. 2021. Environmental Candida auris and the global warming emergence hypothesis. mBio 12:e00360–21
    [Google Scholar]
  91. 91. 
    Nat. Microbiol 2017. Stop neglecting fungi. Nat. Microbiol. 217120 Erratum. 2017 Nat. Microbiol 217123
  92. 92. 
    MacFadden DK, Edelson JD, Hyland RH, Rodriguez CH, Inouye T, Rebuck AS. 1987. Corticosteroids as adjunctive therapy in treatment of Pneumocystis carinii pneumonia in patients with acquired immunodeficiency syndrome. Lancet 329:147779
    [Google Scholar]
  93. 93. 
    Bozzette SA, Sattler FR, Chiu J, Wu AW, Gluckstein D et al. 1990. A controlled trial of early adjunctive treatment with corticosteroids for Pneumocystis carinii pneumonia in the acquired immunodeficiency syndrome. N. Engl. J. Med. 323:1451–57
    [Google Scholar]
  94. 94. 
    Anjum S, Williamson PR 2019. Clinical aspects of immune damage in cryptococcosis. Curr. Fungal Infect. Rep. 13:99–108
    [Google Scholar]
  95. 95. 
    Jarvis JN, Meintjes G, Rebe K, Williams GN, Bicanic T et al. 2012. Adjunctive interferon-gamma immunotherapy for the treatment of HIV-associated cryptococcal meningitis: a randomized controlled trial. AIDS 26:1105–13
    [Google Scholar]
  96. 96. 
    Beardsley J, Wolbers M, Kibengo FM, Ggayi AB, Kamali A et al. 2016. Adjunctive dexamethasone in HIV-associated cryptococcal meningitis. N. Engl. J. Med. 374:542–54
    [Google Scholar]
  97. 97. 
    Maciel RA, Ferreira LS, Wirth F, Rosa PD, Aves M et al. 2017. Corticosteroids for the management of severe intracranial hypertension in meningoencephalitis caused by Cryptococcus gattii: a case report and review. J. Mycol. Med. 27:109–12
    [Google Scholar]
  98. 98. 
    Panackal AA, Williamson KC, van de Beek D, Boulware DR, Williamson PR. 2016. Fighting the monster: applying the host damage framework to human central nervous system infections. mBio 7:e01906–15
    [Google Scholar]
  99. 99. 
    Biswas PS. 2021. Vaccine-induced immunological memory in invasive fungal infections—a dream so close yet so far. Front. Immunol. 12:671068
    [Google Scholar]
  100. 100. 
    Oliveira LVN, Wang R, Specht CA, Levitz SM. 2021. Vaccines for human fungal diseases: close but still a long way to go. NPJ Vaccines 6:33
    [Google Scholar]
  101. 101. 
    Edwards JE Jr., Schwartz MM, Schmidt CS, Sobel JD, Nyirjesy P et al. 2018. A fungal immunotherapeutic vaccine (NDV-3A) for treatment of recurrent vulvovaginal candidiasis—a phase 2 randomized, double-blind, placebo-controlled trial. Clin. Infect. Dis. 66:1928–36
    [Google Scholar]
  102. 102. 
    Casadevall A, Pirofski LA. 2018. A therapeutic vaccine for recurrent vulvovaginal candidiasis. Clin. Infect. Dis. 66:1937–39
    [Google Scholar]
  103. 103. 
    Casadevall A. 2005. Fungal virulence, vertebrate endothermy, and dinosaur extinction: Is there a connection?. Fungal Genet. Biol. 42:98–106
    [Google Scholar]
  104. 104. 
    Casadevall A. 2012. Fungi and the rise of mammals. PLOS Pathog 8:e1002808
    [Google Scholar]
  105. 105. 
    Casadevall A, Damman C. 2020. Updating the fungal infection-mammalian selection hypothesis at the end of the Cretaceous Period. PLOS Pathog 16:e1008451
    [Google Scholar]
  106. 106. 
