1932

Abstract

As central effectors of the adaptive immune response, immunoglobulins, or antibodies, provide essential protection from pathogens through their ability to recognize foreign antigens, aid in neutralization, and facilitate elimination from the host. Mammalian immunoglobulins can be classified into five isotypes—IgA, IgD, IgE, IgG, and IgM—each with distinct roles in mediating various aspects of the immune response. Of these isotypes, IgA and IgM are the only ones capable of multimerization, arming them with unique biological functions. Increased valency of polymeric IgA and IgM provides high avidity for binding low-affinity antigens, and their ability to be transported across the mucosal epithelium into secretions by the polymeric immunoglobulin receptor allows them to play critical roles in mucosal immunity. Here we discuss the molecular assembly, structure, and function of these multimeric antibodies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-101320-123742
2022-04-26
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/immunol/40/1/annurev-immunol-101320-123742.html?itemId=/content/journals/10.1146/annurev-immunol-101320-123742&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Schroeder HW, Cavacini L. 2010. Structure and function of immunoglobulins. J. Allergy Clin. Immunol. 125:2 Suppl. 2S41–52
    [Google Scholar]
  2. 2. 
    Gutzeit C, Chen K, Cerutti A 2018. The enigmatic function of IgD: some answers at last. Eur. J. Immunol. 48:71101–13
    [Google Scholar]
  3. 3. 
    Sutton BJ, Davies AM, Bax HJ, Karagiannis SN. 2019. IgE antibodies: from structure to function and clinical translation. Antibodies 8:119
    [Google Scholar]
  4. 4. 
    Vidarsson G, Dekkers G, Rispens T. 2014. IgG subclasses and allotypes: from structure to effector functions. Front. Immunol. 5:520
    [Google Scholar]
  5. 5. 
    Norderhaug IN, Johansen FE, Schjerven H, Brandtzaeg P. 1999. Regulation of the formation and external transport of secretory immunoglobulins. Crit. Rev. Immunol. 19:5–6481–508
    [Google Scholar]
  6. 6. 
    Sousa-Pereira PD, Woof JM 2019. IgA: Structure, function, and developability. Antibodies 8:457
    [Google Scholar]
  7. 7. 
    Kaetzel CS. 2005. The polymeric immunoglobulin receptor: bridging innate and adaptive immune responses at mucosal surfaces. Immunol. Rev. 206:83–99
    [Google Scholar]
  8. 8. 
    Keyt BA, Baliga R, Sinclair AM, Carroll SF, Peterson MS 2020. Structure, function, and therapeutic use of IgM antibodies. Antibodies 9:453–88
    [Google Scholar]
  9. 9. 
    Chodirker WB, Tomasi TB. 1963. Gamma-globulins: quantitative relationships in human serum and nonvascular fluids. Science 142:35951080–81
    [Google Scholar]
  10. 10. 
    Atyeo C, Alter G. 2021. The multifaceted roles of breast milk antibodies. Cell 184:61486–99
    [Google Scholar]
  11. 11. 
    Tomasi TB, Tan EM, Solomon A, Prendergast RA 1965. Characteristics of an immune system common to certain external secretions. J. Exp. Med. 121:101–24
    [Google Scholar]
  12. 12. 
    Halpern MS, Koshland ME. 1973. The stoichiometry of J chain in human secretory IgA. J. Immunol. 111:61653–60
    [Google Scholar]
  13. 13. 
    Suzuki T, Kawaguchi A, Ainai A, Tamura S, Ito R et al. 2015. Relationship of the quaternary structure of human secretory IgA to neutralization of influenza virus. PNAS 112:257809–14
    [Google Scholar]
  14. 14. 
    Cattaneo A, Neuberger MS. 1987. Polymeric immunoglobulin M is secreted by transfectants of non-lymphoid cells in the absence of immunoglobulin J chain. EMBO J 6:92753–58
    [Google Scholar]
  15. 15. 
    Davis AC, Collins C, Yoshimura MI, D'Agostaro G, Shulman MJ. 1989. Mutations of the mouse mu H chain which prevent polymer assembly. J. Immunol. 143:41352–57
    [Google Scholar]
  16. 16. 
    Randall TD, King LB, Corley RB. 1990. The biological effects of IgM hexamer formation. Eur. J. Immunol. 20:91971–79
    [Google Scholar]
  17. 17. 
