1932

Abstract

Our understanding of the functions of the IL-1 superfamily cytokine and damage-associated molecular pattern IL-33 continues to evolve with our understanding of homeostasis and immunity. The early findings that IL-33 is a potent driver of type 2 immune responses promoting parasite expulsion, but also inflammatory diseases like allergy and asthma, have been further supported. Yet, as the importance of a type 2 response in tissue repair and homeostasis has emerged, so has the fundamental importance of IL-33 to these processes. In this review, we outline an evolving understanding of IL-33 immunobiology, paying particular attention to how IL-33 directs a network of ST2+ regulatory T cells, reparative and regulatory macrophages, and type 2 innate lymphoid cells that are fundamental to tissue development, homeostasis, and repair.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-101320-124243
2022-04-26
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/immunol/40/1/annurev-immunol-101320-124243.html?itemId=/content/journals/10.1146/annurev-immunol-101320-124243&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Cayrol C, Girard JP. 2018. Interleukin-33 (IL-33): a nuclear cytokine from the IL-1 family. Immunol. Rev. 281:154–68
    [Google Scholar]
  2. 2. 
    Baekkevold ES, Roussigne M, Yamanaka T, Johansen FE, Jahnsen FL et al. 2003. Molecular characterization of NF-HEV, a nuclear factor preferentially expressed in human high endothelial venules. Am. J. Pathol. 163:69–79
    [Google Scholar]
  3. 3. 
    Schmitz J, Owyang A, Oldham E, Song Y, Murphy E et al. 2005. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23:479–90
    [Google Scholar]
  4. 4. 
    Rivers-Auty J, Daniels MJD, Colliver I, Robertson DL, Brough D. 2018. Redefining the ancestral origins of the interleukin-1 superfamily. Nat. Commun. 9:1156
    [Google Scholar]
  5. 5. 
    Liew FY, Girard JP, Turnquist HR. 2016. Interleukin-33 in health and disease. Nat. Rev. Immunol. 16:676–89
    [Google Scholar]
  6. 6. 
    Martin NT, Martin MU. 2016. Interleukin 33 is a guardian of barriers and a local alarmin. Nat. Immunol. 17:122–31
    [Google Scholar]
  7. 7. 
    Griesenauer B, Paczesny S. 2017. The ST2/IL-33 axis in immune cells during inflammatory diseases. Front. Immunol. 8:475
    [Google Scholar]
  8. 8. 
    Molofsky AB, Savage AK, Locksley RM. 2015. Interleukin-33 in tissue homeostasis, injury, and inflammation. Immunity 42:1005–19
    [Google Scholar]
  9. 9. 
    Peine M, Marek RM, Lohning M. 2016. IL-33 in T cell differentiation, function, and immune homeostasis. Trends Immunol 37:321–33
    [Google Scholar]
  10. 10. 
    Vasanthakumar A, Kallies A. 2019. Interleukin (IL)-33 and the IL-1 family of cytokines—regulators of inflammation and tissue homeostasis. Cold Spring Harb. Perspect. Biol. 11:a028506
    [Google Scholar]
  11. 11. 
    Tsuda H, Komine M, Tominaga SI, Ohtsuki M. 2017. Identification of the promoter region of human IL-33 responsive to induction by IFNγ. J. Dermatol. Sci. 85:137–40
    [Google Scholar]
  12. 12. 
    Lingel A, Weiss TM, Niebuhr M, Pan B, Appleton BA et al. 2009. Structure of IL-33 and its interaction with the ST2 and IL-1RAcP receptors—insight into heterotrimeric IL-1 signaling complexes. Structure 17:1398–410
    [Google Scholar]
  13. 13. 
    Liu X, Hammel M, He Y, Tainer JA, Jeng US et al. 2013. Structural insights into the interaction of IL-33 with its receptors. PNAS 110:14918–23
    [Google Scholar]
  14. 14. 
    Dahlgren MW, Jones SW, Cautivo KM, Dubinin A, Ortiz-Carpena JF et al. 2019. Adventitial stromal cells define group 2 innate lymphoid cell tissue niches. Immunity 50:707–22.e6
    [Google Scholar]
  15. 15. 
    Nguyen PT, Dorman LC, Pan S, Vainchtein ID, Han RT et al. 2020. Microglial remodeling of the extracellular matrix promotes synapse plasticity. Cell 182:388–403.e15
    [Google Scholar]
  16. 16. 
    Vainchtein ID, Chin G, Cho FS, Kelley KW, Miller JG et al. 2018. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science 359:1269–73
    [Google Scholar]
  17. 17. 
    Xi H, Katschke KJ Jr., Li Y, Truong T, Lee WP, Diehl L et al. 2016. IL-33 amplifies an innate immune response in the degenerating retina. J. Exp. Med. 213:189–207
    [Google Scholar]
  18. 18. 
    Reichenbach DK, Schwarze V, Matta BM, Tkachev V, Lieberknecht E et al. 2015. The IL-33/ST2 axis augments effector T-cell responses during acute GVHD. Blood 125:3183–92 Erratum. 2016 Blood 128:91311
    [Google Scholar]
  19. 19. 
    Aparicio-Domingo P, Cannelle H, Buechler MB, Nguyen S, Kallert SM et al. 2021. Fibroblast-derived IL-33 is dispensable for lymph node homeostasis but critical for CD8 T-cell responses to acute and chronic viral infection. Eur. J. Immunol. 51:76–90
    [Google Scholar]
  20. 20. 
    Seltmann J, Werfel T, Wittmann M. 2013. Evidence for a regulatory loop between IFN-gamma and IL-33 in skin inflammation. Exp. Dermatol. 22:102–7
    [Google Scholar]
  21. 21. 
    Sundlisaeter E, Edelmann RJ, Hol J, Sponheim J, Kuchler AM et al. 2012. The alarmin IL-33 is a Notch target in quiescent endothelial cells. Am. J. Pathol. 181:1099–111
    [Google Scholar]
  22. 22. 
    Chang J, Xia Y, Wasserloos K, Deng M, Blose KJ et al. 2017. Cyclic stretch induced IL-33 production through HMGB1/TLR-4 signaling pathway in murine respiratory epithelial cells. PLOS ONE 12:e0184770
    [Google Scholar]
  23. 23. 
    Kakkar R, Hei H, Dobner S, Lee RT 2012. Interleukin 33 as a mechanically responsive cytokine secreted by living cells. J. Biol. Chem. 287:6941–48
    [Google Scholar]
  24. 24. 
    Hardman CS, Panova V, McKenzie AN 2013. IL-33 citrine reporter mice reveal the temporal and spatial expression of IL-33 during allergic lung inflammation. Eur. J. Immunol. 43:488–98
    [Google Scholar]
  25. 25. 