    Mousset S, Buchheidt D, Heinz W, Ruhnke M, Cornely OA et al. 2014. Treatment of invasive fungal infections in cancer patients—updated recommendations of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Oncology (DGHO). Ann. Hematol. 93:13–32
    [Google Scholar]
  107. 107. 
    Lionakis MS, Kontoyiannis DP. 2003. Glucocorticoids and invasive fungal infections. Lancet 362:1828–38
    [Google Scholar]
  108. 108. 
    Armstrong-James D, Meintjes G, Brown GD 2014. A neglected epidemic: fungal infections in HIV/AIDS. Trends Microbiol 22:120–27
    [Google Scholar]
  109. 109. 
    Eades CP, Armstrong-James DPH. 2019. Invasive fungal infections in the immunocompromised host: mechanistic insights in an era of changing immunotherapeutics. Med. Mycol. 57:S307–17
    [Google Scholar]
  110. 110. 
    Tsiodras S, Samonis G, Boumpas DT, Kontoyiannis DP. 2008. Fungal infections complicating tumor necrosis factor alpha blockade therapy. Mayo Clin. Proc. 83:181–94
    [Google Scholar]
  111. 111. 
    Guo J, Ning XQ, Ding JY, Zheng YQ, Shi NN et al. 2020. Anti-IFN-γ autoantibodies underlie disseminated Talaromyces marneffei infections. J. Exp. Med. 217:e20190502
    [Google Scholar]
  112. 112. 
    Drummond RA, Franco LM, Lionakis MS. 2018. Human CARD9: a critical molecule of fungal immune surveillance. Front. Immunol. 9:1836
    [Google Scholar]
  113. 113. 
    Li J, Vinh DC, Casanova JL, Puel A. 2017. Inborn errors of immunity underlying fungal diseases in otherwise healthy individuals. Curr. Opin. Microbiol. 40:46–57
    [Google Scholar]
  114. 114. 
    Freeman AF, Holland SM. 2008. The hyper-IgE syndromes. Immunol. Allergy Clin. N. Am. 28:277–91
    [Google Scholar]
  115. 115. 
    Antachopoulos C, Walsh TJ, Roilides E 2007. Fungal infections in primary immunodeficiencies. Eur. J. Pediatr. 166:1099–117
    [Google Scholar]
  116. 116. 
    Suzuki SML, Morelli F, Negri M, Bonfim-Mendonça P, Kioshima ÉS et al. 2019. Fatal cryptococcal meningitis in a child with hyper-immunoglobulin M syndrome, with an emphasis on the agent. J. Mycol. Med. 29:273–77
    [Google Scholar]
  117. 117. 
    Winkelstein JA, Marino MC, Ochs H, Fuleihan R, Scholl PR et al. 2003. The X-linked hyper-IgM syndrome: clinical and immunologic features of 79 patients. Medicine 82:373–84
    [Google Scholar]
  118. 118. 
    Kim D, Shin JA, Han SB, Chung NG, Jeong DC 2019. Pneumocystis jirovecii pneumonia as an initial manifestation of hyper-IgM syndrome in an infant: a case report. Medicine 98:e14559
    [Google Scholar]
  119. 119. 
    Cunha C, Carvalho A. 2019. Genetic defects in fungal recognition and susceptibility to invasive pulmonary aspergillosis. Med. Mycol. 57:S211–18
    [Google Scholar]
  120. 120. 
    Kumamoto CA, Vinces MD. 2005. Contributions of hyphae and hypha-co-regulated genes to Candida albicans virulence. Cell. Microbiol. 7:1546–54
    [Google Scholar]
  121. 121. 
    Klein BS. 2000. Molecular basis of pathogenicity in Blastomyces dermatitidis: the importance of adhesion. Curr. Opin. Microbiol. 3:339–43
    [Google Scholar]
  122. 122. 
    Staniszewska M. 2020. Virulence factors in Candida species. Curr. Protein Peptide Sci. 21:313–23
    [Google Scholar]
  123. 123. 
    Blagojevic M, Camilli G, Maxson M, Hube B, Moyes DL et al. 2021. Candidalysin triggers epithelial cellular stresses that induce necrotic death. Cell Microbiol 23:e13371
    [Google Scholar]
  124. 124. 