    Randall TD, Brewer JW, Corley RB. 1992. Direct evidence that J chain regulates the polymeric structure of IgM in antibody-secreting B cells. J. Biol. Chem. 267:2518002–7
    [Google Scholar]
  18. 18. 
    Chuang CY, Capra JD, Kehoe JM. 1973. Evolutionary relationship between carboxyterminal region of a human alpha chain and other immunoglobulin heavy chain constant regions. Nature 244:5412158–60
    [Google Scholar]
  19. 19. 
    Atkin JD, Pleass RJ, Owens RJ, Woof JM. 1996. Mutagenesis of the human IgA1 heavy chain tailpiece that prevents dimer assembly. J. Immunol. 157:1156–59
    [Google Scholar]
  20. 20. 
    Halpern MS, Koshland ME. 1970. Novel subunit in secretory IgA. Nature 228:52781276–78
    [Google Scholar]
  21. 21. 
    Mestecky J, Zikan J, Butler WT 1971. Immunoglobulin M and secretory immunoglobulin A: presence of a common polypeptide chain different from light chains. Science 171:39761163–65
    [Google Scholar]
  22. 22. 
    Morrison SL, Koshland ME. 1972. Characterization of the J chain from polymeric immunoglobulins (IgA-IgM-immunological specificity-primary structure). PNAS 69:1124–28
    [Google Scholar]
  23. 23. 
    Mendez E, Prelli F, Frangione B, Franklin EC 1973. Characterization of a disulfide bridge linking the J chain to the alpha chain of polymeric immunoglobulin A. Biochem. Biophys. Res. Commun. 55:41291–97
    [Google Scholar]
  24. 24. 
    Mestecky J, Schrohenloher RE, Kulhavy R, Wright GP, Tomana M 1974. Site of J chain attachment to human polymeric IgA. PNAS 71:2544–48
    [Google Scholar]
  25. 25. 
    Hauptman SP, Tomasi TB. 1975. Mechanism of immunoglobulin A polymerization. J. Biol. Chem. 250:103891–96
    [Google Scholar]
  26. 26. 
    Garcia-Pardo A, Lamm ME, Plaut AG, Frangione B. 1981. J chain is covalently bound to both monomer subunits in human secretory IgA. J. Biol. Chem. 256:2211734–38
    [Google Scholar]
  27. 27. 
    Zikan J, Mestecky J, Kulhavy R, Bennett JC 1986. The stoichiometry of J chain in human secretory dimeric IgA. Mol. Immunol. 23:5541–44
    [Google Scholar]
  28. 28. 
    Chapuis RM, Koshland ME. 1975. Linkage and assembly of polymeric IgA immunoglobulins. Biochemistry 14:61320–26
    [Google Scholar]
  29. 29. 
    Chapuis RM, Koshland ME. 1974. Mechanism of IgM polymerization. PNAS 71:3657–61
    [Google Scholar]
  30. 30. 
    Bastian A, Kratzin H, Eckart K, Hilschmann N 1992. Intra- and interchain disulfide bridges of the human J chain in secretory immunoglobulin A. Biol. Chem. Hoppe-Seyler 373:121255–63
    [Google Scholar]
  31. 31. 
    Frutiger S, Hughes GJ, Paquet N, Lüthy R, Jaton JC 1992. Disulfide bond assignment in human J chain and its covalent pairing with immunoglobulin M. Biochemistry 31:5012643–47
    [Google Scholar]
  32. 32. 
    Bastian A, Kratzin H, Fallgren-Gebauer E, Eckart K, Hilschmann N 1995. Intra- and inter-chain disulfide bridges of J chain in human S-IgA. Adv. Exp. Med. Biol. 371A:581–83
    [Google Scholar]
  33. 33. 
    Krugmann S, Pleass RJ, Atkin JD, Woof JM. 1997. Structural requirements for assembly of dimeric IgA probed by site-directed mutagenesis of J chain and a cysteine residue of the alpha-chain CH2 domain. J. Immunol. 159:1244–49
    [Google Scholar]
  34. 34. 
    South MA, Cooper MD, Wollheim FA, Hong R, Good RA 1966. The IgA system. J. Exp. Med. 123:4615–27
    [Google Scholar]
  35. 35. 
    Asofski R, Binaghi RA, Edelman GM, Goodman HC, Heremans JF et al. 1970. An extension of the nomenclature for immunoglobulins. Immunochemistry 7:5497–500
    [Google Scholar]
  36. 36. 