    Hsu CL, Bryce PJ. 2012. Inducible IL-33 expression by mast cells is regulated by a calcium-dependent pathway. . J. Immunol. 189:3421–29
    [Google Scholar]
  26. 26. 
    Hsu CL, Neilsen CV, Bryce PJ. 2010. IL-33 is produced by mast cells and regulates IgE-dependent inflammation. PLOS ONE 5:e11944
    [Google Scholar]
  27. 27. 
    Russi AE, Ebel ME, Yang Y, Brown MA. 2018. Male-specific IL-33 expression regulates sex-dimorphic EAE susceptibility. PNAS 115:7E1520–29
    [Google Scholar]
  28. 28. 
    Hung LY, Tanaka Y, Herbine K, Pastore C, Singh B et al. 2020. Cellular context of IL-33 expression dictates impact on anti-helminth immunity. Sci. Immunol. 5:eabc6259
    [Google Scholar]
  29. 29. 
    Stier MT, Mitra R, Nyhoff LE, Goleniewska K, Zhang J et al. 2019. IL-33 is a cell-intrinsic regulator of fitness during early B cell development. J. Immunol. 203:1457–67
    [Google Scholar]
  30. 30. 
    Hatzioannou A, Banos A, Sakelaropoulos T, Fedonidis C, Vidali MS et al. 2020. An intrinsic role of IL-33 in Treg cell-mediated tumor immunoevasion. Nat. Immunol. 21:75–85
    [Google Scholar]
  31. 31. 
    Travers J, Rochman M, Miracle CE, Habel JE, Brusilovsky M et al. 2018. Chromatin regulates IL-33 release and extracellular cytokine activity. Nat. Commun. 9:3244
    [Google Scholar]
  32. 32. 
    Bessa J, Meyer CA, de Vera Mudry MC, Schlicht S, Smith SH et al. 2014. Altered subcellular localization of IL-33 leads to non-resolving lethal inflammation. J. Autoimmun. 55:33–41
    [Google Scholar]
  33. 33. 
    Ali S, Mohs A, Thomas M, Klare J, Ross R et al. 2011. The dual function cytokine Il-33 interacts with the transcription factor NF-κΒ to dampen NF-κΒ–stimulated gene transcription. J. Immunol. 187:1609–16
    [Google Scholar]
  34. 34. 
    Lee EJ, So MW, Hong S, Kim YG, Yoo B, Lee CK 2016. Interleukin-33 acts as a transcriptional repressor and extracellular cytokine in fibroblast-like synoviocytes in patients with rheumatoid arthritis. Cytokine 77:35–43
    [Google Scholar]
  35. 35. 
    Ni Y, Tao L, Chen C, Song H, Li Z et al. 2015. The deubiquitinase USP17 regulates the stability and nuclear function of IL-33. Int. J. Mol. Sci. 16:27956–66
    [Google Scholar]
  36. 36. 
    Serrels B, McGivern N, Canel M, Byron A, Johnson SC et al. 2017. IL-33 and ST2 mediate FAK-dependent antitumor immune evasion through transcriptional networks. Sci. Signal. 10:eaan8355
    [Google Scholar]
  37. 37. 
    Gatti F, Mia S, Hammarstrom C, Frerker N, Fosby B et al. 2021. Nuclear IL-33 restrains the early conversion of fibroblasts to an extracellular matrix-secreting phenotype. Sci. Rep. 11:108
    [Google Scholar]
  38. 38. 
    Gautier V, Cayrol C, Farache D, Roga S, Monsarrat B et al. 2016. Extracellular IL-33 cytokine, but not endogenous nuclear IL-33, regulates protein expression in endothelial cells. Sci. Rep. 6:34255
    [Google Scholar]
  39. 39. 
    Sanada S, Hakuno D, Higgins LJ, Schreiter ER, McKenzie AN, Lee RT 2007. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J. Clin. Investig. 117:1538–49
    [Google Scholar]
  40. 40. 
    Katz-Kiriakos E, Steinberg DF, Kluender CE, Osorio OA, Newsome-Stewart C et al. 2021. Epithelial IL-33 appropriates exosome trafficking for secretion in chronic airway disease. JCI Insight 6:e136166
    [Google Scholar]
  41. 41. 
    Momota M, Nagayama M, Okude H, Ishii KJ, Ori D et al. 2020. The Ca2+-dependent pathway contributes to changes in the subcellular localization and extracellular release of interleukin-33. Biochem. Biophys. Res. Commun. 530:699–705
    [Google Scholar]
  42. 42. 
    Scott IC, Majithiya JB, Sanden C, Thornton P, Sanders PN et al. 2018. Interleukin-33 is activated by allergen- and necrosis-associated proteolytic activities to regulate its alarmin activity during epithelial damage. Sci. Rep. 8:3363
    [Google Scholar]
  43. 43. 
    Lipsky BP, Toy DY, Swart DA, Smithgall MD, Smith D. 2012. Deletion of the ST2 proximal promoter disrupts fibroblast-specific expression but does not reduce the amount of soluble ST2 in circulation. Eur. J. Immunol. 42:1863–69
    [Google Scholar]
  44. 44. 
    Billiar IM, Guardado J, Abdul-Malak O, Vodovotz Y, Billiar TR, Namas RA. 2019. Elevations in circulating sST2 levels are associated with in-hospital mortality and adverse clinical outcomes after blunt trauma. J. Surg. Res. 244:23–33
    [Google Scholar]
  45. 45. 
    Xu J, Guardado J, Hoffman R, Xu H, Namas R et al. 2017. IL33-mediated ILC2 activation and neutrophil IL5 production in the lung response after severe trauma: a reverse translation study from a human cohort to a mouse trauma model. PLOS Med 14:e1002365
    [Google Scholar]
  46. 46. 
    Grotenboer NS, Ketelaar ME, Koppelman GH, Nawijn MC. 2013. Decoding asthma: translating genetic variation in IL33 and IL1RL1 into disease pathophysiology. J. Allergy Clin. Immunol. 131:856–65
    [Google Scholar]
  47. 47. 
    Smith D, Helgason H, Sulem P, Bjornsdottir US, Lim AC et al. 2017. A rare IL33 loss-of-function mutation reduces blood eosinophil counts and protects from asthma. PLOS Genet 13:e1006659
    [Google Scholar]
  48. 48. 
    Gordon ED, Simpson LJ, Rios CL, Ringel L, Lachowicz-Scroggins ME et al. 2016. Alternative splicing of interleukin-33 and type 2 inflammation in asthma. PNAS 113:8765–70
    [Google Scholar]
  49. 49. 
    Ito R, Maruoka S, Soda K, Katano I, Kawai K et al. 2018. A humanized mouse model to study asthmatic airway inflammation via the human IL-33/IL-13 axis. JCI Insight 3:e121580
    [Google Scholar]
  50. 50. 