    Talapko J, Juzbašić M, Matijević T, Pustijanac E, Bekić S et al. 2021. Candida albicans—the virulence factors and clinical manifestations of infection. J. Fungi. 7:79
    [Google Scholar]
  125. 125. 
    Knowles SL, Mead ME, Silva LP, Raja HA, Steenwyk JL et al. 2020. Gliotoxin, a known virulence factor in the major human pathogen Aspergillus fumigatus, is also biosynthesized by its nonpathogenic relative Aspergillus fischeri. mBio 11:e20190502
    [Google Scholar]
  126. 126. 
    Salas SD, Bennett JE, Kwon-Chung KJ, Perfect JR, Williamson PR. 1996. Effect of the laccase gene, CNLAC1, on virulence of Cryptococcus neoformans. J. Exp. Med. 184:377–86
    [Google Scholar]
  127. 127. 
    Smith DFQ, Casadevall A. 2019. The role of melanin in fungal pathogenesis for animal hosts. In Fungal Physiology and Immunopathogenesised. M Rodrigues Curr. Top. Microbiol. Immunol. 422. Cham, Switz.: Springer https://doi.org/10.1007/82_2019_173
    [Crossref] [Google Scholar]
  128. 128. 
    Cox GM, McDade HC, Chen SC, Tucker SC, Gottfredsson M et al. 2001. Extracellular phospholipase activity is a virulence factor for Cryptococcus neoformans. Mol. Microbiol. 39:166–75
    [Google Scholar]
  129. 129. 
    Ghannoum MA. 2000. Potential role of phospholipases in virulence and fungal pathogenesis. Clin. Microbiol. Rev. 13:122–43
    [Google Scholar]
  130. 130. 
    Vecchiarelli A, Pericolini E, Gabrielli E, Kenno S, Perito S et al. 2013. Elucidating the immunological function of the Cryptococcus neoformans capsule. Future Microbiol 8:1107–16
    [Google Scholar]
  131. 131. 
    Cottier F, Hall RA. 2019. Face/Off: the interchangeable side of Candida albicans. Front. Cell Infect. Microbiol. 9:471
    [Google Scholar]
  132. 132. 
    Esher SK, Ost KS, Kohlbrenner MA, Pianalto KM, Telzrow CL et al. 2018. Defects in intracellular trafficking of fungal cell wall synthases lead to aberrant host immune recognition. PLOS Pathog 14:e1007126
    [Google Scholar]
  133. 133. 
    Chang YC, Kwon-Chung KJ. 1994. Complementation of a capsule-deficient mutation of Cryptococcus neoformans restores its virulence. Mol. Cell. Biol. 14:4912–19
    [Google Scholar]
  134. 134. 
    Mandujano-González V, Villa-Tanaca L, Anducho-Reyes MA, Mercado-Flores Y. 2016. Secreted fungal aspartic proteases: a review. Rev. Iberoam. Micol. 33:76–82
    [Google Scholar]
  135. 135. 
    Zaragoza O, Nielsen K. 2013. Titan cells in Cryptococcus neoformans: cells with a giant impact. Curr. Opin. Microbiol. 16:409–13
    [Google Scholar]
  136. 136. 
    Rutherford JC. 2014. The emerging role of urease as a general microbial virulence factor. PLOS Pathog 10:e1004062
    [Google Scholar]
  137. 137. 
    Fu MS, Coelho C, De Leon-Rodriguez CM, Rossi DCP, Camacho E et al. 2018. Cryptococcus neoformans urease affects the outcome of intracellular pathogenesis by modulating phagolysosomal pH. PLOS Pathog 14:e1007144
    [Google Scholar]
  138. 138. 
    Olszewski MA, Noverr MC, Chen GH, Toews GB, Cox GM et al. 2004. Urease expression by Cryptococcus neoformans promotes microvascular sequestration, thereby enhancing central nervous system invasion. Am. J. Pathol. 164:1761–71
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-101220-034306
Loading
/content/journals/10.1146/annurev-immunol-101220-034306
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error