    Mostov KE, Kraehenbuhl JP, Blobel G. 1980. Receptor-mediated transcellular transport of immunoglobulin: synthesis of secretory component as multiple and larger transmembrane forms. PNAS 77:127257–61
    [Google Scholar]
  37. 37. 
    Mostov KE, Blobel G. 1982. A transmembrane precursor of secretory component: the receptor for transcellular transport of polymeric immunoglobulins. J. Biol. Chem. 257:1911816–21
    [Google Scholar]
  38. 38. 
    Mostov KE, Friedlander M, Blobel G. 1984. The receptor for transepithelial transport of IgA and IgM contains multiple immunoglobulin-like domains. Nature 308:595437–43
    [Google Scholar]
  39. 39. 
    Lindh E. 1975. Increased resistance of immunoglobulin A dimers to proteolytic degradation after binding of secretory component. J. Immunol. 114:1 Part 2284–86
    [Google Scholar]
  40. 40. 
    Crottet P, Corthésy B. 1998. Secretory component delays the conversion of secretory IgA into antigen-binding competent F(ab′)2: a possible implication for mucosal defense. J. Immunol. 161:105445–53
    [Google Scholar]
  41. 41. 
    Brandtzaeg P. 1975. Blocking effect of J chain and J-chain antibody on the binding of secretory component to human IgA and IgM. Scand. J. Immunol. 4:8837–42
    [Google Scholar]
  42. 42. 
    Brandtzaeg P, Prydz H. 1984. Direct evidence for an integrated function of J chain and secretory component in epithelial transport of immunoglobulins. Nature 311:598171–73
    [Google Scholar]
  43. 43. 
    Vaerman JP, Langendries AE, Giffroy DA, Kaetzel CS, Fiani CM et al. 1998. Antibody against the human J chain inhibits polymeric Ig receptor-mediated biliary and epithelial transport of human polymeric IgA. Eur. J. Immunol. 28:1171–82
    [Google Scholar]
  44. 44. 
    Vaerman JP, Langendries A, Giffroy D, Brandtzaeg P, Kobayashi K. 1998. Lack of SC/pIgR-mediated epithelial transport of a human polymeric IgA devoid of J chain: in vitro and in vivo studies. Immunology 95:190–96
    [Google Scholar]
  45. 45. 
    Yoo EM, Coloma MJ, Trinh KR, Nguyen TQ, Vuong LU et al. 1999. Structural requirements for polymeric immunoglobulin assembly and association with J chain. J. Biol. Chem. 274:4733771–77
    [Google Scholar]
  46. 46. 
    Chintalacharuvu KR, Vuong LU, Loi LA, Larrick JW, Morrison SL. 2001. Hybrid IgA2/IgG1 antibodies with tailor-made effector functions. Clin. Immunol. 101:121–31
    [Google Scholar]
  47. 47. 
    Braathen R, Sorensen V, Brandtzaeg P, Sandlie I, Johansen F-E. 2002. The carboxyl-terminal domains of IgA and IgM direct isotype-specific polymerization and interaction with the polymeric immunoglobulin receptor. J. Biol. Chem. 277:4542755–62
    [Google Scholar]
  48. 48. 
    Lewis MJ, Pleass RJ, Batten MR, Atkin JD, Woof JM. 2005. Structural requirements for the interaction of human IgA with the human polymeric Ig receptor. J. Immunol. 175:106694–701
    [Google Scholar]
  49. 49. 
    Underdown BJ, De Rose J, Plaut A. 1977. Disulfide bonding of secretory component to a single monomer subunit in human secretory IgA. J. Immunol. 118:51816–21
    [Google Scholar]
  50. 50. 
    Fallgren-Gebauer E, Gebauer W, Bastian A, Kratzin H, Eiffert H et al. 1995. The covalent linkage of the secretory component to IgA. Adv. Exp. Med. Biol. 371A:625–28
    [Google Scholar]
  51. 51. 
    Svehag SE, Chesebro B, Bloth B 1967. Ultrastructure of gamma-M immunoglobulin and alpha macroglobulin: electron-microscopic study. Science 158:3803933–36
    [Google Scholar]
  52. 52. 