    Li T, Zhang Z, Bartolacci JG, Dwyer GK, Liu Q et al. 2020. Graft IL-33 regulates infiltrating macrophages to protect against chronic rejection. J. Clin. Investig. 130:5397–412
    [Google Scholar]
  51. 51. 
    O'Neill LA, Pearce EJ 2016. Immunometabolism governs dendritic cell and macrophage function. J. Exp. Med. 213:15–23
    [Google Scholar]
  52. 52. 
    Hussey GS, Dziki JL, Lee YC, Bartolacci JG, Behun M et al. 2019. Matrix bound nanovesicle-associated IL-33 activates a pro-remodeling macrophage phenotype via a non-canonical, ST2-independent pathway. J. Immunol. Regen. Med. 3:26–35
    [Google Scholar]
  53. 53. 
    van der Merwe Y, Faust AE, Sakalli ET, Westrick CC, Hussey G et al. 2019. Matrix-bound nanovesicles prevent ischemia-induced retinal ganglion cell axon degeneration and death and preserve visual function. Sci. Rep. 9:3482
    [Google Scholar]
  54. 54. 
    Martinez FO, Gordon S. 2014. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6:13
    [Google Scholar]
  55. 55. 
    Wynn TA, Vannella KM. 2016. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44:450–62
    [Google Scholar]
  56. 56. 
    Kondo Y, Yoshimoto T, Yasuda K, Futatsugi-Yumikura S, Morimoto M et al. 2008. Administration of IL-33 induces airway hyperresponsiveness and goblet cell hyperplasia in the lungs in the absence of adaptive immune system. Int. Immunol. 20:791–800
    [Google Scholar]
  57. 57. 
    Alvarez F, Fritz JH, Piccirillo CA. 2019. Pleiotropic effects of IL-33 on CD4+ T cell differentiation and effector functions. Front. Immunol. 10:522
    [Google Scholar]
  58. 58. 
    Arpaia N, Green JA, Moltedo B, Arvey A, Hemmers S, Yuan S, Treuting PM, Rudensky AY. 2015. A distinct function of regulatory T cells in tissue protection. Cell 162:1078–89
    [Google Scholar]
  59. 59. 
    Burzyn D, Kuswanto W, Kolodin D, Shadrach JL, Cerletti M et al. 2013. A special population of regulatory T cells potentiates muscle repair. Cell 155:1282–95
    [Google Scholar]
  60. 60. 
    Liu Q, Dwyer GK, Zhao Y, Li H, Mathews LR et al. 2019. IL-33–mediated IL-13 secretion by ST2+ Tregs controls inflammation after lung injury. JCI Insight 4:e123919
    [Google Scholar]
  61. 61. 
    Schiering C, Krausgruber T, Chomka A, Frohlich A, Adelmann K et al. 2014. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature 513:564–68
    [Google Scholar]
  62. 62. 
    Siede J, Frohlich A, Datsi A, Hegazy AN, Varga DV et al. 2016. IL-33 receptor-expressing regulatory T cells are highly activated, Th2 biased and suppress CD4 T cell proliferation through IL-10 and TGFβ release. PLOS ONE 11:e0161507
    [Google Scholar]
  63. 63. 
    Matta BM, Reichenbach DK, Zhang X, Mathews L, Koehn BH et al. 2016. Peri-alloHCT IL-33 administration expands recipient T-regulatory cells that protect mice against acute GVHD. Blood 128:427–39
    [Google Scholar]
  64. 64. 
    Turnquist HR, Zhao Z, Rosborough BR, Liu Q, Castellaneta A et al. 2011. IL-33 expands suppressive CD11b+ Gr-1int and regulatory T cells, including ST2L+ Foxp3+ cells, and mediates regulatory T cell-dependent promotion of cardiac allograft survival. J. Immunol. 187:4598–610
    [Google Scholar]
  65. 65. 
    Baumann C, Bonilla WV, Frohlich A, Helmstetter C, Peine M et al. 2015. T-bet- and STAT4-dependent IL-33 receptor expression directly promotes antiviral Th1 cell responses. PNAS 112:4056–61
    [Google Scholar]
  66. 66. 
    Bonilla WV, Frohlich A, Senn K, Kallert S, Fernandez M et al. 2012. The alarmin interleukin-33 drives protective antiviral CD8+ T cell responses. Science 335:984–89
    [Google Scholar]
  67. 67. 
    Yang Q, Li G, Zhu Y, Liu L, Chen E et al. 2011. IL-33 synergizes with TCR and IL-12 signaling to promote the effector function of CD8+ T cells. Eur. J. Immunol. 41:3351–60
    [Google Scholar]
  68. 68. 
    Zhang J, Ramadan AM, Griesenauer B, Li W, Turner MJ et al. 2015. ST2 blockade reduces sST2-producing T cells while maintaining protective mST2-expressing T cells during graft-versus-host disease. Sci. Transl. Med. 7:308ra160
    [Google Scholar]
  69. 69. 
    Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP et al. 2013. Innate lymphoid cells—a proposal for uniform nomenclature. Nat. Rev. Immunol. 13:145–49
    [Google Scholar]
  70. 70. 
    Oboki K, Ohno T, Kajiwara N, Arae K, Morita H et al. 2010. IL-33 is a crucial amplifier of innate rather than acquired immunity. PNAS 107:18581–86
    [Google Scholar]
  71. 71. 
    He Z, Song J, Hua J, Yang M, Ma Y et al. 2018. Mast cells are essential intermediaries in regulating IL-33/ST2 signaling for an immune network favorable to mucosal healing in experimentally inflamed colons. Cell Death Dis. 9:1173
    [Google Scholar]
  72. 72. 
    Wang JX, Kaieda S, Ameri S, Fishgal N, Dwyer D et al. 2014. IL-33/ST2 axis promotes mast cell survival via BCLXL. PNAS 111:10281–86
    [Google Scholar]
  73. 73. 
    Pecaric-Petkovic T, Didichenko SA, Kaempfer S, Spiegl N, Dahinden CA. 2009. Human basophils and eosinophils are the direct target leukocytes of the novel IL-1 family member IL-33. Blood 113:1526–34
    [Google Scholar]
  74. 74. 
    Cohen M, Giladi A, Gorki AD, Solodkin DG, Zada M et al. 2018. Lung single-cell signaling interaction map reveals basophil role in macrophage imprinting. Cell 175:1031–44.e18
    [Google Scholar]
  75. 75. 
    Joshi AD, Oak SR, Hartigan AJ, Finn WG, Kunkel SL et al. 2010. Interleukin-33 contributes to both M1 and M2 chemokine marker expression in human macrophages. BMC Immunol 11:52
    [Google Scholar]
  76. 76. 
    Kurowska-Stolarska M, Stolarski B, Kewin P, Murphy G, Corrigan CJ et al. 2009. IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation. J. Immunol. 183:6469–77
    [Google Scholar]
  77. 77. 
    Suzukawa M, Koketsu R, Iikura M, Nakae S, Matsumoto K et al. 2008. Interleukin-33 enhances adhesion, CD11b expression and survival in human eosinophils. Lab. Investig. 88:1245–53
    [Google Scholar]
  78. 78. 
    Wang Y, Yang Y, Wang M, Wang S, Jeong JM et al. 2021. Eosinophils attenuate hepatic ischemia-reperfusion injury in mice through ST2-dependent IL-13 production. Sci. Transl. Med. 13:eabb6576
    [Google Scholar]
  79. 79. 
    Matta BM, Lott JM, Mathews LR, Liu Q, Rosborough BR et al. 2014. IL-33 is an unconventional alarmin that stimulates IL-2 secretion by dendritic cells to selectively expand IL-33R/ST2+ regulatory T cells. J. Immunol. 193:4010–20
    [Google Scholar]
  80. 80. 
    Monticelli LA, Osborne LC, Noti M, Tran SV, Zaiss DM, Artis D. 2015. IL-33 promotes an innate immune pathway of intestinal tissue protection dependent on amphiregulin-EGFR interactions. PNAS 112:10762–67
    [Google Scholar]
  81. 81. 
    Baumann C, Frohlich A, Brunner TM, Holecska V, Pinschewer DD, Lohning M. 2019. Memory CD8+ T cell protection from viral reinfection depends on interleukin-33 alarmin signals. Front. Immunol. 10:1833
    [Google Scholar]
  82. 82. 
    McLaren JE, Clement M, Marsden M, Miners KL, Llewellyn-Lacey S et al. 2019. IL-33 augments virus-specific memory T cell inflation and potentiates the efficacy of an attenuated cytomegalovirus-based vaccine. J. Immunol. 202:943–55
    [Google Scholar]
  83. 83. 
    Rood JE, Rao S, Paessler M, Kreiger PA, Chu N et al. 2016. ST2 contributes to T-cell hyperactivation and fatal hemophagocytic lymphohistiocytosis in mice. Blood 127:426–35
    [Google Scholar]
  84. 84. 
    Bourgeois E, Van LP, Samson M, Diem S, Barra A et al. 2009. The pro-Th2 cytokine IL-33 directly interacts with invariant NKT and NK cells to induce IFN-gamma production. Eur. J. Immunol. 39:1046–55
    [Google Scholar]
  85. 85. 
    Smithgall MD, Comeau MR, Yoon BR, Kaufman D, Armitage R, Smith DE 2008. IL-33 amplifies both Th1- and Th2-type responses through its activity on human basophils, allergen-reactive Th2 cells, iNKT and NK cells. Int. Immunol. 20:1019–30
    [Google Scholar]
  86. 86. 
    Acton SE, Farrugia AJ, Astarita JL, Mourao-Sa D, Jenkins RP et al. 2014. Dendritic cells control fibro-blastic reticular network tension and lymph node expansion. Nature 514:498–502
    [Google Scholar]
  87. 87. 
    Le HT, Tran VG, Kim W, Kim J, Cho HR, Kwon B. 2012. IL-33 priming regulates multiple steps of the neutrophil-mediated anti-Candida albicans response by modulating TLR and dectin-1 signals. J. Immunol. 189:287–95
    [Google Scholar]
  88. 88. 
    Tran VG, Kim HJ, Kim J, Kang SW, Moon UJ et al. 2015. IL-33 enhances host tolerance to Candida albicans kidney infections through induction of IL-13 production by CD4+ T cells. J. Immunol. 194:4871–79
    [Google Scholar]
  89. 89. 
    Flaczyk A, Duerr CU, Shourian M, Lafferty EI, Fritz JH, Qureshi ST. 2013. IL-33 signaling regulates innate and adaptive immunity to Cryptococcus neoformans. J. Immunol. 191:2503–13
    [Google Scholar]
  90. 90. 
    Piehler D, Eschke M, Schulze B, Protschka M, Muller U et al. 2016. The IL-33 receptor (ST2) regulates early IL-13 production in fungus-induced allergic airway inflammation. Mucosal Immunol 9:937–49
    [Google Scholar]
  91. 91. 
    Piehler D, Grahnert A, Eschke M, Richter T, Kohler G et al. 2013. T1/ST2 promotes T helper 2 cell activation and polyfunctionality in bronchopulmonary mycosis. Mucosal Immunol 6:405–14
    [Google Scholar]
  92. 92. 
    Alvarez F, Istomine R, Shourian M, Pavey N, Al-Aubodah TA et al. 2019. The alarmins IL-1 and IL-33 differentially regulate the functional specialisation of Foxp3+ regulatory T cells during mucosal inflammation. Mucosal Immunol 12:746–60
    [Google Scholar]
  93. 93. 
    Palmieri V, Ebel JF, Ngo Thi Phuong N, Klopfleisch R, Vu VP et al. 2021. Interleukin-33 signaling exacerbates experimental infectious colitis by enhancing gut permeability and inhibiting protective Th17 immunity. Mucosal Immunol 14:923–36
    [Google Scholar]
  94. 94. 
    Alves-Filho JC, Sonego F, Souto FO, Freitas A, Verri WA Jr. et al. 2010. Interleukin-33 attenuates sepsis by enhancing neutrophil influx to the site of infection. Nat. Med. 16:708–12
    [Google Scholar]
  95. 95. 
    Brunner M, Krenn C, Roth G, Moser B, Dworschak M et al. 2004. Increased levels of soluble ST2 protein and IgG1 production in patients with sepsis and trauma. Intensive Care Med 30:1468–73
    [Google Scholar]
  96. 96. 
    Cekmez F, Fidanci MK, Ayar G, Saldir M, Karaoglu A et al. 2016. Diagnostic value of Upar, IL-33, and ST2 levels in childhood sepsis. Clin. Lab. 62:751–55
    [Google Scholar]
  97. 97. 
    Hoogerwerf JJ, Tanck MW, van Zoelen MA, Wittebole X, Laterre PF, van der Poll T. 2010. Soluble ST2 plasma concentrations predict mortality in severe sepsis. Intensive Care Med 36:630–37
    [Google Scholar]
  98. 98. 
    Morrow KN, Coopersmith CM, Ford ML. 2019. IL-17, IL-27, and IL-33: a novel axis linked to immunological dysfunction during sepsis. Front. Immunol. 10:1982
    [Google Scholar]
  99. 99. 
    Nascimento DC, Melo PH, Pineros AR, Ferreira RG, Colon DF et al. 2017. IL-33 contributes to sepsis-induced long-term immunosuppression by expanding the regulatory T cell population. Nat. Commun. 8:14919
    [Google Scholar]
  100. 100. 