    Chesebro B, Bloth B, Svehag SE. 1968. The ultrastructure of normal and pathological IgM immunoglobulins. J. Exp. Med. 127:3399–410
    [Google Scholar]
  53. 53. 
    Feinstein A, Munn EA. 1969. Conformation of the free and antigen-bound IgM antibody molecules. Nature 224:52261307–9
    [Google Scholar]
  54. 54. 
    Perkins SJ, Nealis AS, Sutton BJ, Feinstein A. 1991. Solution structure of human and mouse immunoglobulin M by synchrotron X-ray scattering and molecular graphics modelling: a possible mechanism for complement activation. J. Mol. Biol. 221:41345–66
    [Google Scholar]
  55. 55. 
    Czajkowsky DM, Shao Z. 2009. The human IgM pentamer is a mushroom-shaped molecule with a flexural bias. PNAS 106:3514960–65
    [Google Scholar]
  56. 56. 
    Sharp TH, Boyle AL, Diebolder CA, Kros A, Koster AJ, Gros P. 2019. Insights into IgM-mediated complement activation based on in situ structures of IgM-C1-C4b. PNAS 116:2411900–5
    [Google Scholar]
  57. 57. 
    Munn EA, Feinstein A, Munro AJ 1971. Electron microscope examination of free IgA molecules and of their complexes with antigen. Nature 231:5304527–29
    [Google Scholar]
  58. 58. 
    Dourmashkin RR, Virella G, Parkhouse RM. 1971. Electron microscopy of human and mouse myeloma serum IgA. J. Mol. Biol. 56:1207–8
    [Google Scholar]
  59. 59. 
    Bloth B, Svehag SE. 1971. Further studies on the ultrastructure of dimeric IgA of human origin. J. Exp. Med. 133:51035–42
    [Google Scholar]
  60. 60. 
    Boehm MK, Woof JM, Kerr MA, Perkins SJ. 1999. The Fab and Fc fragments of IgA1 exhibit a different arrangement from that in IgG: a study by X-ray and neutron solution scattering and homology modelling. J. Mol. Biol. 286:51421–47
    [Google Scholar]
  61. 61. 
    Furtado PB, Whitty PW, Robertson A, Eaton JT, Almogren A et al. 2004. Solution structure determination of monomeric human IgA2 by X-ray and neutron scattering, analytical ultracentrifugation and constrained modelling: a comparison with monomeric human IgA1. J. Mol. Biol. 338:5921–41
    [Google Scholar]
  62. 62. 
    Bonner A, Perrier C, Corthésy B, Perkins SJ 2007. Solution structure of human secretory component and implications for biological function. J. Biol. Chem. 282:2316969–80
    [Google Scholar]
  63. 63. 
    Bonner A, Furtado PB, Almogren A, Kerr MA, Perkins SJ. 2008. Implications of the near-planar solution structure of human myeloma dimeric IgA1 for mucosal immunity and IgA nephropathy. J. Immunol. 180:21008–18
    [Google Scholar]
  64. 64. 
    Bonner A, Almogren A, Furtado PB, Kerr MA, Perkins SJ. 2009. Location of secretory component on the Fc edge of dimeric IgA1 reveals insight into the role of secretory IgA1 in mucosal immunity. Mucosal Immunol 2:174–84
    [Google Scholar]
  65. 65. 
    Bonner A, Almogren A, Furtado PB, Kerr MA, Perkins SJ. 2009. The nonplanar secretory IgA2 and near planar secretory IgA1 solution structures rationalize their different mucosal immune responses. J. Biol. Chem. 284:85077–87
    [Google Scholar]
  66. 66. 
    Almogren A, Bonner A, Perkins SJ, Kerr MA. 2009. Functional and structural characterisation of human colostrum free secretory component. Mol. Immunol. 46:71534–41
    [Google Scholar]
  67. 67. 
    Herr AB, Ballister ER, Bjorkman PJ. 2003. Insights into IgA-mediated immune responses from the crystal structures of human FcαRI and its complex with IgA1-Fc. Nature 423:6940614–20
    [Google Scholar]
  68. 68. 
    Ramsland PA, Willoughby N, Trist HM, Farrugia W, Hogarth PM et al. 2007. Structural basis for evasion of IgA immunity by Staphylococcus aureus revealed in the complex of SSL7 with Fc of human IgA1. PNAS 104:3815051–56
    [Google Scholar]
  69. 69. 