    Li C, Li H, Jiang Z, Zhang T, Wang Y et al. 2014. Interleukin-33 increases antibacterial defense by activation of inducible nitric oxide synthase in skin. PLOS Pathog 10:e1003918
    [Google Scholar]
  101. 101. 
    Yin H, Li X, Hu S, Liu T, Yuan B et al. 2013. IL-33 promotes Staphylococcus aureus-infected wound healing in mice. Int. Immunopharmacol. 17:432–38
    [Google Scholar]
  102. 102. 
    Bonnelykke K, Sleiman P, Nielsen K, Kreiner-Moller E, Mercader JM et al. 2014. A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations. Nat. Genet. 46:51–55
    [Google Scholar]
  103. 103. 
    Prefontaine D, Nadigel J, Chouiali F, Audusseau S, Semlali A et al. 2010. Increased IL-33 expression by epithelial cells in bronchial asthma. J. Allergy Clin. Immunol. 125:752–54
    [Google Scholar]
  104. 104. 
    Savinko T, Matikainen S, Saarialho-Kere U, Lehto M, Wang G et al. 2012. IL-33 and ST2 in atopic dermatitis: expression profiles and modulation by triggering factors. J. Investig. Dermatol. 132:1392–400
    [Google Scholar]
  105. 105. 
    Gabryelska A, Kuna P, Antczak A, Bialasiewicz P, Panek M. 2019. IL-33 mediated inflammation in chronic respiratory diseases—understanding the role of the member of IL-1 superfamily. Front. Immunol. 10:692
    [Google Scholar]
  106. 106. 
    Yi L, Cheng D, Zhang K, Huo X, Mo Y et al. 2017. Intelectin contributes to allergen-induced IL-25, IL-33, and TSLP expression and type 2 response in asthma and atopic dermatitis. Mucosal Immunol 10:1491–503
    [Google Scholar]
  107. 107. 
    Leyva-Castillo JM, Galand C, Kam C, Burton O, Gurish M et al. 2019. Mechanical skin injury promotes food anaphylaxis by driving intestinal mast cell expansion. Immunity 50:1262–75.e4
    [Google Scholar]
  108. 108. 
    Sjoberg LC, Gregory JA, Dahlen SE, Nilsson GP, Adner M. 2015. Interleukin-33 exacerbates allergic bronchoconstriction in the mice via activation of mast cells. Allergy 70:514–21
    [Google Scholar]
  109. 109. 
    Altman MC, Lai Y, Nolin JD, Long S, Chen CC et al. 2019. Airway epithelium-shifted mast cell infiltration regulates asthmatic inflammation via IL-33 signaling. J. Clin. Investig. 129:4979–91
    [Google Scholar]
  110. 110. 
    Du X, Li C, Wang W, Huang Q, Wang J et al. 2020. IL-33 induced airways inflammation is partially dependent on IL-9. Cell Immunol 352:104098
    [Google Scholar]
  111. 111. 
    Hu J, Gao N, Zhang Y, Chen X, Li J et al. 2020. IL-33/ST2/IL-9/IL-9R signaling disrupts ocular surface barrier in allergic inflammation. Mucosal Immunol 13:919–30
    [Google Scholar]
  112. 112. 
    Byers DE, Alexander-Brett J, Patel AC, Agapov E, Dang-Vu G et al. 2013. Long-term IL-33-producing epithelial progenitor cells in chronic obstructive lung disease. J. Clin. Investig. 123:3967–82
    [Google Scholar]
  113. 113. 
    Xia J, Zhao J, Shang J, Li M, Zeng Z et al. 2015. Increased IL-33 expression in chronic obstructive pulmonary disease. Am. J. Physiol. Lung Cell Mol. Physiol. 308:L619–27
    [Google Scholar]
  114. 114. 
    Qiu C, Li Y, Li M, Li M, Liu X et al. 2013. Anti-interleukin-33 inhibits cigarette smoke-induced lung inflammation in mice. Immunology 138:76–82
    [Google Scholar]
  115. 115. 
    Chen YL, Gutowska-Owsiak D, Hardman CS, Westmoreland M, MacKenzie T et al. 2019. Proof-of-concept clinical trial of etokimab shows a key role for IL-33 in atopic dermatitis pathogenesis. Sci. Transl. Med. 11:eaax2945
    [Google Scholar]
  116. 116. 
    Eissmann MF, Dijkstra C, Jarnicki A, Phesse T, Brunnberg J et al. 2019. IL-33-mediated mast cell activation promotes gastric cancer through macrophage mobilization. Nat. Commun. 10:2735
    [Google Scholar]
  117. 117. 
    Li A, Herbst RH, Canner D, Schenkel JM, Smith OC et al. 2019. IL-33 signaling alters regulatory T cell diversity in support of tumor development. Cell Rep 29:2998–3008.e8
    [Google Scholar]
  118. 118. 
    Pastille E, Wasmer MH, Adamczyk A, Vu VP, Mager LF et al. 2019. The IL-33/ST2 pathway shapes the regulatory T cell phenotype to promote intestinal cancer. Mucosal Immunol 12:990–1003
    [Google Scholar]
  119. 119. 
    Son J, Cho JW, Park HJ, Moon J, Park S et al. 2020. Tumor-infiltrating regulatory T-cell accumulation in the tumor microenvironment is mediated by IL33/ST2 signaling. Cancer Immunol. Res. 8:1393–406
    [Google Scholar]
  120. 120. 
    Halvorsen EC, Franks SE, Wadsworth BJ, Harbourne BT, Cederberg RA et al. 2019. IL-33 increases ST2+ Tregs and promotes metastatic tumour growth in the lungs in an amphiregulin-dependent manner. OncoImmunology 8:e1527497
    [Google Scholar]
  121. 121. 
    Gao K, Li X, Zhang L, Bai L, Dong W et al. 2013. Transgenic expression of IL-33 activates CD8+ T cells and NK cells and inhibits tumor growth and metastasis in mice. Cancer Lett 335:463–71
    [Google Scholar]
  122. 122. 
    Gao X, Wang X, Yang Q, Zhao X, Wen W et al. 2015. Tumoral expression of IL-33 inhibits tumor growth and modifies the tumor microenvironment through CD8+ T and NK cells. J. Immunol. 194:438–45
    [Google Scholar]
  123. 123. 
    Lucarini V, Ziccheddu G, Macchia I, La Sorsa V, Peschiaroli F et al. 2017. IL-33 restricts tumor growth and inhibits pulmonary metastasis in melanoma-bearing mice through eosinophils. OncoImmunology 6:e1317420
    [Google Scholar]
  124. 124. 
    Andreone S, Spadaro F, Buccione C, Mancini J, Tinari A et al. 2019. IL-33 promotes CD11b/CD18-mediated adhesion of eosinophils to cancer cells and synapse-polarized degranulation leading to tumor cell killing. Cancers 11:1664
    [Google Scholar]
  125. 125. 
    Ikutani M, Yanagibashi T, Ogasawara M, Tsuneyama K, Yamamoto S et al. 2012. Identification of innate IL-5-producing cells and their role in lung eosinophil regulation and antitumor immunity. J. Immunol. 188:703–13
    [Google Scholar]
  126. 126. 
    Johansson K, Malmhall C, Ramos-Ramirez P, Radinger M. 2018. Bone marrow type 2 innate lymphoid cells: a local source of interleukin-5 in interleukin-33-driven eosinophilia. Immunology 153:268–78
    [Google Scholar]
  127. 127. 
    Kienzl M, Hasenoehrl C, Valadez-Cosmes P, Maitz K, Sarsembayeva A et al. 2020. IL-33 reduces tumor growth in models of colorectal cancer with the help of eosinophils. OncoImmunology 9:1776059
    [Google Scholar]
  128. 128. 
    Hollande C, Boussier J, Ziai J, Nozawa T, Bondet V et al. 2019. Inhibition of the dipeptidyl peptidase DPP4 (CD26) reveals IL-33-dependent eosinophil-mediated control of tumor growth. Nat. Immunol. 20:257–64
    [Google Scholar]
  129. 129. 
    Wagner M, Ealey KN, Tetsu H, Kiniwa T, Motomura Y et al. 2020. Tumor-derived lactic acid contributes to the paucity of intratumoral ILC2s. Cell Rep 30:2743–57.e5
    [Google Scholar]
  130. 130. 
    Griesenauer B, Jiang H, Yang J, Zhang J, Ramadan AM et al. 2019. ST2/MyD88 deficiency protects mice against acute graft-versus-host disease and spares regulatory T cells. J. Immunol. 202:3053–64
    [Google Scholar]
  131. 131. 
    Matsuoka S, Hashimoto D, Kadowaki M, Ohigashi H, Hayase E et al. 2020. Myeloid differentiation factor 88 signaling in donor T cells accelerates graft-versus-host disease. Haematologica 105:226–34
    [Google Scholar]
  132. 132. 
    Meizlish ML, Franklin RA, Zhou X, Medzhitov R. 2021. Tissue homeostasis and inflammation. Annu. Rev. Immunol. 39:557–81
    [Google Scholar]
  133. 133. 
    Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J et al. 2009. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 15:930–39
    [Google Scholar]
  134. 134. 
    Wang L, Luo Y, Luo L, Wu D, Ding X et al. 2021. Adiponectin restrains ILC2 activation by AMPK-mediated feedback inhibition of IL-33 signaling. J. Exp. Med. 218:e20191054
    [Google Scholar]
  135. 135. 
    Fali T, Aychek T, Ferhat M, Jouzeau JY, Busslinger M et al. 2021. Metabolic regulation by PPARγ is required for IL-33-mediated activation of ILC2s in lung and adipose tissue. Mucosal Immunol 14:585–93
    [Google Scholar]
  136. 136. 
    Han JM, Wu D, Denroche HC, Yao Y, Verchere CB, Levings MK. 2015. IL-33 reverses an obesity-induced deficit in visceral adipose tissue ST2+ T regulatory cells and ameliorates adipose tissue inflammation and insulin resistance. J. Immunol. 194:4777–83
    [Google Scholar]
  137. 137. 
    Kolodin D, van Panhuys N, Li C, Magnuson AM, Cipolletta D et al. 2015. Antigen- and cytokine-driven accumulation of regulatory T cells in visceral adipose tissue of lean mice. Cell Metab 21:543–57
    [Google Scholar]
  138. 138. 
    Vasanthakumar A, Moro K, Xin A, Liao Y, Gloury R et al. 2015. The transcriptional regulators IRF4, BATF and IL-33 orchestrate development and maintenance of adipose tissue-resident regulatory T cells. Nat. Immunol. 16:276–85
    [Google Scholar]
  139. 139. 
    Li C, DiSpirito JR, Zemmour D, Spallanzani RG, Kuswanto W et al. 2018. TCR transgenic mice reveal stepwise, multi-site acquisition of the distinctive fat-Treg phenotype. Cell 174:285–99.e12
    [Google Scholar]
  140. 140. 
    Hashiguchi M, Kashiwakura Y, Kojima H, Kobayashi A, Kanno Y, Kobata T. 2015. IL-33 activates eosinophils of visceral adipose tissue both directly and via innate lymphoid cells. Eur. J. Immunol. 45:876–85
    [Google Scholar]
  141. 141. 
    Holmes DA, Yeh JH, Yan D, Xu M, Chan AC. 2015. Dusp5 negatively regulates IL-33-mediated eosinophil survival and function. EMBO J 34:218–35
    [Google Scholar]
  142. 142. 
    Spallanzani RG, Zemmour D, Xiao T, Jayewickreme T, Li C et al. 2019. Distinct immunocyte-promoting and adipocyte-generating stromal components coordinate adipose tissue immune and metabolic tenors. Sci. Immunol. 4:eaaw3658
    [Google Scholar]
  143. 143. 
    Mahlakoiv T, Flamar AL, Johnston LK, Moriyama S, Putzel GG et al. 2019. Stromal cells maintain immune cell homeostasis in adipose tissue via production of interleukin-33. Sci. Immunol. 4:eaax0416
    [Google Scholar]
  144. 144. 
    Kohlgruber AC, Gal-Oz ST, LaMarche NM, Shimazaki M, Duquette D et al. 2018. γδ T cells producing interleukin-17A regulate adipose regulatory T cell homeostasis and thermogenesis. Nat. Immunol. 19:464–74 Erratum. 2019 Nat. Immunol 20:3373
    [Google Scholar]
  145. 145. 
    Miller AM, Asquith DL, Hueber AJ, Anderson LA, Holmes WM et al. 2010. Interleukin-33 induces protective effects in adipose tissue inflammation during obesity in mice. Circ. Res. 107:650–58
    [Google Scholar]
  146. 146. 
    Zhao XY, Zhou L, Chen Z, Ji Y, Peng X et al. 2020. The obesity-induced adipokine sST2 exacerbates adipose Treg and ILC2 depletion and promotes insulin resistance. Sci. Adv. 6:eaay6191
    [Google Scholar]
  147. 147. 
    Topping V, Romero R, Than NG, Tarca AL, Xu Z et al. 2013. Interleukin-33 in the human placenta. J. Maternal-Fetal Neonatal Med. 26:327–38
    [Google Scholar]
  148. 148. 