    Müller R, Gräwert MA, Kern T, Madl T, Peschek J et al. 2013. High-resolution structures of the IgM Fc domains reveal principles of its hexamer formation. PNAS 110:2510183–88
    [Google Scholar]
  70. 70. 
    Cann GM, Zaritsky A, Koshland ME 1982. Primary structure of the immunoglobulin J chain from the mouse. PNAS 79:216656–60
    [Google Scholar]
  71. 71. 
    Zikan J, Novotny J, Trapane TL, Koshland ME, Urry DW et al. 1985. Secondary structure of the immunoglobulin J chain. PNAS 82:175905–9
    [Google Scholar]
  72. 72. 
    Pumphrey RS. 1986. Computer models of the human immunoglobulins: binding sites and molecular interactions. Immunol. Today 7:7–8206–11
    [Google Scholar]
  73. 73. 
    Hamburger AE, West AP, Bjorkman PJ. 2004. Crystal structure of a polymeric immunoglobulin binding fragment of the human polymeric immunoglobulin receptor. Structure 12:111925–35
    [Google Scholar]
  74. 74. 
    Stadtmueller BM, Huey-Tubman KE, López CJ, Yang Z, Hubbell WL, Bjorkman PJ. 2016. The structure and dynamics of secretory component and its interactions with polymeric immunoglobulins. eLife 5:e10640
    [Google Scholar]
  75. 75. 
    Frutiger S, Hughes GJ, Hanlyg WC, Kingzetteg M, Jaton J-C. 1986. The amino-terminal domain of rabbit secretory component is responsible for noncovalent binding to immunoglobulin A dimers. J. Biol. Chem. 261:3516673–81
    [Google Scholar]
  76. 76. 
    Coyne RS, Siebrecht M, Peitsch MC, Casanova JE. 1994. Mutational analysis of polymeric immunoglobulin receptor/ligand interactions. Evidence for the involvement of multiple complementarity determining region (CDR)-like loops in receptor domain I. J. Biol. Chem. 269:5031620–25
    [Google Scholar]
  77. 77. 
    Geneste C, Iscaki S, Mangalo R, Pillot J 1986. Both Fcα domains of human IgA are involved in in vitro interaction between secretory component and dimeric IgA. Immunol. Lett. 13:5221–26
    [Google Scholar]
  78. 78. 
    Geneste C, Mangalo R, Iscaki S, Pillot J 1986. Human secretory component. IV: Antigenic regions involved in in vitro binding to dimeric IgA. Immunol. Lett. 13:3121–26
    [Google Scholar]
  79. 79. 
    Bakos MA, Kurosky A, Goldblum RM 1991. Characterization of a critical binding site for human polymeric Ig on secretory component. J. Immunol. 147:103419–26
    [Google Scholar]
  80. 80. 
    Bakos MA, Kurosky A, Woodard CS, Denney RM, Goldblum RM. 1991. Probing the topography of free and polymeric Ig-bound human secretory component with monoclonal antibodies. J. Immunol. 146:1162–68
    [Google Scholar]
  81. 81. 
    Bakos MA, Kurosky A, Czerwinski EW, Goldblum RM. 1993. A conserved binding site on the receptor for polymeric Ig is homologous to CDR1 of Ig V kappa domains. J. Immunol. 151:31346–52
    [Google Scholar]
  82. 82. 
    Lombana TN, Rajan S, Zorn JA, Mandikian D, Chen EC et al. 2019. Production, characterization, and in vivo half-life extension of polymeric IgA molecules in mice. mAbs 11:61122–38
    [Google Scholar]
  83. 83. 
    Hiramoto E, Tsutsumi A, Suzuki R, Matsuoka S, Arai S et al. 2018. The IgM pentamer is an asymmetric pentagon with an open groove that binds the AIM protein. Sci. Adv. 4:10eaau1199
    [Google Scholar]
  84. 84. 
    Kumar N, Arthur CP, Ciferri C, Matsumoto ML 2020. Structure of the secretory immunoglobulin A core. Science 367:64811008–14
    [Google Scholar]
  85. 85. 
    Wang Y, Wang G, Li Y, Zhu Q, Shen H et al. 2020. Structural insights into secretory immunoglobulin A and its interaction with a pneumococcal adhesin. Cell Res 30:7602–9
    [Google Scholar]
  86. 86. 