    Bartemes K, Chen CC, Iijima K, Drake L, Kita H 2018. IL-33-responsive group 2 innate lymphoid cells are regulated by female sex hormones in the uterus. J. Immunol. 200:229–36
    [Google Scholar]
  149. 149. 
    Chen H, Zhou X, Han TL, Baker PN, Qi H, Zhang H. 2018. Decreased IL-33 production contributes to trophoblast cell dysfunction in pregnancies with preeclampsia. Mediators Inflamm 2018:9787239
    [Google Scholar]
  150. 150. 
    Hu WT, Li MQ, Liu W, Jin LP, Li DJ, Zhu XY 2014. IL-33 enhances proliferation and invasiveness of decidual stromal cells by up-regulation of CCL2/CCR2 via NF-κB and ERK1/2 signaling. Mol. Hum. Reprod. 20:358–72
    [Google Scholar]
  151. 151. 
    Hu WT, Huang LL, Li MQ, Jin LP, Li DJ, Zhu XY 2015. Decidual stromal cell-derived IL-33 contributes to Th2 bias and inhibits decidual NK cell cytotoxicity through NF-κB signaling in human early pregnancy. J. Reprod. Immunol. 109:52–65
    [Google Scholar]
  152. 152. 
    Sheng YR, Hu WT, Wei CY, Tang LL, Liu YK et al. 2019. Insights of efferocytosis in normal and pathological pregnancy. Am. J. Reprod. Immunol. 82:e13088
    [Google Scholar]
  153. 153. 
    Valeff N, Juriol L, Quadrana F, Muzzio DO, Zygmunt M et al. 2020. Expression of IL-33 receptor is significantly up-regulated in B cells during pregnancy and in the acute phase of preterm birth in mice. Front. Immunol. 11:446
    [Google Scholar]
  154. 154. 
    Huang B, Faucette AN, Pawlitz MD, Pei B, Goyert JW et al. 2017. Interleukin-33-induced expression of PIBF1 by decidual B cells protects against preterm labor. Nat. Med. 23:128–35
    [Google Scholar]
  155. 155. 
    Sheng YR, Hu WT, Wei CY, Tang LL, Liu YK et al. 2018. IL-33/ST2 axis affects the polarization and efferocytosis of decidual macrophages in early pregnancy. Am. J. Reprod. Immunol. 79:e12836
    [Google Scholar]
  156. 156. 
    Cheng JB, Sedgewick AJ, Finnegan AI, Harirchian P, Lee J et al. 2018. Transcriptional programming of normal and inflamed human epidermis at single-cell resolution. Cell Rep 25:871–83
    [Google Scholar]
  157. 157. 
    Elmentaite R, Ross ADB, Roberts K, James KR, Ortmann D et al. 2020. Single-cell sequencing of developing human gut reveals transcriptional links to childhood Crohn's disease. Dev. Cell 55:771–83.e5
    [Google Scholar]
  158. 158. 
    Litvinukova M, Talavera-Lopez C, Maatz H, Reichart D, Worth CL et al. 2020. Cells of the adult human heart. Nature 588:466–72
    [Google Scholar]
  159. 159. 
    Travaglini KJ, Nabhan AN, Penland L, Sinha R, Gillich A et al. 2020. A molecular cell atlas of the human lung from single-cell RNA sequencing. Nature 587:619–25
    [Google Scholar]
  160. 160. 
    Loering S, Cameron GJM, Starkey MR, Hansbro PM. 2019. Lung development and emerging roles for type 2 immunity. J. Pathol. 247:686–96
    [Google Scholar]
  161. 161. 
    Saluzzo S, Gorki AD, Rana BMJ, Martins R, Scanlon S et al. 2017. First-breath-induced type 2 pathways shape the lung immune environment. Cell Rep 18:1893–905
    [Google Scholar]
  162. 162. 
    de Kleer IM, Kool M, de Bruijn MJ, Willart M, van Moorleghem J et al. 2016. Perinatal activation of the interleukin-33 pathway promotes type 2 immunity in the developing lung. Immunity 45:1285–98
    [Google Scholar]
  163. 163. 
    Steer CA, Matha L, Shim H, Takei F 2020. Lung group 2 innate lymphoid cells are trained by endogenous IL-33 in the neonatal period. JCI Insight 5:e135961
    [Google Scholar]
  164. 164. 
    Mowat AM, Agace WW. 2014. Regional specialization within the intestinal immune system. Nat. Rev. Immunol. 14:667–85
    [Google Scholar]
  165. 165. 
    Schneider C, O'Leary CE, Locksley RM. 2019. Regulation of immune responses by tuft cells. Nat. Rev. Immunol. 19:584–93
    [Google Scholar]
  166. 166. 
    Hoffman BU, Lumpkin EA. 2018. A gut feeling. Science 361:1203–4
    [Google Scholar]
  167. 167. 
    Chen Z, Luo J, Li J, Kim G, Stewart A et al. 2021. Interleukin-33 promotes serotonin release from enterochromaffin cells for intestinal homeostasis. Immunity 54:151–63.e6
    [Google Scholar]
  168. 168. 
    Waddell A, Vallance JE, Moore PD, Hummel AT, Wu D et al. 2015. IL-33 signaling protects from murine oxazolone colitis by supporting intestinal epithelial function. Inflamm. Bowel Dis. 21:2737–46
    [Google Scholar]
  169. 169. 
    Mahapatro M, Foersch S, Hefele M, He GW, Giner-Ventura E et al. 2016. Programming of intestinal epithelial differentiation by IL-33 derived from pericryptal fibroblasts in response to systemic infection. Cell Rep 15:1743–56
    [Google Scholar]
  170. 170. 
    Fairlie-Clarke K, Barbour M, Wilson C, Hridi SU, Allan D, Jiang HR 2018. Expression and function of IL-33/ST2 axis in the central nervous system under normal and diseased conditions. Front. Immunol. 9:2596
    [Google Scholar]
  171. 171. 
    Wang Y, Fu WY, Cheung K, Hung KW, Chen C et al. 2021. Astrocyte-secreted IL-33 mediates homeostatic synaptic plasticity in the adult hippocampus. PNAS 118:e2020810118
    [Google Scholar]
  172. 172. 
    Lechner AJ, Driver IH, Lee J, Conroy CM, Nagle A et al. 2017. Recruited monocytes and type 2 immunity promote lung regeneration following pneumonectomy. Cell Stem Cell 21:120–34.e7
    [Google Scholar]
  173. 173. 
    Dagher R, Copenhaver AM, Besnard V, Berlin A, Hamidi F et al. 2020. IL-33-ST2 axis regulates myeloid cell differentiation and activation enabling effective club cell regeneration. Nat. Commun. 11:4786
    [Google Scholar]
  174. 174. 
    Lai D, Tang J, Chen L, Fan EK, Scott MJ et al. 2018. Group 2 innate lymphoid cells protect lung endothelial cells from pyroptosis in sepsis. Cell Death Dis 9:369
    [Google Scholar]
  175. 175. 
    Sun M, He C, Wu W, Zhou G, Liu F et al. 2017. Hypoxia inducible factor-1α-induced interleukin-33 expression in intestinal epithelia contributes to mucosal homeostasis in inflammatory bowel disease. Clin. Exp. Immunol. 187:428–40
    [Google Scholar]
  176. 176. 
    Waddell A, Vallance JE, Hummel A, Alenghat T, Rosen MJ. 2019. IL-33 induces murine intestinal goblet cell differentiation indirectly via innate lymphoid cell IL-13 secretion. J. Immunol. 202:598–607
    [Google Scholar]
  177. 177. 
    Sattler S, Ling GS, Xu D, Hussaarts L, Romaine A et al. 2014. IL-10-producing regulatory B cells induced by IL-33 (BregIL-33) effectively attenuate mucosal inflammatory responses in the gut. J. Autoimmun. 50:107–22
    [Google Scholar]
  178. 178. 
    Lopetuso LR, De Salvo C, Pastorelli L, Rana N, Senkfor HN et al. 2018. IL-33 promotes recovery from acute colitis by inducing miR-320 to stimulate epithelial restitution and repair. PNAS 115:E9362–70
    [Google Scholar]
  179. 179. 
    Moussion C, Ortega N, Girard JP. 2008. The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel ‘alarmin’?. PLOS ONE 3:e3331
    [Google Scholar]
  180. 180. 
    Yin H, Li X, Hu S, Liu T, Yuan B et al. 2013. IL-33 accelerates cutaneous wound healing involved in upregulation of alternatively activated macrophages. Mol. Immunol. 56:347–53
    [Google Scholar]
  181. 181. 
    Oshio T, Komine M, Tsuda H, Tominaga SI, Saito H et al. 2017. Nuclear expression of IL-33 in epidermal keratinocytes promotes wound healing in mice. J. Dermatol. Sci. 85:106–14
    [Google Scholar]
  182. 182. 
    Rak GD, Osborne LC, Siracusa MC, Kim BS, Wang K et al. 2016. IL-33-dependent group 2 innate lymphoid cells promote cutaneous wound healing. J. Investig. Dermatol. 136:487–96
    [Google Scholar]
  183. 183. 
    Lee JS, Seppanen E, Patel J, Rodero MP, Khosrotehrani K. 2016. ST2 receptor invalidation maintains wound inflammation, delays healing and increases fibrosis. Exp. Dermatol. 25:71–74
    [Google Scholar]
  184. 184. 
    Tidball JG. 2017. Regulation of muscle growth and regeneration by the immune system. Nat. Rev. Immunol. 17:165–78
    [Google Scholar]
  185. 185. 
    Kuswanto W, Burzyn D, Panduro M, Wang KK, Jang YC et al. 2016. Poor repair of skeletal muscle in aging mice reflects a defect in local, interleukin-33-dependent accumulation of regulatory T cells. Immunity 44:355–67
    [Google Scholar]
  186. 186. 
    Chen WY, Wu YH, Tsai TH, Li RF, Lai AC et al. 2021. Group 2 innate lymphoid cells contribute to IL-33-mediated alleviation of cardiac fibrosis. Theranostics 11:2594–611
    [Google Scholar]
  187. 187. 
    Veeraveedu PT, Sanada S, Okuda K, Fu HY, Matsuzaki T et al. 2017. Ablation of IL-33 gene exacerbate myocardial remodeling in mice with heart failure induced by mechanical stress. Biochem. Pharmacol. 138:73–80
    [Google Scholar]
  188. 188. 
    Chen W, Lin A, Yu Y, Zhang L, Yang G, Hu H, Luo Y 2018. Serum soluble ST2 as a novel inflammatory marker in acute ischemic stroke. Clin. Lab. 64:1349–56
    [Google Scholar]
  189. 189. 
    Jiang M, Liu X, Zhang D, Wang Y, Hu X et al. 2018. Celastrol treatment protects against acute ischemic stroke-induced brain injury by promoting an IL-33/ST2 axis-mediated microglia/macrophage M2 polarization. J. Neuroinflamm. 15:78
    [Google Scholar]
  190. 190. 
    Korhonen P, Kanninen KM, Lehtonen S, Lemarchant S, Puttonen KA et al. 2015. Immunomodulation by interleukin-33 is protective in stroke through modulation of inflammation. Brain Behav. Immun. 49:322–36
    [Google Scholar]
  191. 191. 
    Qian L, Yuanshao L, Wensi H, Yulei Z, Xiaoli C et al. 2016. Serum IL-33 is a novel diagnostic and prognostic biomarker in acute ischemic stroke. Aging Dis 7:614–22
    [Google Scholar]
  192. 192. 
    Jiao M, Li X, Chen L, Wang X, Yuan B et al. 2020. Neuroprotective effect of astrocyte-derived IL-33 in neonatal hypoxic-ischemic brain injury. J. Neuroinflamm. 17:251
    [Google Scholar]
  193. 193. 
    Ito M, Komai K, Mise-Omata S, Iizuka-Koga M, Noguchi Y et al. 2019. Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature 565:246–50
    [Google Scholar]
  194. 194. 
    Gadani SP, Walsh JT, Smirnov I, Zheng J, Kipnis J 2015. The glia-derived alarmin IL-33 orchestrates the immune response and promotes recovery following CNS injury. Neuron 85:703–9
    [Google Scholar]
  195. 195. 
    Gao Y, Zhang MY, Wang T, Fan YY, Yu LS et al. 2018. IL-33/ST2L signaling provides neuroprotection through inhibiting autophagy, endoplasmic reticulum stress, and apoptosis in a mouse model of traumatic brain injury. Front. Cell Neurosci. 12:95
    [Google Scholar]
  196. 196. 
    Pomeshchik Y, Kidin I, Korhonen P, Savchenko E, Jaronen M et al. 2015. Interleukin-33 treatment reduces secondary injury and improves functional recovery after contusion spinal cord injury. Brain Behav. Immun. 44:68–81
    [Google Scholar]
  197. 197. 
    Baban B, Braun M, Khodadadi H, Ward A, Alverson K et al. 2021. AMPK induces regulatory innate lymphoid cells after traumatic brain injury. JCI Insight 6:e126766
    [Google Scholar]
  198. 198. 
    Wicher G, Wallenquist U, Lei Y, Enoksson M, Li X et al. 2017. Interleukin-33 promotes recruitment of microglia/macrophages in response to traumatic brain injury. J. Neurotrauma 34:3173–82
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-101320-124243
Loading
/content/journals/10.1146/annurev-immunol-101320-124243
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error