    Kumar Bharathkar S, Parker BW, Malyutin AG, Haloi N, Huey-Tubman KE et al. 2020. The structures of secretory and dimeric immunoglobulin A. eLife 9:e56098
    [Google Scholar]
  87. 87. 
    van Anken E, Pena F, Hafkemeijer N, Christis C, Romijn EP et al. 2009. Efficient IgM assembly and secretion require the plasma cell induced endoplasmic reticulum protein pERp1. PNAS 106:4017019–24
    [Google Scholar]
  88. 88. 
    Shimizu Y, Meunier L, Hendershot LM. 2009. pERp1 is significantly up-regulated during plasma cell differentiation and contributes to the oxidative folding of immunoglobulin. PNAS 106:4017013–18
    [Google Scholar]
  89. 89. 
    Xiong E, Li Y, Min Q, Cui C, Liu J et al. 2019. MZB1 promotes the secretion of J-chain-containing dimeric IgA and is critical for the suppression of gut inflammation. PNAS 116:2713480–89
    [Google Scholar]
  90. 90. 
    Li Y, Wang G, Li N, Wang Y, Zhu Q et al. 2020. Structural insights into immunoglobulin M. Science 367:64811014–17
    [Google Scholar]
  91. 91. 
    Kumar N, Arthur CP, Ciferri C, Matsumoto ML. 2021. Structure of the human secretory immunoglobulin M core. Structure 29:6564–71
    [Google Scholar]
  92. 92. 
    Koshland ME, Chapuis RM, Recht B, Brown JC 1977. Selective proteolysis of the J chain component in human polymeric immunoglobulin. J. Immunol. 118:3775–81
    [Google Scholar]
  93. 93. 
    Shibuya A, Sakamoto N, Shimizu Y, Shibuya K, Osawa M et al. 2000. Fc alpha/mu receptor mediates endocytosis of IgM-coated microbes. Nat. Immunol. 1:5441–46
    [Google Scholar]
  94. 94. 
    Yoo EM, Trinh KR, Lim H, Wims LA, Morrison SL. 2011. Characterization of IgA and IgM binding and internalization by surface-expressed human Fcα/μ receptor. Mol. Immunol. 48:15–161818–26
    [Google Scholar]
  95. 95. 
    Ohno T, Kubagawa H, Sanders SK, Cooper MD 1990. Biochemical nature of an Fc mu receptor on human B-lineage cells. J. Exp. Med. 172:41165–75
    [Google Scholar]
  96. 96. 
    Kubagawa H, Oka S, Kubagawa Y, Torii I, Takayama E et al. 2009. Identity of the elusive IgM Fc receptor (FcμR) in humans. J. Exp. Med. 206:122779–93
    [Google Scholar]
  97. 97. 
    Wilson TJ, Fuchs A, Colonna M. 2012. Cutting edge: Human FcRL4 and FcRL5 are receptors for IgA and IgG. J. Immunol. 188:104741–45
    [Google Scholar]
  98. 98. 
    Liu Y, Goroshko S, Leung LYT, Dong S, Khan S et al. 2020. FCRL4 is an Fc receptor for systemic IgA, but not mucosal secretory IgA. J. Immunol. 205:2533–38
    [Google Scholar]
  99. 99. 
    Agarwal S, Kraus Z, Dement-Brown J, Alabi O, Starost K, Tolnay M. 2020. Human Fc receptor-like 3 inhibits regulatory T cell function and binds secretory IgA. Cell Rep 30:51292–99.e3
    [Google Scholar]
  100. 100. 
    Cheng Y, Grigorieff N, Penczek PA, Walz T. 2015. A primer to single-particle cryo-electron microscopy. Cell 161:3438–49
    [Google Scholar]
  101. 101. 
    Nogales E, Scheres SHW. 2015. Cryo-EM: a unique tool for the visualization of macromolecular complexity. Mol. Cell 58:4677–89
    [Google Scholar]
  102. 102. 
    Kühlbrandt W. 2014. The resolution revolution. Science 343:61781443–44
    [Google Scholar]
  103. 103. 
    Callaway E. 2015. The revolution will not be crystallized: A new method sweeps through structural biology. Nature 525:7568172–74
    [Google Scholar]
  104. 104. 
    Callaway E. 2020. Revolutionary cryo-EM is taking over structural biology. Nature 578:7794201
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-101320-123742
Loading
/content/journals/10.1146/annurev-immunol-101320-123742
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error